Showing posts with label data exploration. Show all posts
Showing posts with label data exploration. Show all posts

20 November 2018

🔭Data Science: Exploratory Data Analysis [EDA] (Just the Quotes)

"Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone – as the first step." (John W Tukey, "Exploratory Data Analysis", 1977)

"Unless exploratory data analysis uncovers indications, usually quantitative ones, there is likely to nothing for confirmatory data analysis to consider." (John W Tukey, "Exploratory Data Analysis", 1977)

"[...] exploratory data analysis is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as for those we believe might be there. Except for its emphasis on graphs, its tools are secondary to its purpose." (John W Tukey, [comment] 1979)

"Exploratory data analysis, EDA, calls for a relatively free hand in exploring the data, together with dual obligations: (•) to look for all plausible alternatives and oddities - and a few implausible ones, (graphic techniques can be most helpful here) and (•) to remove each appearance that seems large enough to be meaningful - ordinarily by some form of fitting, adjustment, or standardization [...] so that what remains, the residuals, can be examined for further appearances." (John W Tukey, "Introduction to Styles of Data Analysis Techniques", 1982)

"Since the aim of exploratory data analysis is to learn what seems to be, it should be no surprise that pictures play a vital role in doing it well." (John W. Tukey, "John W Tukey’s Works on Interactive Graphics", The Annals of Statistics Vol. 30 (6), 2002)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Exploratory data analysis is the search for patterns and trends in a given data set. Visualization techniques play an important part in this quest. Looking carefully at your data is important for several reasons, including identifying mistakes in collection/processing, finding violations of statistical assumptions, and suggesting interesting hypotheses." (Steven S Skiena, "The Data Science Design Manual", 2017)

"[…] the data itself can lead to new questions too. In exploratory data analysis (EDA), for example, the data analyst discovers new questions based on the data. The process of looking at the data to address some of these questions generates incidental visualizations - odd patterns, outliers, or surprising correlations that are worth looking into further." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

14 November 2018

🔭Data Science: Data Exploration (Just the Quotes)

"Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone – as the first step." (John W Tukey, "Exploratory Data Analysis", 1977)

"Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective way to describe, explore, and summarize a set of numbers even a very large set - is to look at pictures of those numbers. Furthermore, of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Unless exploratory data analysis uncovers indications, usually quantitative ones, there is likely to nothing for confirmatory data analysis to consider." (John W Tukey, "Exploratory Data Analysis", 1977)

"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"The science of statistics may be described as exploring, analyzing and summarizing data; designing or choosing appropriate ways of collecting data and extracting information from them; and communicating that information. Statistics also involves constructing and testing models for describing chance phenomena. These models can be used as a basis for making inferences and drawing conclusions and, finally, perhaps for making decisions." (Fergus Daly et al, "Elements of Statistics", 1995)

"Compound errors can begin with any of the standard sorts of bad statistics - a guess, a poor sample, an inadvertent transformation, perhaps confusion over the meaning of a complex statistic. People inevitably want to put statistics to use, to explore a number's implications. [...] The strengths and weaknesses of those original numbers should affect our confidence in the second-generation statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Data mining is more of an art than a science. No one can tell you exactly how to choose columns to include in your data mining models. There are no hard and fast rules you can follow in deciding which columns either help or hinder the final model. For this reason, it is important that you understand how the data behaves before beginning to mine it. The best way to achieve this level of understanding is to see how the data is distributed across columns and how the different columns relate to one another. This is the process of exploring the data." (Seth Paul et al. "Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis", 2002)

"Every statistical analysis is an interpretation of the data, and missingness affects the interpretation. The challenge is that when the reasons for the missingness cannot be determined there is basically no way to make appropriate statistical adjustments. Sensitivity analyses are designed to model and explore a reasonable range of explanations in order to assess the robustness of the results." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Since the aim of exploratory data analysis is to learn what seems to be, it should be no surprise that pictures play a vital role in doing it well." (John W. Tukey, "John W Tukey’s Works on Interactive Graphics", The Annals of Statistics Vol. 30 (6), 2002)

"If we attempt to map the world of a story before we explore it, we are likely either to (a) prematurely limit our exploration, so as to reduce the amount of material we need to consider, or (b) explore at length but, recognizing the impossibility of taking note of everything, and having no sound basis for choosing what to include, arbitrarily omit entire realms of information. The opportunities are overwhelming." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006)

"There are two main reasons for using graphic displays of datasets: either to present or to explore data. Presenting data involves deciding what information you want to convey and drawing a display appropriate for the content and for the intended audience. [...] Exploring data is a much more individual matter, using graphics to find information and to generate ideas. Many displays may be drawn. They can be changed at will or discarded and new versions prepared, so generally no one plot is especially important, and they all have a short life span." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)

"But if you don’t present your data to readers so they can see it, read it, explore it, and analyze it, why would they trust you?" (Alberto Cairo, "The Functional Art", 2011)

"Data scientists combine entrepreneurship with patience, the willingness to build data products incrementally, the ability to explore, and the ability to iterate over a solution. They are inherently interdisciplinary. They can tackle all aspects of a problem, from initial data collection and data conditioning to drawing conclusions. They can think outside the box to come up with new ways to view the problem, or to work with very broadly defined problems: 'there’s a lot of data, what can you make from it?'" (Mike Loukides, "What Is Data Science?", 2011)

"Don’t rush to write a headline or an entire story or to design a visualization immediately after you find an interesting pattern, data point, or fact. Stop and think. Look for other sources and for people who can help you escape from tunnel vision and confirmation bias. Explore your information at multiple levels of depth and breadth, looking for extraneous factors that may help explain your findings. Only then can you make a decision about what to say, and how to say it, and about what amount of detail you need to show to be true to the data." (Alberto Cairo, "The Functional Art", 2011)

"The process of visually exploring data can be summarized in a single sentence: find patterns and trends lurking in the data and then observe the deviations from those patterns. Interesting stories may arise from both the norm - also called the smooth - and the exceptions." (Alberto Cairo, "The Functional Art", 2011)

"A viewer’s eye must be guided to 'read' the elements in a logical order. The design of an exploratory graphic needs to allow for the additional component of discovery - guiding the viewer to first understand the overall concept and then engage her to further explore the supporting information." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)

"The process of visual analysis can potentially go on endlessly, with seemingly infinite combinations of variables to explore, especially with the rich opportunities bigger data sets give us. However, by deploying a disciplined and sensible balance between deductive and inductive enquiry you should be able to efficiently and effectively navigate towards the source of the most compelling stories." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Data mining is a craft. As with many crafts, there is a well-defined process that can help to increase the likelihood of a successful result. This process is a crucial conceptual tool for thinking about data science projects. [...] data mining is an exploratory undertaking closer to research and development than it is to engineering." (Foster Provost, "Data Science for Business", 2013)

"Early exploration of a dataset can be overwhelming, because you don’t know where to start. Ask questions about the data and let your curiosities guide you. […] Make multiple charts, compare all your variables, and see if there are interesting bits that are worth a closer look. Look at your data as a whole and then zoom in on categories and individual data points. […] Subcategories, the categories within categories (within categories), are often more revealing than the main categories. As you drill down, there can be higher variability and more interesting things to see." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury - which is growing into a necessity - to jump back and forth between data exploration and storytelling." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Exploratory analysis is what you do to understand the data and figure out what might be noteworthy or interesting to highlight to others." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Highlighting one aspect can make other things harder to see one word of warning in using preattentive attributes: when you highlight one point in your story, it can actually make other points harder to see. When you’re doing exploratory analysis, you should mostly avoid the use of preattentive attributes for this reason. When it comes to explanatory analysis, however, you should have a specific story you are communicating to your audience. Leverage preattentive attributes to help make that story visually clear." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Exploratory data analysis is the search for patterns and trends in a given data set. Visualization techniques play an important part in this quest. Looking carefully at your data is important for several reasons, including identifying mistakes in collection/processing, finding violations of statistical assumptions, and suggesting interesting hypotheses." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Exploring data generates hypotheses about patterns in our data. The visualizations and tools of dynamic interactive graphics ease and improve the exploration, helping us to 'see what our data seem to say'." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

"Dashboards are a type of multiform visualization used to summarize and monitor data. These are most useful when proxies have been well validated and the task is well understood. This design pattern brings a number of carefully selected attributes together for fast, and often continuous, monitoring - dashboards are often linked to updating data streams. While many allow interactivity for further investigation, they typically do not depend on it. Dashboards are often used for presenting and monitoring data and are typically designed for at-a-glance analysis rather than deep exploration and analysis." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Models are formal structures represented in mathematics and diagrams that help us to understand the world. Mastery of models improves your ability to reason, explain, design, communicate, act, predict, and explore." (Scott E Page, "The Model Thinker", 2018)

"[…] the data itself can lead to new questions too. In exploratory data analysis (EDA), for example, the data analyst discovers new questions based on the data. The process of looking at the data to address some of these questions generates incidental visualizations - odd patterns, outliers, or surprising correlations that are worth looking into further." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Analysis is a two-step process that has an exploratory and an explanatory phase. In order to create a powerful data story, you must effectively transition from data discovery (when you’re finding insights) to data communication (when you’re explaining them to an audience). If you don’t properly traverse these two phases, you may end up with something that resembles a data story but doesn’t have the same effect. Yes, it may have numbers, charts, and annotations, but because it’s poorly formed, it won’t achieve the same results." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

19 February 2018

🔬Data Science: Data Exploration (Definitions)

Data exploration: "The process of examining data in order to determine ranges and patterns within the data." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

Data Exploration: "The part of the data science process where a scientist will ask basic questions that helps her understand the context of a data set. What you learn during the exploration phase will guide more in-depth analysis later. Further, it helps you recognize when a result might be surprising and warrant further investigation." (KDnuggets)

"Data exploration is the first step of data analysis used to explore and visualize data to uncover insights from the start or identify areas or patterns to dig into more." (Tibco) [source]

"Data exploration is the initial step in data analysis, where users explore a large data set in an unstructured way to uncover initial patterns, characteristics, and points of interest. This process isn’t meant to reveal every bit of information a dataset holds, but rather to help create a broad picture of important trends and major points to study in greater detail." (Sisense) [source]

"Data exploration is the process through which a data analyst investigates the characteristics of a dataset to better understand the data contained within and to define basic metadata before building a data model. Data exploration helps the analyst choose the most appropriate tool for data processing and analysis, and leverages the innate human ability to recognize patterns in data that may not be captured by analytics tools." (Qlik) [source]

"Data exploration provides a first glance analysis of available data sources. Rather than trying to deliver precise insights such as those that result from data analytics, data exploration focuses on identifying key trends and significant variables." (Xplenty) [source]

12 November 2011

📉Graphical Representation: Exploration (Just the Quotes)

"Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective way to describe, explore, and summarize a set of numbers even a very large set - is to look at pictures of those numbers. Furthermore, of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Working with binned data directly addresses large data set issues of computation and plotting speed. Almost everything that can bc done with the original data can be done faster with binned data. Further, working with binned data allows image processing algorithms to be adapted and applied to bin cells. Thus tools can bc brought to bare that are not traditionally associated with exploratory data analysis." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"Overview first, zoom and filter, then details on demand." (Ben Shneiderman “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations.” IEEE Symposium on Visual Languages, 1996) 

"Construction refers to everything involved in the production of the graphical display, including questions of what to plot and how to plot. Deciding what to plot is not always easy and again depends on what we want to accomplish. In the initial phases of an analysis, two-dimensional displays of the response against each of the p predictors are obvious choices for gaining insights about the data, choices that are often recommended in the introductory regression literature. Displays of residuals from an initial exploratory fit are frequently used as well." (R Dennis Cook, "Regression Graphics: Ideas for studying regressions through graphics", 1998)

"If we attempt to map the world of a story before we explore it, we are likely either to (a) prematurely limit our exploration, so as to reduce the amount of material we need to consider, or" (b) explore at length but, recognizing the impossibility of taking note of everything, and having no sound basis for choosing what to include, arbitrarily omit entire realms of information. The opportunities are overwhelming." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"Clearly principles and guidelines for good presentation graphics have a role to play in exploratory graphics, but personal taste and individual working style also play important roles. The same data may be presented in many alternative ways, and taste and customs differ as to what is regarded as a good presentation graphic. Nevertheless, there are principles that should be respected and guidelines that are generally worth following. No one should expect a perfect consensus where graphics are concerned." (Antony Unwin, Good Graphics?"[in "Handbook of Data Visualization"], 2008)

"There are two main reasons for using graphic displays of datasets: either to present or to explore data. Presenting data involves deciding what information you want to convey and drawing a display appropriate for the content and for the intended audience. [...] Exploring data is a much more individual matter, using graphics to find information and to generate ideas.Many displays may be drawn. They can be changed at will or discarded and new versions prepared, so generally no one plot is especially important, and they all have a short life span." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"Presentation graphics face the challenge to depict a key message in - usually a single - graphic which needs to fit very many observers at a time, without the chance to give further explanations or context. Exploration graphics, in contrast, are mostly created and used only by a single researcher, who can use as many graphics as necessary to explore particular questions. In most cases none of these graphics alone gives a comprehensive answer to those questions, but must be seen as a whole in the context of the analysis." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)

"A viewer’s eye must be guided to 'read' the elements in a logical order. The design of an exploratory graphic needs to allow for the additional component of discovery - guiding the viewer to first understand the overall concept and then engage her to further explore the supporting information." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)

"The process of visual analysis can potentially go on endlessly, with seemingly infinite combinations of variables to explore, especially with the rich opportunities bigger data sets give us. However, by deploying a disciplined and sensible balance between deductive and inductive enquiry you should be able to efficiently and effectively navigate towards the source of the most compelling stories." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Early exploration of a dataset can be overwhelming, because you don’t know where to start. Ask questions about the data and let your curiosities guide you. […] Make multiple charts, compare all your variables, and see if there are interesting bits that are worth a closer look. Look at your data as a whole and then zoom in on categories and individual data points. […] Subcategories, the categories within categories" (within categories), are often more revealing than the main categories. As you drill down, there can be higher variability and more interesting things to see." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury - which is growing into a necessity - to jump back and forth between data exploration and storytelling." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Put everything together - from understanding data, to exploration, clarity, and adapting to an audience - and you get a general process for how to make data graphics. " (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"[...] communicating with data is less often about telling a specific story and more like starting a guided conversation. It is a dialogue with the audience rather than a monologue. While some data presentations may share the linear approach of a traditional story, other data products" (analytical tools, in particular) give audiences the flexibility for exploration. In our experience, the best data products combine a little of both: a clear sense of direction defined by the author with the ability for audiences to focus on the information that is most relevant to them. The attributes of the traditional story approach combined with the self-exploration approach leads to the guided safari analogy." (Zach Gemignani et al, "Data Fluency", 2014)

"Exploratory analysis is what you do to understand the data and figure out what might be noteworthy or interesting to highlight to others." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Exploring data generates hypotheses about patterns in our data. The visualizations and tools of dynamic interactive graphics ease and improve the exploration, helping us to 'see what our data seem to say'." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

"Models are formal structures represented in mathematics and diagrams that help us to understand the world. Mastery of models improves your ability to reason, explain, design, communicate, act, predict, and explore." (Scott E Page, "The Model Thinker", 2018)

"The way we explore data today, we often aren't constrained by rigid hypothesis testing or statistical rigor that can slow down the process to a crawl. But we need to be careful with this rapid pace of exploration, too. Modern business intelligence and analytics tools allow us to do so much with data so quickly that it can be easy to fall into a pitfall by creating a chart that misleads us in the early stages of the process." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"Data that is well prepared makes the analysis easier and allows a deeper exploration of patterns. It helps the analyst sift through the data with less friction. Data that is well crafted holds up to rigorous analysis and presentation. It removes the wall between us and the data and allows us to see the patterns. Well-shaped data isn't only functional, it's also aesthetic." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"We define analytical intent to be the goal that a consumer or analyst focuses on when performing either targeted or more open-ended data exploration and discovery. Analytical intent is expressed as part of a conversation between the user and a visualization interface." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Charts used to confirm are less formal, and designed well enough to be interpreted, but they don’t always have to be presentation worthy. […] Or maybe you don’t know what you’re looking for […] This is exploratory work - rougher still in design, usually iterative, sometimes interactive. Most of us don’t do as much exploratory work as we do declarative and confirmatory; we should do more. It’s a kind of data brainstorming." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Confirmation is a kind of focused exploration, whereas true exploration is more open-ended. The bigger and more complex the data, and the less you know going in, the more exploratory the work. If confirmation is hiking a new trail, exploration is blazing one." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

04 March 2010

🕋Data Warehousing: Drill Down (Definitions)

"A technique for navigating through levels of data ranging from the most summarized (up) to the most detailed (down). For example, to view the details of sales data by year, a user can drill down to display sales data by quarter, and drill down further to display data by month." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"The act of adding a row header or replacing a row header in a report to break down the rows of the answer set more finely." (Ralph Kimball & Margy Ross, "The Data Warehouse Toolkit" 2nd Ed., 2002)

"To delve deeper into data by going from a summary value to more detailed values." (Margaret Y Chu, "Blissful Data ", 2004)

"The process of exposing progressively more detail by making selections of items in a dynamic report or further enhancing a query." (Sharon Allen & Evan Terry, "Beginning Relational Data Modeling" 2nd Ed., 2005)

"Method of analysis for retrieving lower levels of detailed data starting from summary data." (Paulraj Ponniah, "Data Warehousing Fundamentals for IT Professionals", 2010)

"A method of exploring detailed data that was used in creating a summary level of data. Drill down levels depend on the granularity of data within a dimension." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"To decompose data into more atomic components, that is, data at lower levels of aggregation." (Carlos Coronel et al, "Database Systems: Design, Implementation, and Management" 9th Ed., 2011)

"An analytical technique that lets a DSS user navigate among levels of data ranging from the most summarized (up) to the most detailed (down)." (Ciara Heavin & Daniel J Power, "Decision Support, Analytics, and Business Intelligence 3rd Ed.", 2017)

"A method of exploring detailed data that was used in creating a summary level of data. Drill Down levels depend on the granularity of the data in the data warehouse." (Intrafocus) 

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.