Showing posts with label agile methods. Show all posts
Showing posts with label agile methods. Show all posts

13 March 2024

🔖Book Review: Zhamak Dehghani's Data Mesh: Delivering Data-Driven Value at Scale (2021)

Zhamak Dehghani's "Data Mesh: Delivering Data-Driven Value at Scale" (2021)

Zhamak Dehghani's "Data Mesh: Delivering Data-Driven Value at Scale" (2021) is a must read book for the data professional. So, here I am, finally managing to read it and give it some thought, even if it will probably take more time and a few more reads for the ideas to grow. Working in the fields of Business Intelligence and Software Engineering for almost a quarter-century, I think I can understand the historical background and the direction of the ideas presented in the book. There are many good ideas but also formulations that make me circumspect about the applicability of some assumptions and requirements considered. 

So, after data marts, warehouses, lakes and lakehouses, the data mesh paradigm seems to be the new shiny thing that will bring organizations beyond the inflection point with tipping potential from where organization's growth will have an exponential effect. At least this seems to be the first impression when reading the first chapters. 

The book follows to some degree the advocative tone of promoting that "our shiny thing is much better than previous thing", or "how bad the previous architectures or paradigms were and how good the new ones are" (see [2]). Architectures and paradigms evolve with the available technologies and our perception of what is important for businesses. Old and new have their place in the order of things, and the old will continue to exist, at least until the new proves its feasibility.  

The definition of the data mash as "a sociotechnical approach to share, access and manage analytical data in complex and large-scale environments - within or across organizations" [1] is too abstract even if it reflects at high level what the concept is about. Compared to other material I read on the topic, the book succeeds in explaining the related concepts as well the goals (called definitions) and benefits (called motivations) associated with the principles behind the data mesh, making the book approachable also by non-professionals. 

Built around four principles "data as a product", "domain-oriented ownership", "self-serve data platform" and "federated governance", the data mesh is the paradigm on which data as products are developed; where the products are "the smallest unit of architecture that can be independently deployed and managed", providing by design the information necessary to be discovered, understood, debugged, and audited.

It's possible to create Lego-like data products, data contracts and/or manifests that address product's usability characteristics, though unless the latter are generated automatically, put in the context of ERP and other complex systems, everything becomes quite an endeavor that requires time and adequate testing, increasing the overall timeframe until a data product becomes available. 

The data mesh describes data products in terms of microservices that structure architectures in terms of a collection of services that are independently deployable and loosely coupled. Asking from data products to behave in this way is probably too hard a constraint, given the complexity and interdependency of the data models behind business processes and their needs. Does all the effort make sense? Is this the "agility" the data mesh solutions are looking for?

Many pioneering organizations are still fighting with the concept of data mesh as it proves to be challenging to implement. At a high level everything makes sense, but the way data products are expected to function makes the concept challenging to implement to the full extent. Moreover, as occasionally implied, the data mesh is about scaling data analytics solutions with the size and complexity of organizations. The effort makes sense when the organizations have a certain size and the departments have a certain autonomy, therefore, it might not apply to small to medium businesses.

Previous Post <<||>>  Next Post

References:
[1] Zhamak Dehghani (2021) "Data Mesh: Delivering Data-Driven Value at Scale" (link)
[2] SQL-troubles (2024) Zhamak Dehghani's Data Mesh - Monolithic Warehouses and Lakes (link)

03 October 2023

🧮ERP: Implementations (Part III: Simplifying the Implementation Project)

 

ERP Implementation

ERP implementations are complex projects and a way to manage their complexity is to attempt reducing their complexity (instead of answering to complexity by complexity). A project implementation’s methodology is probably the most important area that allows project’s simplification, though none of the available methodologies seems to work well with such projects.

The point that differentiates the various methodologies is solution’s conceptualization. In general, the expectation is to have a set of functional design documents (FDDs) that describe how the system operates and that can be used for programming the customizations, if any. The customer must review and sign-off the FDDs before the setup is done, respectively the development starts. Moreover, given the dependencies between documents, they often need to be signed off together.

Unfortunately, FDDs reflect the degree of understanding of the target system and business requirements, gaps that can prove to be a challenge for the parties involved, requiring many iterations until they are brought to the expected quality level. The higher the accuracy considered; the more iterations are needed. FDDs tend to consume a considerable percent of the available financial resources, in extremis the whole budget being exhausted just for 'printed paper'. Moreover, the key users see late in the project the working functionality.

In agile methodologies, FDDs are replaced by user stories, and, if still needed, can be written as part of the sprints or later. Unfortunately, agile methodologies have their own challenges and constraints in ERP implementations. As functionality is explored, understood, and negotiated with the customer during the implementation, it’s seldom possible to provide a realistic cost estimation upfront. Given that most ERP implementations exceed their budget, starting a journey without having an idea how much the project costs seems to be a prohibitive approach for many customers. Moreover, the negotiations have the character of Change Requests, which can easily become a bottleneck for the project.

On the other hand, agile methodologies involve the customer earlier and the development could start earlier as well. The earlier the customer is involved, the earlier the key users understand how the system works, and thus they can be more efficient in performing their activities, respectively in identifying the gaps in understanding, trapping functional issues early in the process, at least in theory. Some projects address this need by having the key user trained, though the training environment usually has a different setup and data than needed by the customer. Wouldn’t be a good idea to have the key users trained in an environment that reflects to a higher or lower degree the customer’s data and setup requirements?

In theory the setup for such an environment can be done upfront based on one standard configuration frequently met in customer’s industry. With this the functional consultants can start to configure the system together with the key users exploring the data and setup existing in the legacy system(s). This would allow increasing on both sides the depth of understanding and has the potential of speeding up the implementation. This can be started in the early phases, during the time in which the requirements are gathered. Ideally, a basic setup can exist already when the requirements are signed off. It’s true that this approach would mean a higher investment upfront, though the impact could be considerable. Excepting Data Migration and customizations the customer already has a good basis for Go-Live.

Of course, there can be further challenges, though the customer can make thus sure that the financial resources are well spent – having a usable system, respectively a good system understanding outweighs by far the extreme alternative of having high-quality unimplemented FDDs!

Previous <<||>> Next

07 March 2021

💼Project Management: Methodologies (Part II: Agile Manifesto Reloaded II - Requirements Management)

Project Management

Independently of its scope and the methodology used, each software development project is made of the same blocks/phases arranged eventually differently. It starts with Requirements Managements (RM) subprocesses in which the functional and non-functional requirements are gathered, consolidated, prioritized and brought to a form which facilitates their understanding and estimation. It’s an iterative process as there can be overlapping in functionality, requirements that don’t bring any significant benefit when compared with the investment, respectively new aspects are discovered during the internal discussions or with the implementer.

As output of this phase, it’s important having a list of requirements that reflect customer’s needs in respect to the product(s) to be implemented. Once frozen, the list defines project’s scope and is used for estimating the costs, sketching a draft of the final solution, respectively of reaching a contractual agreement with the implementer. Ideally the set of requirements should be completed and be coherent while reflecting customer’s needs. It allows thus in theory to agree upon costs as well about an architecture and other important aspects (responsibilities/accountability).

Typically, each new requirement considered after this stage needs to go through a Change Management (CM) process in which it gets formulated to the needed level of detail, a cost, effort and impact analysis is performed, respectively the budget for it is approved or the change gets rejected. Ideally small changes can be considered as part of a buffer budget upfront, however in the end each change comes with a cost and project delays.

Some changes can come late in the project and can have an important impact on the whole architecture when important aspects were missed upfront. Moreover, when the number of changes goes beyond a certain limit it can lead to what is known as scope creep, with important consequences on project’s costs, timeline and quality. Therefore, to minimize the impact on the project, the number of changes needs to be kept to a minimum, typically considering only the critical changes, while the others can be still implemented after project’s end.

The agile manifesto’s principles impose an important constraint on the requirements - changing requirements is a good practice even late in the process – an assumption - best requirements emerge from self-organizing teams, and probably one implication – the requirements need to be defined together with the implementer.

The way changing requirements are handled seem to provide more flexibility though it’s actually a constraint imposed on the CM process which interfaces with the RM processes. Without a proper CM in place, any requirement might arrive to be implemented, independently on whether is feasible or not. This can easily make project’s costs explode, sometimes unnecessarily, while accommodating extreme behavior like changing the same functionality frequently, handling exceptions extensively, etc.

It’s usually helpful to define the requirements together with the implementer, as this can bring more quality in the process, even if more time needs to be invested. However, starting from a solid set of requirements is a critical factor for project’s success. The manifesto makes no direct statement about this. Just iterates that good requirements emerge from self-organizing teams which is not necessarily the case. 

The users who in theory can define the requirements best are the ones who have the deepest knowledge about an organization’s processes and IT architecture, typically the key users and/or IT experts. Self-organization revolves around how a team organizes itself and handles the various activities, though there’s no guarantee that it will address the important aspects, no matter how motivated the team is, how constant the pace, how excellent the technical details were handled or how good the final product works.

Previous Post <<||>>Next Post

💼Project Management: Methodologies (Part I: Agile Manifesto Reloaded I - An Introduction)

 

Project Management

There are so many books written on agile methodologies, each attempting to depict the realities of software development projects. There are many truths considered in them, though they seem to blend in a complex texture in which the writer takes usually the position of a preacher in which the sins of the traditional technologies are contrasted with the agile principles. In extremis everything done in the past seems to be wrong, while the agile methods seem to be a panacea, which is seldom the case.

There are already 20 years since the agile manifesto was published and the methodologies adhering to the respective principles don’t seem to provide the expected success, suffering from the same chronical symptoms of their predecessors - they are poorly understood and implemented, tend to function after hammer’s principle, respectively the software development projects still deliver poor results. Moreover, there are more and more professionals who raise their voice against agile practices.

Frankly, the principles behind the agile manifesto make sense. A project should by definition satisfy stakeholders’ requirements, ideally through regular deliveries that incorporate the needed functionality while gradually seeking to get early feedback from customers, respectively involve the customer through all project’s duration, working together to deliver a feasible product. Moreover, self-organizing teams, face-to-face meetings, constant pace, technical excellence should allow minimizing the waste, respectively maximizing the efficiency in the project. Further aspects like simplicity, good design and architecture should establish a basis for success.

Re-reading the agile manifesto, even if each read pulls from experience more and more pro and cons, the manifesto continues to look like a Christmas wish-list. Even if the represented ideas make sense and satisfy a specific need, they are difficult to achieve in a project’s context and setup. Each wish introduces a constraint that brings with it its own limitations. Unfortunately, each policy introduced by a methodology follows the same pattern, no matter of the methodology considered. Moreover, the wishes cover only a small subset from a project’s texture, are general and let lot of space for interpretation and implementation, though the same can be said about any principles that don’t provide a coherent worldview or a conceptual model.

The software development industry needs a coherent worldview that reflects its assumptions, models, characteristics, laws and challenges. Software Engineering (SE) attempts providing such a worldview though unfortunately is too complex for many and there seem to be a big divide when considered in respect to the worldviews introduced by the various Project Management (PM) methodologies. Studying one or two PM methodologies, learning a few programming languages and even the hand on experience on a few projects won’t fill the gaps in knowledge associated with the SE worldview.

Organizations don’t seem to see the need for professionals of having a formal education in SE. On the other side is expected from employees to have by default some of the skillset required, which is not the case. Besides understanding and implementing a technology there are a set of knowledge areas in which the IT professional must have at least a high-level knowledge if it’s expected from him/her to think critically about the respective areas. Unfortunately, the lack of such knowledge leads sometimes to situations which can impact negatively projects.

Almost each important word from the agile manifesto pulls with it a set of concepts from a SE’ worldview – customer satisfaction, software delivery, working software, requirements management, change management, cooperation, teamwork, trust, motivation, communication, metrics, stakeholders’ management, good design, good architecture, lessons learned, performance management, etc. The manifesto needs to be regarded from a SE’s eyeglasses if one expects value from it.

Previous Post <<||>>  Next Post

07 May 2019

𖣯Strategic Management: Strategic Perspectives (Part I: Agile vs. Lean Organizations)

Strategic Management

Agile and lean are two important concepts that pervaded the organizations in the past 20-30 years, though they continue to have little effect on organizations’ operations.

Agile is rooted in the need to respond promptly to the changing needs of an organization. The agile philosophy was primarily groomed in Software Development to reconcile the changing customer requirements with disciplined project execution, however it can be applied to an organization’s processes as well. An agile process is in general a process designed to deliver the intended results in an effective and efficient manner by addressing promptly the changing requirements in customers’ needs.

Lean is a systematic method for the minimization of waste, rooted as philosophy in manufacturing. The lean mindset attempts removing the non-value-added activities from processes because they bring no value for the customers. Thus a lean process is a process designed to deliver the intended results in an effective and efficient manner by focusing on the immediate needs of the customers, what customers want and value (when they want it). 

Effective means being successful in producing a desired or intended result, while efficient means achieving maximum productivity with minimum wasted effort or expense. The requirement for a process to be effective and efficient is translated in delivering what’s intended by using a minimum of steps designed in such a way that the quality of the end results is not affected, at least not for the essential characteristics. Efficiency is translated also in the fact that the information, material and resources’ flow suffer minimal delays.

Agile focuses in answering promptly the changing requirements in customers’ needs, while lean focuses on what customers wants and value while eliminating waste. Both mindsets seem to imply iterative and adaptive approaches in which the improvement happens gradually. Through their nature the two mindsets seem to complete each other. Some even equate agile with lean however an agile process is not necessarily lean and vice-versa.

To improve the effectiveness and efficiency of its operations an organization should aim developing processes that are agile and lean to optimize the information and material flows, while focusing on its users’ changing needs, and while eliminating continuously the activities that lead to waste. And waste can take so many forms – the unnecessary bureaucracy reflected in multiple and repetitive sign-offs and approvals, the lack of empowerment, not knowing what to do, etc.

There’s important time wasted just because the users don’t know or don’t understand an organization’s processes. If an organization can’t find rules that everyone understands then a process is doomed, independently of the key area the process belongs to. There’s also the tendency of attempting to address each exception within a process to the degree that multiple processes result. There’s no perfect process, however one can define the basic flow and document the main exceptions, while providing users some guidelines in navigating the unknown and unpredictable.

As part of same tendency it makes sense to move requests that respect a standard procedure on the list of standard requests instead of following futile steps just for the sake of it. It’s the case of requests that can be fulfilled with internal resources, e.g. the development of reports or extraction of data, provisioning of SharePoint websites, some performance optimizations, etc. In addition, one can unify processes that seem to be disconnected, e.g. the handling of changes as part of the Change Management respectively Project Management as they involve almost the same steps.

Probably it's in each organization’s interest to discover and explore the benefits of applying the agile and lean mindsets to its operation and integrate them in its culture

Previous Post <<||>> Next Post

💼Project Management: Methodologies (Part IV: Agility under Eyeglasses II)

Misanagement


Employees are used to follow procedures and processes, and when they aren’t available insecurity rules - each day there’s another idea advanced how things are supposed to work. Practically, the Agile approaches (incl. Agile Prince2) focus on certain aspects and ignore specific Project Management activities that need to be performed inside of a project – releasing resources for the project, getting users on-board, getting management’s buy-in, etc. Therefore, they need to be used with a methodology that offers the lacking processes. Problematic is when is considered that the Agile approaches are self-consistent and the Project Management practices and principles don’t apply anymore.

It’s true that the Agile methods attempt reconciling disciplined project execution with creativity and innovation, however innovation is needed typically in design (incl. prototyping) , while in programing there isn’t lot of room for creativity per se. The real innovation appears when the customer lists the functionality it needs from a system and the vendor, after analyzing all the related requirements, is capable to evaluate and propose a solution from the industry trending technologies. That’s innovation and not changing controls in user interfaces!

User stories are good for situations in which an organization doesn’t know what’s doing or the tasks have a deep segmentation and specialization. Starting from user stories and building upwards to processes can prove to be a waste of time the customer pays for, while the approach leaves few room for innovation. In big projects it’s also difficult to sense the contradictions from user stories or their duplication. Even if the user stories allow maybe (but not necessarily) a better effort estimate the level of detail can become overwhelming for any skilled solution architect.

It’s also true that an agile approach needs a culture with certain characteristics. A culture can’t be changed with one project or several projects running in parallel. Typically, is recommended to start with a pilot test, assert organization’s readiness, disseminate knowledge, start several small to medium projects and build from there. For sure starting a big project with an agile methodology  will involve more challenges to the extent the challenges will push back.

One sign of agility is when self-organizing teams emerge within projects, however it takes time and training to build such teams. The seeds must be planted long before, for such teams to emerge. The key is being able of working in such teams. In extremis, conflicts appear when multiple self-organizing teams appear, each with its own political agenda, agendas that don’t necessarily match project manager or stakeholders’ agendas, and from here a large range of potential conflicts.

The psychological effect of tight sprints (iterations) and daily status meetings for the whole duration of a project is not to neglect. It builds unnecessary stress and, unless the planning reaches perfection, the programmer or consultant will often find himself in the position to be in defensive. The frequent meetings can easily become a source for nuisance and in extremis can lead to extreme behavior that can easily affect the productivity and involved persons’ health.

Personally, I wouldn’t recommend using an Agile methodology for a big project like an ERP implementation unless it was adequately adapted to organization’s needs. This doesn’t necessarily mean that the Agile methods aren’t suitable for big projects, it means that the risks are high because in big projects there’s the chance for all these mentioned issues to occur.

Despite the weak points of the Agile methods, when adequately applied, they have the chance of better performing than the “traditional” approaches. Even if people tend to see more the negative sides there’s lot of potential in being agile.

💼Project Management: Methodologies (Part III: Agility under Eyeglasses I)

Mismanagement

There are more and more posts in the cyberspace voicing against the agile practices, the way they are understood and implemented by organizations. Some try to be hilarious [5]; others try to keep the scholastic seriousness [1] [2] [3] [4], and all of them make some valid points. In each remark there’re some seeds of truth, even if context-dependent.

Personally, I embrace an agile approach when possible, however I find it difficult to choose between the agile methodologies available on the market because each of them introduces some concepts that contradict what it means to be agile – to respond promptly to business needs. It doesn’t mean that one must consider each requirement, but that’s appropriate to consider those which have business justification. Moreover, organizations need to adapt the methodologies to their needs, and seldom vice-versa.
Considering the Agile Manifesto, it’s difficult to take as serious statements that lack precision, formulations like “we value something over something else” are more of a wish than principles. When people don’t understand what the agile “principles” mean, one occasionally hears statements like “we need no documentation”, “we need no project plan”, “the project plan is not important”, “Change Management doesn’t apply to agile projects” or “we need only high-level requirements because we’ll figure out where we’re going on the way”. Because of the lack of precision, a mocker can variate the lesser concept to null and keep the validity of the agile “principles”.
The agile approaches seem to lack control. If you’re letting the users in charge of the scope then you risk having a product that offers a lot though misses the essential, and thus unusable or usable to a lower degree. Agile works good for prototyping something to show to the users or when the products are small enough to easily fit within an iteration, or when the vendor wants to gain a customer’s trust. Therefore, agile works good with BI projects that combine in general all three aspects.
An abomination is the work in fix sprints or iterations of one or a few weeks, and then chopping the functionality to fit the respective time intervals. If you have the luck of having sign-offs and other activities that steal your time, then the productive time reduces up to 50% (the smaller the iterations the higher the percentage). What’s even unconceivable is that people ignore the time spent with bureaucracy. If this way of working repeats in each iteration then the project duration multiplies by a factor between 2 or 4, the time spent on Project Management increasing by the same factor. What’s not understandable is that despite bureaucracy the adherence to delivery dates, budget and quality is still required.
Sometimes one has the feeling that people think that software development and other IT projects work like building a house or like the manufacturing of a mug. You choose the colors, the materials, the dimensions and voila the product is ready. IT projects involve lot of unforeseen and one must react agilely to it. Here resides one of the most important challenges.   
Communication is one important challenge in a project especially when multiple interests are involved. Face-to-face conversation is one of the nice-to-have items on the wish list however in praxis isn’t always possible. One can’t expect that all the resources are available to meet and decide. In addition, one needs to document everything from meeting minutes, to Business Cases and requirements. A certain flexibility in changing the requirements is needed though one can’t change them arbitrarily, there must be a concept behind otherwise the volume of overwork can easily make the budget for a project explode exponentially.
||>> Next Post (continuation) 
Resources:
[1] Harvard Business Review (2018) Why Agile Goes Awry - and How to Fix It, by Lindsay McGregor & Neel Doshi (Online) Available from: https://hbr.org/2018/10/why-agile-goes-awry-and-how-to-fix-it
[2] Forbes (2012) The Case Against Agile: Ten Perennial Management Objections, by Steve Denning  (Online) Available from:
https://www.forbes.com/sites/stevedenning/2012/04/17/the-case-against-agile-ten-perennial-management-objections/#6df0e6ea3a95 
[3] Springer (2018) Do Agile Methods Work for Large Software Projects?, by Magne Jørgensen  (Online) Available from:
https://link.springer.com/chapter/10.1007/978-3-319-91602-6_12
[4] Michael O Church (2015) Why “Agile” and especially Scrum are terrible  (Online) Available from:
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/
[5] Dev.to (2019) Mockery of agile, by Artur Martsinkovskyi (Online) Available from: https://dev.to/arturmartsinkovskyi/mockery-of-agile-5bdf

21 April 2019

💼Project Management: Project Planning (Part II: Planning Correctly Misunderstood II)

Mismanagement

Even if planning is the most critical activity in Project Management it seems to be also one of the most misunderstood concepts. Planning is critical because it charters the road ahead in terms of what, when, why and who, being used as a basis for action, communication, for determining the current status in respect to the initial plan, as well the critical activities ahead.

The misunderstandings derive maybe also from the fact that each methodology introduces its own approach to planning. PMI as traditional approach talks about baseline planning with respect to scope schedule and costs, about management plans, which besides the theme covered in the baseline, focus also on quality, human resources, risks, communication and procurement, and separate plans can be developed for requirements, change and configuration management, respectively process improvement. To them one can consider also action and contingency planning.

In Prince2 the product-based planning is done at three levels – at project, stage, respectively team level – while separate plans are done for exceptions in case of deviations from any of these plans; in addition there are plans for communication, quality and risk management. Scrum uses an agile approach looking at the product and sprint backlog, the progress being reviewed in stand-up meetings with the help of a burn-down chart. There are also other favors of planning like rapid application planning considered in Extreme Programming (XP), with an open, elastic and undeterministic approach. In Lean planning the focus is on maximizing the value while minimizing the waste, this being done by focusing on the value stream, the complete list of activities involved in delivering the end-product, value stream's flow being mapped with the help of visualization techniques such as Kanban, flowcharts or spaghetti diagrams.

With so many types of planning nothing can go wrong, isn’t it? However, just imagine customers' confusion when dealing with a change of methodology, especially when the concepts sound fuzzy and cryptic! Unfortunately, also the programmers and consultants seem to be bewildered by the various approaches and the philosophies supporting the methodologies used, their insecurity bringing no service for the project and customers’ peace of mind. A military strategist will more likely look puzzled at the whole unnecessary plethora of techniques. On the field an army has to act with the utmost concentration and speed, to which add principles like directedness, maneuver, unity, economy of effort, collaboration, flexibility, simplicity and sustainability. It’s what Project Management fails to deliver.

Similarly to projects, the plan made before the battle seldom matches the reality in the field. Planning is an exercise needed to divide the strategy in steps, echelon and prioritize them, evaluate the needed resources and coordinate them, understand the possible outcomes and risks, evaluate solutions and devise actions for them. With a good training, planning and coordination, each combatant knows his role in the battle, has a rough idea about difficulties, targets and possible ways to achieve them; while a good combatant knows always the next action. At the same time, the leader must have visibility over fight’s unfold, know the situation in the field and how much it diverged from the initial plan, thus when the variation is considerable he must change the plan by changing the priorities and make better use the resources available.

Even if there are multiple differences between the two battlefields, the projects follow the same patterns of engagement at different scales. Probably, Project Managers can learn quite of a deal by studying the classical combat strategists, and hopefully the management of projects would be more effective and efficient if the imperatives of planning, respectively management, were better understood and addressed.

#️⃣Software Engineering: Programming (Part VIII: Pair Programming)

Software Engineering
Software Engineering Series

“Two heads are better than one” – a proverb whose wisdom is embraced today in the various forms of harnessing the collective intelligence. The use of groups in problem solving is based on principles like “the collective is more than the sum of its individuals” or that “the crowds are better on average at estimations than the experts”. All well and good, based on the rationality of the same proverb has been advanced the idea of having two developers working together on the same piece of code – one doing the programming while the other looks over the shoulder as a observer or navigator (whatever that means), reviewing each line of code as it is written, strategizing or simply being there.

This approach is known as pair programming and considered as an agile software development technique, adhering thus to the agile principles (see the agile manifesto). Beyond some intangible benefits, its intent is to reduce the volume of defects in software and thus ensure an acceptable quality of the deliverables. It’s also an extreme approach of the pear review concept.
Without considering whether pair programming adheres to the agile principles, the concept has several big loopholes. The first time I read about pair programming it took me some time to digest the idea – I was asking myself what programmer will do that on a daily basis, watching as other programmers code or being watched while coding, each line of code being followed by questions, affirmative or negative nodding… Beyond their statute of being lone wolves, programmers can cooperate when the tasks ahead requires it, however to ask a programmer watch actively as others program it won’t work on the long run!

Talking from my own experience as programmer and of a professional working together with other programmers, I know that a programmer sees each task as a challenge, a way of learning, of reaching beyond his own condition. Programming is a way of living, with its pluses and minuses.
Moreover, the complexity of the tasks doesn’t resume at handling the programming language but of resolving the right problem. Solving the right problem is not something that can one overcome with brute force but with intelligence. If using the programming language is the challenge then the problem lies somewhere else and other countermeasures must be taken!

Some studies have identified that the use of pair programming led to a reduction of defects in software, however the numbers are misleading as long they compare apples with pears. To statistically conclude that one method is better than the other means doing the same experiment with the different methods using a representative population. Unless one addressees the requirements of statistics the numbers advanced are just fiction!

Just think again about the main premise! One doubles the expenditure for a theoretical reduction of the defects?! Actually, it's more than double considering that different types of communication takes place. Without a proven basis the effort can be somewhere between 2.2 and 2.5 and for an average project this can be a lot! The costs might be bearable in situations in which the labor is cheap, however programmers’ cooperation is a must.

The whole concept of pair programming seems like a bogus idea, just like two drivers driving the same car! This approach might work when the difference in experience and skills between developers is considerable, that being met in universities or apprenticeship environments, in which the accent is put on learning and forming. It might work on handling complex tasks as some adepts declare, however even then is less likely that the average programmer will willingly do it!


03 December 2016

♟️Strategic Management: Agility (Just the Quotes)

"An enterprise architecture can be thought of as a 'blueprint' or 'picture' which assists in the design of an enterprise. The enterprise architecture must define three things. First, what are the activities that an enterprise performs? Second, how should these activities be performed? And finally, how should the enterprise be constructed? Consequently, the architecture being developed will identify the essential processes performed by a virtual company, how the virtual company and the agile enterprises involved in the virtual company will perform these processes, and include a methodology for the rapid reconfiguration of the virtual enterprise." (William Barnett et al, "An architecture for the virtual enterprise", Systems, Man, and Cybernetics, 1994)

"An Enterprise Architecture is a dynamic and powerful tool that helps organisations understand their own structure and the way they work. It provides a ‘map’ of the enterprise and a ‘route planner’ for business and technology change. A well-constructed Enterprise Architecture provides a foundation for the ‘Agile’ business." (Bob Jarvis, "Enterprise Architecture: Understanding the Bigger Picture - A Best Practice Guide for Decision Makers in IT", 2003)

"Many problems stem from a premature attempt at scaling Agile within the organization. The nature of the transformation is such that it is unrealistic to plan upfront for an 18-month organization-wide change program to go from status quo to continuous delivery. People try nevertheless, and when the outcomes don’t materialize, they say Agile doesn’t work." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"There is common but flawed notion in enterprise IT circles that maintenance work requires less skill than full-scale development. As a result, project sponsors looking to reduce cost opt for a different team of lower-cost people for maintenance work. This is false economy. It hurts the larger business outcome and reduces IT agility." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Agile is more a 'direction', than an 'end'. Transforming to Agile culture means the business knows the direction they want to go on." (Pearl Zhu, "Digital Agility: The Rocky Road from Doing Agile to Being Agile", 2016)

"Organizations that rely too heavily on org charts and matrixes to split and control work often fail to create the necessary conditions to embrace innovation while still delivering at a fast pace. In order to succeed at that, organizations need stable teams and effective team patterns and interactions. They need to invest in empowered, skilled teams as the foundation for agility and adaptability. To stay alive in ever more competitive markets, organizations need teams and people who are able to sense when context changes and evolve accordingly." (Matthew Skelton & Manuel Pais, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

"Some folks think that Agile is about going fast. It’s not. It’s never been about going fast. Agile is about knowing, as early as possible, just how screwed we are." (Robert C Martin, "Clean Agile: Back to Basics", 2019) 

"Data architects often turn to graphs because they are flexible enough to accommodate multiple heterogeneous representations of the same entities as described by each of the source systems. With a graph, it is possible to associate underlying records incrementally as data is discovered. There is no need for big, up-front design, which serves only to hamper business agility. This is important because data fabric integration is not a one-off effort and a graph model remains flexible over the lifetime of the data domains." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

29 September 2012

Programming: Pair Programming (Definitions)

"An XP practice requiring that each piece of source code to be integrated into the software product should be created by two programmers jointly at one computer."" (Johannes Link & Peter Fröhlich, "Unit Testing in Java", 2003)

"A coding technique where one programmer (the driver) writes code and explains what he or she is doing, while another watches and looks for problems." (Rod Stephens, "Start Here!™ Fundamentals of Microsoft® .NET Programming", 2011)

"A software development approach whereby lines of code (production and/or test) of a component are written by two programmers sitting at a single computer. This implicitly means ongoing real-time code reviews are performed." (IQBBA, "Standard glossary of terms used in Software Engineering", 2011)

"An Extreme Programming practice where two (or three) programmers work together at the same computer. The driver or pilot types while the observer, navigator, or pointer watches and reviews each line of code as it is typed." (Rod Stephens, "Beginning Software Engineering", 2015)

"A software development approach whereby lines of code (production and/or test) of a component are written by two programmers sitting at a single computer. This implicitly means ongoing real-time code reviews are performed." (SQA)

11 March 2012

🚧Project Management: Scrum (Definitions)

"An agile method whose focus is on project management and requirements management. Scrum is often combined with XP." (Pramod J Sadalage & Scott W Ambler, "Refactoring Databases: Evolutionary Database Design", 2006)

"An agile software project management process introduced by Ken Schwaber and Jeff Sutherland. Scrum is known for self-organized teams, thirty-day iterations called Sprints, daily team meetings called Scrum, and a to-do list called Product Backlog." (Bruce MacIsaac & Per Kroll, "Agility and Discipline Made Easy: Practices from OpenUP and RUP", 2006)

"An agile process based on a football analogy, using small teams working in an intensive, independent manner." (Bruce P Douglass, "Real-Time Agility", 2009)

"An iterative incremental framework for managing projects commonly used with agile software development." (IQBBA, "Standard glossary of terms used in Software Engineering", 2011)

"An iterative, incremental methodology for project management often seen in agile software development, a type of software engineering." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A development methodology that uses frequent small increments to build an application iteratively and incrementally." (Rod Stephens, "Beginning Software Engineering", 2015)

"An iterative and incremental time-boxed method of developing software using small, self-directed teams. The goal of scrum is to flexibly develop what customers find valuable." (Pamela Schure & Brian Lawley, "Product Management For Dummies", 2017)

"An agile framework for developing and sustaining complex products with specific roles, events, and artifacts." (Project Management Institute, "Practice Standard for Scheduling" 3rd Ed., 2019)

"Iterative and incremental product development framework used in agile projects." (Jurgen Janssens, "Managing Customer Journeys in a Nimble Way for Industry 4.0", 2019)

"Scrum is a style of agile software development. It is built around the idea of iterative development and short daily meetings (called scrums) where progress or problems are shared." (Alex Thomas, "Natural Language Processing with Spark NLP", 2020)

"An agile process framework for managing knowledge work, with an emphasis on software development." (Kamalendu Pal & Bill Karakostas, "Software Testing Under Agile, Scrum, and DevOps", 2021)

"An iterative and incremental software development to handle drawbacks of traditional development methodologies. It produces many releases in short times based on customer requirements, time pressure, competition, product quality and available resources." (Fayez Salma & Jorge M Gómez, "Challenges and Trends of Agile", Balancing Agile and Disciplined Engineering and Management Approaches for IT Services and Software Products, 2021)

26 October 2008

GSCM: Kanban (Definitions)

"In lean cellular manufacturing, a visual device, such as a card, floor space (kanban square), or production bin, which communicates to a cell that additional materials or products are demanded from the subsequent cell." (Leslie G Eldenburg & Susan K Wolcott, "Cost Management" 2nd Ed., 2011)

"A card-based techniques for authorizing the replenishment of materials." (Daryl Powell, "Integration of MRP Logic and Kanban Shopfloor Control", 2014)

"A just-in-time technique that uses kanban cards to indicate when a production station needs more parts. When a station is out of parts (or is running low), a kanban card is sent to a supply station to request more parts." (Rod Stephens, "Beginning Software Engineering", 2015)

"A note, card, or signal, a Kanban used to trigger a series of processes, usually downstream in the supply chain, in order complete tasks, products, and/or services. As part of a workflow management systems, timely Kanbans allow for efficient operations that enable agile, just-in-time (JIT), and lean philosophies to work." (Alan D Smith, "Lean Principles and Optimizing Flow: Interdisciplinary Case Studies of Best Business Practices", 2019)

"Agile method to manage work by limiting work in progress. Team members pull work as capacity permits, rather than work being pushed into the process when requested. Stimulates continuous, incremental changes. Aims at facilitating change by minimizing resistance to it." (Jurgen Janssens, "Managing Customer Journeys in a Nimble Way for Industry 4.0", 2019)

"This tool is used in pull systems as a signaling device to trigger action. Traditionally it used cards to signal the need for an item. It can trigger the movement, production, or supply of a unit in a production chain." (Parminder Singh Kang et al, "Continuous Improvement Philosophy in Higher Education", 2020)

"A signal that communicates a requirement for a quantity of product." (Microsoft, "Dynamics for Finance and Operations Glossary")

"A signaling device that gives instruction for production or conveyance of items in a pull system. Can also be used to perform kaizen by reducing the number of kanban in circulation, which highlights line problems." (Lean Enterprise Institute)

28 December 2007

🏗️Software Engineering: Extreme Programming (Just the Quotes)

"Given the choice between an extremely skilled loner and a competent-but-social programmer, XP teams consistently choose the more social candidate. The best interviewing technique is to have the candidate work with the team for a day. Pair programming provides an excellent test of technical and social skills." (Kent Beck, "Extreme Programming Explained: Embrace Change", 1999)

"The XP philosophy is to start where you are now and move towards the ideal. From where you are now, could you improve a little bit?" (Kent Beck, "Extreme Programming Explained: Embrace Change", 1999)

"The new concept of Extreme Programming (XP) is gaining more and more acceptance, partially because it is controversial, but primarily because it is particularly well-suited to help the small software development team succeed. [...] XP is controversial, many software development sacred cows don't make the cut in XP; it forces practitioners to take a fresh look at how software is developed." (Kent Beck, "Abstract Extreme Programming Explained", 2000)

"Don't produce voluminous design documents at the beginning. Don't even produce them in the middle: produce them at the end. Extreme Programming teaches you how to keep the design flexible, for highest flexibility and fastest implementation. The design documents you produce at the beginning will go out of date very quickly (they always do, even on non-Extreme projects), and you 'Il either waste time updating the docs or let them get out of date. Either is bad." (Ron Jeffries, "Extreme Programming Installed", 2001)

"Don't try to freeze requirements before you start implementing. Requirements changes show that the customer is learning! Sure, it would be nice if they knew just what they wanted before you started building things, but the fact is that when they see what you're building, they'll learn what they meant. XP lets you use a development and planning approach that allows for change, without big up-front investment in frameworks or flexibility." (Ron Jeffries, "Extreme Programming Installed", 2001)

"Extreme Programming is a discipline of software development with values of simplicity, communication, feedback and courage. We focus on the roles of customer, manager, and programmer and accord key rights and responsibilities to those in those roles." (Ron Jeffries, "Extreme Programming Installed", 2001)

"The values of XP are simplicity, communication, feedback, and courage. [...] Use simple design and programming practices, and simple methods of planning, tracking, and reporting. Test your program and your practices, using feedback to decide how to steer the project. Working together in this way gives the team courage."  (Ron Jeffries, "Extreme Programming Installed", 2001)

"We all strive for simple and clear design, don't we? Of course we do. But in XP, we take it to extremes. At every moment in time, we want  the system to be as simple as possible. That means that we want no  additional functions that aren't used, no structures or algorithms that  are more complex than the current need would dictate." (Ron Jeffries, "Extreme Programming Installed", 2001)

"XP isn't slash and burn programming, not code and fix, not at all. Extreme Programming is about careful and continuous design, rapid  feedback from extensive testing, and the maintenance of relentlessly clear and high-quality code." (Ron Jeffries, "Extreme Programming Installed, 2001)

"Extreme Programming is the most prominent new, light-weight (or agile) methods, defined to contrast the current heavy-weight and partially overloaded object-oriented methods. It focuses on the core issues of software technology. One of its principles is not to rely on diagrams to document a system." (Bernhard Rumpe, "Executable Modeling with UML. A vision or a Nightmare", Issues & Trends of Information Technology Management in Contemporary Associations, 2002)

"Extreme Programming recognizes the importance of design decisions, but it strongly resists upfront design. Instead, it puts an admirable effort into communication and improving the project’s ability to change course rapidly. With that ability to react, developers can use the “simplest thing that could work” at any stage of a project and then continuously refactor, making many small design improvements, ultimately arriving at a design that fits the customer’s true needs." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"In fact, XP works best for developers with a sharp design sense. The XP process assumes that you can improve a design by refactoring, and that you will do this often and rapidly. But past design choices make refactoring itself either easier or harder. The XP process attempts to increase team communication, but model and design choices clarify or confuse communication." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Extreme Programming is the first popular methodology to view software development as an exercise in coding rather than an exercise in management." (Ben Aveling, "XP lite considered harmful?", 2004)

"One of the central axioms of extreme programming is the disciplined use of regression testing during stepwise software development." (Thomas A Henzinger et al, "Extreme model checking", 2004)

02 October 2007

🏗️Software Engineering: Agile Methods (Just the Quotes)

"Agile development methodologies promise higher customer satisfaction, lower defect rates, faster development times and a solution to rapidly changing requirements. Plan-driven approaches promise predictability, stability, and high assurance. However, both approaches have shortcomings that, if left unaddressed, can lead to project failure. The challenge is to balance the two approaches to take advantage of their strengths and compensate for their weaknesses." (Barry Boehm & Richard Turner, "Observations on balancing discipline and agility", Agile Development Conference, 2003)

"It is a myth that we can get systems 'right the first time'. Instead, we should implement only today’s stories, then refactor and expand the system to implement new stories tomorrow. This is the essence of iterative and incremental agility. Test-driven development, refactoring, and the clean code they produce make this work at the code level." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Agile approaches to software development consider design and implementation to be the central activities in the software process. They incorporate other activities, such as requirements elicitation and testing, into design and implementation. By contrast, a plan-driven approach to software engineering identifies separate stages in the software process with outputs associated with each stage." (Ian Sommerville, "Software Engineering" 9th Ed., 2011)

"Agile methods universally rely on an incremental approach to software specification, development, and delivery. They are best suited to application development where the system requirements usually change rapidly during the development process. They are intended to deliver working software quickly to customers, who can then propose new and changed requirements to be included in later iterations of the system. They aim to cut down on process bureaucracy by avoiding work that has dubious long-term value and eliminating documentation that will probably never be used." (Ian Sommerville, "Software Engineering" 9th Ed., 2011)

"Agile development methods require a disciplined approach to ensure that customer feedback, continuous testing, and iterative development actually lead to frequent deliveries of working, valuable software." (Michael Hüttermann et al, "DevOps for Developers", 2013)

"The advantages of Agile processes, including Scrum and Kanban (a method for delivering software with an emphasis on just-in-time delivery), are often nullified because of the obstacles to collaboration, processes, and tools that are built up in front of operations." (Michael Hüttermann et al, "DevOps for Developers", 2013)

"Many problems stem from a premature attempt at scaling Agile within the organization. The nature of the transformation is such that it is unrealistic to plan upfront for an 18-month organization-wide change program to go from status quo to continuous delivery. People try nevertheless, and when the outcomes don’t materialize, they say Agile doesn’t work." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"This is what the Agile Manifesto means when it says responding to change over following a plan. To maximize adaptability, it is essential to have good, fast feedback loops. This is why there is so much emphasis on iterative development." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Heart of Agile is a meme. Heart of Agile is four words stripped down to nothing. It contains only four words – collaborate, deliver, reflect, improve." (Alistair Cockburn, [interview] 2017)

20 May 2007

🌁Software Engineering: DevOps (Definitions)

"An application delivery philosophy that stresses communication, collaboration, and integration between software developers and their information technology (IT) counterparts in operations. DevOps is a response to the interdependence of software development and IT operations. It aims to help an organization rapidly produce software products and services." (Pierre Pureur & Murat Erder, "Continuous Architecture", 2015)

DevOps is an approach based on lean and agile principles in which business owners and the development, operations, and quality assurance departments collaborate to deliver software in a continuous manner that enables the business to more quickly seize market opportunities and reduce the time to include customer feedback. Indeed, enterprise (Sanjeev Sharma & Bernie Coyne, "DevOps For Dummies" 2nd Ed, 2015)

"Is a method for software development and management that integrates the development and deployment cycles to achieve a more agile, continuous evolution of software-based products and services" (Diego R López & Pedro A. Aranda, "Network Functions Virtualization: Going beyond the Carrier Cloud", 2015)

"DevOps is a mindset, a culture, and a set of technical practices. It provides communication, integration, automation, and close cooperation among all the people needed to plan, develop, test, deploy, release, and maintain a Solution." (Dean Leffingwell, "SAFe 4.5 Reference Guide: Scaled Agile Framework for Lean Enterprises" 2nd Ed., 2018)

"Short for development operations, an information technology environment in which development and operations are tightly tied together, yielding small incremental releases to gain user feedback." (O Sami Saydjari, "Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time", 2018)

"The practice of incorporating developers and members of operations and quality assurance (QA) staff into software development projects to align their incentives and enable frequent, efficient, and reliable releases of software products." (Shon Harris & Fernando Maymi, "CISSP All-in-One Exam Guide" 8th Ed., 2018)

"The tighter integration between the developers of applications and the IT department that tests and deploys them. DevOps is said to be the intersection of software engineering, quality assurance, and operations." (William Stallings, "Effective Cybersecurity: A Guide to Using Best Practices and Standards", 2018)

"A software engineering practice that aims at unifying software development (Dev) and software operation (Ops)." (Jun Bi et al, "Automatic Address Scheduling and Management for Broadband IP Networks", Emerging Automation Techniques for the Future Internet, 2019)

"Develop operations, or DevOps, is an agile methodology that merges the functions of software development and operations in the enterprise software development domain. This approach has been adopted in the networking world to facilitate a programmable approach to network operations. Often when applied to networking the term is changed to NetOps." (Patrick Moore, "Model-Centric Fulfillment Operations and Maintenance Automation", Emerging Automation Techniques for the Future Internet, 2019)

"Practices and technologies that promote tighter coupling of software development (Dev) and operations (Ops) - typically marked by more automation, continuous monitoring, shorter development cycles and higher deployment frequencies. A key driver for security policy automation. DevSecOps is a related term that refers to practices and technologies that aim to embed security in DevOps practices." (Myo Zarny et al, "Network Security Policy Automation: Enterprise Use Cases and Methodologies", 2019)

"Development and operations is an abbreviation for 'development' and 'operations'; is a software engineering methodology for managing software development (Dev) and technology operations (Ops). The main aim of DevOps is to enable automation and tracing for all phases of software implementation, from integration, testing, releasing to deployment and infrastructure management." (Antoine Trad & Damir Kalpić, "Using Applied Mathematical Models for Business Transformation", 2020)

"Development and operations (DevOps) has been adopted by prominent software and service companies (e.g., IBM) to support enhanced collaboration across the company and its value chain partners. In this way, DevOps facilitates uninterrupted delivery and coexistence between development and operation facilities, enhances the quality and performance of software applications, improving end-user experience, and help to simultaneous deployment of software across different platforms." (Kamalendu Pal & Bill Karakostas, "Software Testing Under Agile, Scrum, and DevOps", 2021)

"DevOps is a sprint-based approach that can catch coding flaws during the development of code due to security reviews, rework on previous sprint cycles, and testing." (David A Bird, "Hacker and Non-Attributed State Actors", Real-Time and Retrospective Analyses of Cyber Security, 2021)

"It is a set of practices emerging to bridge the gaps between operation and developer teams to achieve a better collaboration." (Mirna Muñoz, "Boosting the Competitiveness of Organizations With the Use of Software Engineering", 2021)

"It is a way to work were the software is rapidly developed and immediately deployed for operating in a computational productive environment. It is continuous delivery product development lifecycle. It must automate the development process. DevOps is both a culture and a set of technologies and tools used for automation." Laura C Rodriguez-Martinez et al, "Service-Oriented Computing Applications (SOCA) Development Methodologies: A Review of Agility-Rigor Balance", 2021)

"People from software development and operations work together to enhance the speed of delivery of new software features. It is a concept for bridging the gap between software development and software operations and integrating the logic of common responsibility for the complete software delivery lifecycle into one cross-functional team." (Anna Wiedemann et al, "Transforming Disciplined IT Functions: Guidelines for DevOps Integration", 2021)

"DevOps is a set of tools and processes that help automate IT operations." (Aniruddha Deswandikar,"Engineering Data Mesh in Azure Cloud", 2024)

"DevOps is a catch‑all term for the blending of roles between developers and operations engineers. As the barriers between roles such as database administrator, systems administrator, and software engineer have eroded, the term DevOps has emerged as a way of describing the intersection of responsibilities from all these camps, and their increasing interrelation in the lifecycle of a product. A crucial enabling aspect of this movement is the increased use of automation in building, deploying, and monitoring large applications." (NGINX) [source]

"DevOps is a collection of best practices and working methods for the software development process whose cumulative goal is to shorten the development life cycle and support practice such as continuous integration, continuous delivery and continuous deployment." (Sum Logic) [source]

"DevOps is a set of practices that works to automate and integrate the processes between software development and IT teams, so they can build, test, and release software faster and more reliably." Atlassian [source

"DevOps is the combination of cultural philosophies, practices, and tools that increases an organization’s ability to deliver applications and services at high velocity: evolving and improving products at a faster pace than organizations using traditional software development and infrastructure management processes." (Amazon) [source]

"DevOps refers to a broad range of practices related to the development and operation of software code in production in cloud data centers. DevOps is centered in Agile project management techniques and microservice support. DevOps approaches the entire software development lifecycle with automation based around version control standards." (VMWare) [source]

"The cultural movement that stresses communication, collaboration and integration between software developers and IT operations." (Global Knowledge)

30 April 2007

🌁Software Engineering: User Story (Definitions)

"Informal description of a functional requirement or product property in XP. A user story serves as the basis for acceptance tests that formally check whether the product complies with the described function or property." (Johannes Link & Peter Fröhlich, "Unit Testing in Java", 2003)

"A requirement formulated into a small number of sentences in the user’s natural language. User stories are common in Extreme Programming (XP)." (Bruce P Douglass, "Real-Time Agility", 2009)

"A short narrative that explains who wants something to happen in a piece of software, what they want, and why they want it." (Jon Radoff, "Game On: Energize Your Business with Social Media Games", 2011)

"A narrative description of a software requirement, function, feature, or quality attribute presented as a narrative of desired user interactions with a software system." (Project Management Institute, "Software Extension to the PMBOK® Guide" 5th Ed., 2013)

"A short story explaining how the system will let the user do something." (Rod Stephens, "Beginning Software Engineering", 2015)

"A tool used in Agile software development to capture a description of a software feature from an end-user perspective. The user story describes the type of user, what he or she wants, and why. A user story helps to create a simplified description of a requirement." (Pierre Pureur & Murat Erder, "Continuous Architecture", 2015)

"Description of the functionality that a product should have, written from the perspective of the user. A very simplified and focused requirement description." (Pamela Schure & Brian Lawley, "Product Management For Dummies", 2017)

"User stories are short, text-based descriptions of functionality required by a stakeholder group." (Cate McCoy & James L Haner, "CAPM Certified Associate in Project Management Practice Exams", 2018)

"A high-level user or business requirement commonly used in agile software development, typically consisting of one or more sentences in the everyday or business language capturing what functionality a user needs, any non-functional criteria, and also includes acceptance criteria. " (ISTQB)

04 March 2007

🌁Software Engineering: eXtreme Programming (Definitions)

"A disciplined and deliberate agile development method that focuses on the critical activities required to build software." (Pramod J Sadalage & Scott W Ambler, "Refactoring Databases: Evolutionary Database Design", 2006)

"An agile process created by Kent Beck. XP articulates five values to guide you in your project: Communication, Simplicity, Feedback, Courage, and Respect." (Bruce MacIsaac & Per Kroll, "Agility and Discipline Made Easy: Practices from OpenUP and RUP", 2006)

"An agile software development approach championed by Kent Beck and others." (Bruce P Douglass, "Real-Time Agility: The Harmony/ESW Method for Real-Time and Embedded Systems Development", 2009)

"A software engineering methodology that promotes agility and simplicity, typically involving pair programming and a cycle of frequent testing and feedback." (Mark S Merkow & Lakshmikanth Raghavan, "Secure and Resilient Software Development", 2010)

 "A development approach that focuses on building projects incrementally using frequent builds. It includes techniques such as coding to the specific problem rather than a general one, paired programming, and test-driven development." (Rod Stephens, "Start Here! Fundamentals of Microsoft® .NET Programming", 2011)

"A software engineering methodology used within agile software development whereby core practices are programming in pairs, doing extensive code review, unit testing of all code, and simplicity and clarity in code. See also Agile software development." (Requirements Engineering Qualifications Board, "Standard glossary of terms used in Requirements Engineering", 2011)

"An updated approach to Rapid Application Development using object-oriented techniques and a minimum of specifications." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A lightweight agile software engineering methodology used whereby a core practice is test-first programming." (Tilo Linz et al, "Software Testing Foundations, 4th Ed", 2014)

"A development model that takes typical programming practices (such as code reviews) to extremes (pair programming)." (Rod Stephens, "Beginning Software Engineering", 2015)

"An engineering methodology consisting of code-focused practices to ensure high quality of development." (Fayez Salma & Jorge M Gómez, "Challenges and Trends of Agile", 2021)

"A software engineering methodology used within agile software development whereby core practices are programming in pairs, doing extensive code review, unit testing of all code, and simplicity and clarity in code. See also agile software development." (IQBBA)

24 February 2007

🌁Software Engineering: Kanban (Definitions)

"An agile methodology where a team member who finishes his current item takes the next highest priority item from the project’s backlog. Kanban seeks to restrict the amount of work in progress at any given time." (Rod Stephens, "Beginning Software Engineering", 2015)

"In software development, a method for developing software on a just-in-time basis. Kanban removes the scrum time boxed method to track work, which is useful when your development team members have specialized skills." (Pamela Schure & Brian Lawley, "Product Management For Dummies", 2017)

"Agile method to manage work by limiting work in progress. Team members pull work as capacity permits, rather than work being pushed into the process when requested. Stimulates continuous, incremental changes. Aims at facilitating change by minimizing resistance to it." (Jurgen Janssens, "Managing Customer Journeys in a Nimble Way for Industry 4.0", 2019)

"An agile method inspired by the original Kanban inventory control system and used specifically for knowledge work." (Project Management Institute, "Practice Standard for Scheduling"  3rd Ed., 2019)

"An agile process framework with a flow control mechanism used for just-in-time pull driven production where the upstream processing activities are started by the downstream process request signals." (Shanmuganathan Vasanthapriyan & Kalpani M U Arachchi, "Effectiveness of Scrum and Kanban on Agile-Based Software Maintenance Projects", 2020)

"A method in software development which considered as a system for visualizing work and converting it into flow to reduce waste time and maximizing customer value." (Fayez Salma & Jorge M Gómez, "Challenges and Trends of Agile", 2021)

07 February 2007

🌁Software Engineering: Rapid Prototyping (Definitions)

"Rapid prototyping is a method that involves creating a series of prototypes in rapid, iterative cycles. Normally, a prototype is created quickly, presented to users in order to obtain feedback on the design, and then a new prototype is created that incorporates that feedback. This cycle is continued until a fairly stable, satisfactory design emerges, which informs the design of a production-scale system." (M Cameron Jones, "Patchwork Prototyping with Open Source Software", 2007)

"The use of rapid prototyping methodologies is to reduce the production time by using working models of the final product early in a project tends to eliminate time-consuming revisions later on, and by completing design tasks concurrently, rather than sequentially throughout the project. The steps are crunched together to reduce the amount of time needed to develop training or a product. The design and development phases are done simultaneously and the formative evaluation is done throughout the process." (Irene Chen, "Instructional Design Methodologies", 2008)

"A step in software development process that supports user’s involvement in design by allowing users to see and experience the final system before it is built." (Irina Kondratova & Ilia Goldfarb, "Culturally Appropriate Web User Interface Design Study: Research Methodology and Results", 2011)

"A family of technologies that enable the relatively fast and low-cost production of products for testing and evaluation purposes." (Rachel Heinen et al, "Tools for the Process: Technology to Support Creativity and Innovation", 2015)


Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.