Showing posts with label idealization. Show all posts
Showing posts with label idealization. Show all posts

30 December 2018

🔭Data Science: Idealization (Just the Quotes)

"But, once again, what the physical states as the result of an experiment is not the recital of observed facts, but the interpretation and the transposing of these facts into the ideal, abstract, symbolic world created by the theories he regards as established." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)

"This other world is the so-called physical world image; it is merely an intellectual structure. To a certain extent it is arbitrary. It is a kind of model or idealization created in order to avoid the inaccuracy inherent in every measurement and to facilitate exact definition." (Max Planck, "The Philosophy of Physics", 1963)

"Computational reducibility may well be the exception rather than the rule: Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be formally undecidable." (Stephen Wolfram, Undecidability and intractability in theoretical physics", Physical Review Letters 54 (8), 1985)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Exploratory regression methods attempt to reveal unexpected patterns, so they are ideal for a first look at the data. Unlike other regression techniques, they do not require that we specify a particular model beforehand. Thus exploratory techniques warn against mistakenly fitting a linear model when the relation is curved, a waxing curve when the relation is S-shaped, and so forth." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"It is impossible to construct a model that provides an entirely accurate picture of network behavior. Statistical models are almost always based on idealized assumptions, such as independent and identically distributed (i.i.d.) interarrival times, and it is often difficult to capture features such as machine breakdowns, disconnected links, scheduled repairs, or uncertainty in processing rates." (Sean Meyn, "Control Techniques for Complex Networks", 2008)

"Another important fact, having impact on EA [Evolutionary Algorithm] use is so called No Free Lunch Theorem (NFLT) [...]. Main idea of this theorem is that there is no ideal algorithm which would be able to solve any problem. Simply, if there are for example two algorithms A and B, then for certain subset of possible problems is more suitable algorithms A and for another subset algorithm B. All those subsets can be of course totally disconnected, or/and overlapped." (Ivan Zelinka & Hendrik Richter, "Evolutionary Algorithms for Chaos Researchers", Studies in Computational Intelligence Vol. 267, 2010)

"A conceptual model of an interactive application is, in summary: the structure of the application - the objects and their operations, attributes, and relationships; an idealized view of the how the application works – the model designers hope users will internalize; the mechanism by which users accomplish the tasks the application is intended to support." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"Bayesian networks provide a more flexible representation for encoding the conditional independence assumptions between the features in a domain. Ideally, the topology of a network should reflect the causal relationships between the entities in a domain. Properly constructed Bayesian networks are relatively powerful models that can capture the interactions between descriptive features in determining a prediction." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"The theory behind multiple regression analysis is that if you control for everything that is related to the independent variable and the dependent variable by pulling their correlations out of the mix, you can get at the true causal relation between the predictor variable and the outcome variable. That’s the theory. In practice, many things prevent this ideal case from being the norm." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

"Variance is a prediction error due to different sets of training samples. Ideally, the error should not vary from one training sample to another sample, and the model should be stable enough to handle hidden variations between input and output variables. Normally this occurs with the overfitted model." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"[...] in the statistical world, what we see and measure around us can be considered as the sum of a systematic mathematical idealized form plus some random contribution that cannot yet be explained. This is the classic idea of the signal and the noise." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Training/learning method aiming to automatically determine the ideal behavior within a specific context based on rewarding desired behaviors and/or punishing undesired one." (Ioan-Sorin Comşa et al, "Guaranteeing User Rates With Reinforcement Learning in 5G Radio Access Networks", 2019)

"Ideally, a decision maker or a forecaster will combine the outside view and the inside view - or, similarly, statistics plus personal experience. But it’s much better to start with the statistical view, the outside view, and then modify it in the light of personal experience than it is to go the other way around. If you start with the inside view you have no real frame of reference, no sense of scale - and can easily come up with a probability that is ten times too large, or ten times too small." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

31 December 2014

🕸Systems Engineering: Idealization (Just the Quotes)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"In fact, it is empirically ascertainable that every event is actually produced by a number of factors, or is at least accompanied by numerous other events that are somehow connected with it, so that the singling out involved in the picture of the causal chain is an extreme abstraction. Just as ideal objects cannot be isolated from their proper context, material existents exhibit multiple interconnections; therefore the universe is not a heap of things but a system of interacting systems." (Mario Bunge, "Causality: The place of the casual principles in modern science", 1959)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"[…] if a system is sufficiently complicated, the time it takes to return near a state already visited is huge (think of the hundred fleas on the checkerboard). Therefore if you look at the system for a moderate amount of time, eternal return is irrelevant, and you had better choose another idealization." (David Ruelle, "Chance and Chaos", 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"A first important remark is that nature gives us mathematical hints. […] A second important remark is that mathematical physics deals with idealized systems. […] The third important remark is that nature may hint at a theorem but does not state clearly under which conditions is true." (David Ruelle, "The Mathematician's Brain", 2007)

"Cellular automata (CA) are idealizations of physical systems in which both space and time are assumed to be discrete and each of the interacting units can have only a finite number of discrete states." (Andreas Schadschneider et al, "Vehicular Traffic II: The Nagel–Schreckenberg Model", 2011)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

30 December 2009

📉Graphical Representation: Idealization (Just the Quotes)

"Two important characteristics of maps should be noticed. A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its usefulness. If the map could be ideally correct, it would include, in a reduced scale, the map of the map; the map of the map, of the map [...]" (Alfred Korzybski, "Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics", 1933)

"For most line charts the maximum number of plotted lines should not exceed five; three or fewer is the ideal number. When multiple plotted lines are shown each line should be differentiated by using (a) a different type of line and/or (b) different plotting marks, if shown, and (c) clearly differentiated labeling." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Good numeric representation is a key to effective thinking that is not limited to understanding risks. Natural languages show the traces of various attempts at finding a proper representation of numbers. [...] The key role of representation in thinking is often downplayed because of an ideal of rationality that dictates that whenever two statements are mathematically or logically the same, representing them in different forms should not matter. Evidence that it does matter is regarded as a sign of human irrationality. This view ignores the fact that finding a good representation is an indispensable part of problem solving and that playing with different representations is a tool of creative thinking." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"No other statistical graphic can hold so much information at a time than the parallel coordinate plot. Thus this plot is ideal to get an initial overview of a dataset, or at the very least a large subgroup of the variables." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Trellis displays use a lattice-like arrangement to place plots onto so-called panels. Each plot in a trellis display is conditioned upon at least one other variable. The same scales are used in all the panel plots in order to make them comparable across rows and columns. […] Trellis displays are an ideal tool to compare models for different subsets." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Two types of graphic organizers are commonly used for comparison: the Venn diagram and the comparison matrix [...] the Venn diagram provides students with a visual display of the similarities and differences between two items. The similarities between elements are listed in the intersection between the two circles. The differences are listed in the parts of each circle that do not intersect. Ideally, a new Venn diagram should be completed for each characteristic so that students can easily see how similar and different the elements are for each characteristic used in the comparison." (Robert J. Marzano et al, "Classroom Instruction that Works: Research-based strategies for increasing student achievement, 2001)

"Ideally, the charts are designed in a way that gives your audience clarity and lets them understand the key insights very quickly. Color choices, highlighting, annotations, and other ways of drawing attention to your findings help in the process. By leaving white or blank space around your charts, you are able to keep the focus of your audience on the key message rather than distracting or confusing them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Numbers are ideal vehicles for promulgating bullshit. They feel objective, but are easily manipulated to tell whatever story one desires. Words are clearly constructs of human minds, but numbers? Numbers seem to come directly from Nature herself. We know words are subjective. We know they are used to bend and blur the truth. Words suggest intuition, feeling, and expressivity. But not numbers. Numbers suggest precision and imply a scientific approach. Numbers appear to have an existence separate from the humans reporting them." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

29 December 2007

🏗️Software Engineering: Idealization (Just the Quotes)

 "The XP philosophy is to start where you are now and move towards the ideal. From where you are now, could you improve a little bit?" (Kent Beck, "Extreme Programming Explained: Embrace Change", 1999)

"On a related topic, let me say that I'm not much of a fan of object-oriented design. I've seen some beautiful stuff done with OO, and I've even done some OO stuff myself, but it's just one way to approach a problem. For some problems, it's an ideal way; for others, it's not such a good fit. [...] OO is great for problems where an interface applies naturally to a wide range of types, not so good for managing polymorphism" (the machinations to get collections into OO languages are astounding to watch and can be hellish to work with), and remarkably ill-suited for network computing. That's why I reserve the right to match the language to the problem, and even - often - to coordinate software written in several languages towards solving a single problem. It's that last point - different languages for different subproblems - that sometimes seems lost to the OO crowd." (Rob Pike, [interview] 2004)

"Enterprise-architecture is the integration of everything the enterprise is and does. Even the term ‘architecture’ is perhaps a little misleading. It’s on a much larger scale, the scale of the whole rather than of single subsystems: more akin to city-planning than to the architecture of a single building. In something this large, there are no simple states of ‘as-is’ versus ‘to-be’, because its world is dynamic, not static. And it has to find some way to manage the messy confusion of what is, rather than the ideal that we might like it to be." (Tom Graves, "Real Enterprise-Architecture : Beyond IT to the whole enterprise", 2007)

"In an ideal system, we incorporate new features by extending the system, not by making modifications to existing code." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Taking a systems approach means paying close attention to results, the reasons we build a system. Architecture must be grounded in the client’s/user’s/customer’s purpose. Architecture is not just about the structure of components. One of the essential distinguishing features of architectural design versus other sorts of engineering design is the degree to which architectural design embraces results from the perspective of the client/user/customer. The architect does not assume some particular problem formulation, as “requirements” is fixed. The architect engages in joint exploration, ideally directly with the client/user/customer, of what system attributes will yield results worth paying for."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Many processes in software development are repetitive and easily automated. The DRY principle applies in these contexts, as well as in the source code of the application. Manual testing is slow, error-prone, and difficult to repeat, so automated test suites should be used where possible. Integrating software can be time consuming and error-prone if done manually, so a build process should be run as frequently as possible, ideally with every check-in. Wherever painful manual processes exist that can be automated, they should be automated and standardized. The goal is to ensure that there is only one way of accomplishing the task, and it is as painless as possible." (Steve Smith, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

"A model is an abstraction of the system being studied rather than an alternative representation of that system. Ideally, a representation of a system should maintain all the information about the entity being represented. An abstraction deliberately simplifies and picks out the most salient characteristics." (Ian Sommerville, "Software Engineering" 9th Ed., 2011)

"The conceptual model is not the users' mental model of the application. [...] users of an application form mental models of it to allow them to predict its behavior. A mental model is the user's high-level understanding of how the application works; it allows the user to predict what the application will do in response to various user-actions. Ideally, a user's mental model of an application should be similar to the designers' conceptual model, but in practice the two models may differ signicantly. Even if a user-s mental model is the same as the designer's conceptual model, they are distinct models." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"Agile teams often do not distinguish between bugs, enhancements, or change requests. They use a general unit called change to track progress. Change seems to be a valid unit for both development and operations because operations teams primarily think in terms of changes to the production system. Using changes as a shared term for both development and operations makes it easier to stream production issues back to a work backlog (that is ideally shared by both groups)." (Michael Hüttermann et al, "DevOps for Developers", 2013) 

"Software systems are prone to the build up of cruft - deficiencies in internal quality that make it harder than it would ideally be to modify and extend the system further. Technical Debt is a metaphor […] that frames how to think about dealing with this cruft, thinking of it like a financial debt. The extra effort that it takes to add new features is the interest paid on the debt." (Martin Fowler,"Technical Debt", 2019)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.