"Correct emphasis is basic to effective graphic presentation. Intensity of color is the simplest method of obtaining emphasis. For most reproduction purposes black ink on a white page is most generally used. Screens, dots and lines can, of course, be effectively used to give a gradation of tone from light grey to solid black. When original charts are the subjects of display presentation, use of colors is limited only by the subject and the emphasis desired." (Anna C Rogers, "Graphic Charts Handbook", 1961)
"A chart without a border line has several advantages. It is not limited to a designated area. The irregular white space surrounding it makes it more adaptable to any page size. It may be more readily placed either horizontally or vertically on the page, so long as the reduction in the size of the chart does not destroy legibility of lettering." (Mary E Spear, "Charting Statistics", 1952)
"The varieties of circle charts are necessarily limited by the lack of basic design variation - a circle is a circle! Also, a circle can be considered as representing only one unit of area. regardless of its size. Thus, circle charts have limited applications, i.e., to show how a given quantity" (area) is divided among its component parts,' or to show changes in the variable by showing area changes. A circle chart almost always presents some form of a part-to-total relationship." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)
"A graph presents a limited number of figures in a bold and forceful manner. To do this it usually must omit a large number of figures available on the subject. The choice of what graphic format to use is largely a matter of deciding what figures have the greatest significance to the intended reader and what figures he can best afford to skip." (Peter H Selby, "Interpreting Graphs and Tables", 1976)
"The quantile plot is a good general display since it is fairly easy to construct and does a good job of portraying many aspects of a distribution. Three convenient features of the plot are the following: First, in constructing it, we do not make any arbitrary choices of parameter values or cell boundaries [...] and no models for the data are fitted or assumed. Second, like a table, it is not a summary but a display of all the data. Third, on the quantile plot every point is plotted at a distinct location, even if there are duplicates in the data. The number of points that can be portrayed without overlap is limited only by the resolution of the plotting device. For a high resolution device several hundred points distinguished." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)
"There are some who argue that a graph is a success only if the important information in the data can be seen within a few seconds. While there is a place for rapidly-understood graphs, it is too limiting to make speed a requirement in science and technology, where the use of graphs ranges from, detailed, in-depth data analysis to quick presentation." (William S Cleveland, "The Elements of Graphing Data", 1985)
"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)
"Technically, there is no limit as to the number of data series that can be plotted on a single graph. Practically, if the number goes above three or four the graph becomes confusing." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"Using colour, itʼs possible to increase the density of information even further. A single colour can be used to represent two variables simultaneously. The difficulty, however, is that there is a limited amount of information that can be packed into colour without confusion." (Brian Suda, "A Practical Guide to Designing with Data", 2010)
"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)
"Bear in mind is that the use of color doesn’t always help. Use it sparingly and with a specific purpose in mind. Remember that the reader’s brain is looking for patterns, and will expect both recurrence itself and the absence of expected recurrence to carry meaning. If you’re using color to differentiate categorical data, then you need to let the reader know what the categories are. If the dimension of data you’re encoding isn’t significant enough to your message to be labeled or explained in some way - or if there is no dimension to the data underlying your use of difference colors - then you should limit your use so as not to confuse the reader." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)
"Visualisation is fundamentally limited by the number of pixels you can pump to a screen. If you have big data, you have way more data than pixels, so you have to summarise your data. Statistics gives you lots of really good tools for this." (Hadley Wickham)

No comments:
Post a Comment