Showing posts with label relations. Show all posts
Showing posts with label relations. Show all posts

08 December 2018

🔭Data Science: Relations (Just the Quotes)

"[It] may be laid down as a general rule that, if the result of a long series of precise observations approximates a simple relation so closely that the remaining difference is undetectable by observation and may be attributed to the errors to which they are liable, then this relation is probably that of nature." (Pierre-Simon Laplace, "Mémoire sur les Inégalites Séculaires des Planètes et des Satellites", 1787)

"Discoveries are not generally made in the order of their scientific arrangement: their connexions and relations are made out gradually; and it is only when the fermentation of invention has subsided that the whole clears into simplicity and order. " (William Whewell, "An Elementary Treatise on Mechanics" Vol. I, 1819)

"There is no inquiry which is not finally reducible to a question of Numbers; for there is none which may not be conceived of as consisting in the determination of quantities by each other, according to certain relations." (Auguste Comte, "The Positive Philosophy", 1830)

"Things of all kinds are subject to a universal law which may be called the law of large numbers. It consists in the fact that, if one observes very considerable numbers of events of the same nature, dependent on constant causes and causes which vary irregularly, sometimes in one direction, sometimes in the other, it is to say without their variation being progressive in any definite direction, one shall find, between these numbers, relations which are almost constant." (Siméon-Denis Poisson, "Poisson’s Law of Large Numbers", 1837)

"A discovery is generally an unforeseen relation not included in theory." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"[…] deduction consists in constructing an icon or diagram the relations of whose parts shall present a complete analogy with those of the parts of the object of reasoning, of experimenting upon this image in the imagination, and of observing the result so as to discover unnoticed and hidden relations among the parts." (Charles S Peirce, 1885)

"The use of figures is, above all, then, for the purpose of making known certain relations between the objects that we study, and these relations are those which occupy the branch of geometry that we have called Analysis Situs [that is, topology], and which describes the relative situation of points and lines on surfaces, without consideration of their magnitude." (Henri Poincaré, "Analysis Situs", Journal de l'Ecole Polytechnique 1, 1895)

"Deduction is that mode of reasoning which examines the state of things asserted in the premises, forms a diagram of that state of things, perceives in the parts of the diagram relations not explicitly mentioned in the premises, satisfies itself by mental experiments upon the diagram that these relations would always subsist, or at least would do so in a certain proportion of cases, and concludes their necessary, or probable, truth." (Charles S Peirce, "Kinds of Reasoning", cca. 1896)

"Mathematicians do not study objects, but the relations between objects; to them it is a matter of indifference if these objects are replaced by others, provided that the relations do not change. Matter does not engage their attention, they are interested in form alone." (Henri Poincaré, "Science and Hypothesis", 1901)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak [...]" (Henri Poincaré, "The Value of Science", 1905)

"The aim of science is not things themselves, as the dogmatists in their simplicity imagine, but the relation between things."  (Henri Poincaré, "Science and Hypothesis", 1905)

"But surely it is self-evident that every theory is merely a framework or scheme of concepts together with their necessary relations to one another, and that the basic elements can be constructed as one pleases." (Gottlob Frege, "On the Foundations of Geometry and Formal Theories of Arithmetic" , cca. 1903-1909)

"Statistics may be defined as numerical statements of facts by means of which large aggregates are analyzed, the relations of individual units to their groups are ascertained, comparisons are made between groups, and continuous records are maintained for comparative purposes." (Melvin T Copeland. "Statistical Methods" [in: Harvard Business Studies, Vol. III, Ed. by Melvin T Copeland, 1917])

"Observed facts must be built up, woven together, ordered, arranged, systematized into conclusions and theories by reflection and reason, if they are to have full bearing on life and the universe. Knowledge is the accumulation of facts. Wisdom is the establishment of relations. And just because the latter process is delicate and perilous, it is all the more delightful." (Gamaliel Bradford, "Darwin", 1926)

"A system is said to be coherent if every fact in the system is related every other fact in the system by relations that are not merely conjunctive. A deductive system affords a good example of a coherent system." (Lizzie S Stebbing, "A modern introduction to logic", 1930)

"To apply the category of cause and effect means to find out which parts of nature stand in this relation. Similarly, to apply the gestalt category means to find out which parts of nature belong as parts to functional wholes, to discover their position in these wholes, their degree of relative independence, and the articulation of larger wholes into sub-wholes." (Kurt Koffka, 1931)

"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)

"Given any object, relatively abstracted from its surroundings for study, the behavioristic approach consists in the examination of the output of the object and of the relations of this output to the input. By output is meant any change produced in the surroundings by the object. By input, conversely, is meant any event external to the object that modifies this object in any manner." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Teleology", Philosophy of Science 10, 1943)

"It is important to realize that it is not the one measurement, alone, but its relation to the rest of the sequence that is of interest." (William E Deming, "Statistical Adjustment of Data", 1943)

"When the mathematician speaks of the existence of a 'functional relation' between two variable quantities, he means that they are connected by a simple 'formula that is to say, if we are told the value of one of the variable quantities we can find the value of the second quantity by substituting in the formula which tells us how they are related. [...] The thing to be clear about before we proceed further is that a functional relationship in mathematics means an exact and predictable relationship, with no ifs or buts about lt. It is useful in practice so long as the ifs and buts are only tiny voices which even the most ardent protagonist of proportional representation can ignore with a clear conscience." (Michael J Moroney, "Facts from Figures", 1951)

"The principle of complementarity states that no single model is possible which could provide a precise and rational analysis of the connections between these phenomena [before and after measurement]. In such a case, we are not supposed, for example, to attempt to describe in detail how future phenomena arise out of past phenomena. Instead, we should simply accept without further analysis the fact that future phenomena do in fact somehow manage to be produced, in a way that is, however, necessarily beyond the possibility of a detailed description. The only aim of a mathematical theory is then to predict the statistical relations, if any, connecting the phenomena." (David Bohm, "A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables", 1952)

"Every metaphor is the tip of a submerged model. […] Use of theoretical models resembles the use of metaphors in requiring analogical transfer of a vocabulary. Metaphor and model-making reveal new relationships; both are attempts to pour new content into old bottles." (Max Black," Models and Metaphors", 1962)

"Certain properties are necessary or sufficient conditions for other properties, and the network of causal relations thus established will make the occurrence of one property at least tend, subject to the presence of other properties, to promote or inhibit the occurrence of another. Arguments from models involve those analogies which can be used to predict the occurrence of certain properties or events, and hence the relevant relations are causal, at least in the sense of implying a tendency to co-occur." (Mary B Hesse," Models and Analogies in Science", 1963)

"[…] the human reason discovers new relations between things not by deduction, but by that unpredictable blend of speculation and insight […] induction, which - like other forms of imagination - cannot be formalized." (Jacob Bronowski, "The Reach of Imagination", 1967)

"Thus, there exist models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relations or 'forces' between them. It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general. In this way we postulate a new discipline called General System Theory. Its subject matter is the formulation and derivation of those principles which are valid for ‘systems’ in general." (Ludwig von Bertalanffy, "General System Theory: Foundations, Development, Applications", 1968)

"You cannot sum up the behavior of the whole from the isolated parts, and you have to take into account the relations between the various subordinate systems which are super-ordinated to them in order to understand the behavior of the parts." (Ludwig von Bertalanffy, "General System Theory", 1968)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay Wright Forrester, "Urban dynamics", 1969)

"The advantages of models are, on one hand, that they force us to present a 'complete' theory by which I mean a theory taking into account all relevant phenomena and relations and, on the other hand, the confrontation with observation, that is, reality." (Jan Tinbergen, "The Use of Models: Experience," 1969)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"A system in one perspective is a subsystem in another. But the systems view always treats systems as integrated wholes of their subsidiary components and never as the mechanistic aggregate of parts in isolable causal relations." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Understandability implies that the graph will mean something to the audience. If the presentation has little meaning to the audience, it has little value. Understandability is the difference between data and information. Data are facts. Information is facts that mean something and make a difference to whoever receives them. Graphic presentation enhances understanding in a number of ways. Many people find that the visual comparison and contrast of information permit relationships to be grasped more easily. Relationships that had been obscure become clear and provide new insights." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Organization denotes those relations that must exist among the components of a system for it to be a member of a specific class. Structure denotes the components and relations that actually constitute a particular unity and make its organization real." (Humberto Maturana, "The Tree of Knowledge", 1987)

"A semantic network or net represents knowledge as a net-like graph. An idea, event, situation or object almost always has a composite structure; this is represented in a semantic network by a corresponding structure of nodes (drawn as circles or boxes) representing conceptual units, and directed links (drawn as arrows between the nodes) representing the relations between the units." (Fritz Lehman, "Semantic Networks",  Computers & Mathematics with Applications Vol. 23 (2-5), 1992)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns." (Fritjof Capra, "The Web of Life: A New Scientific Understanding of Living Systems", 1996)

"[Schemata are] knowledge structures that represent objects or events and provide default assumptions about their characteristics, relationships, and entailments under conditions of incomplete information." (Paul J DiMaggio, "Culture and Cognition", Annual Review of Sociology No. 23, 1997)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Complexity is that property of a model which makes it difficult to formulate its overall behaviour in a given language, even when given reasonably complete information about its atomic components and their inter-relations." (Bruce Edmonds, "Syntactic Measures of Complexity", 1999)

"Fuzzy relations are developed by allowing the relationship between elements of two or more sets to take on an infinite number of degrees of relationship between the extremes of 'completely related' and 'not related', which are the only degrees of relationship possible in crisp relations. In this sense, fuzzy relations are to crisp relations as fuzzy sets are to crisp sets; crisp sets and relations are more constrained realizations of fuzzy sets and relations."  (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"There exists an alternative to reductionism for studying systems. This alternative is known as holism. Holism considers systems to be more than the sum of their parts. It is of course interested in the parts and particularly the networks of relationships between the parts, but primarily in terms of how they give rise to and sustain in existence the new entity that is the whole whether it be a river system, an automobile, a philosophical system or a quality system." (Michael C Jackson, "Systems Thinking: Creative Holism for Manager", 2003)

"A diagram is a graphic shorthand. Though it is an ideogram, it is not necessarily an abstraction. It is a representation of something in that it is not the thing itself. In this sense, it cannot help but be embodied. It can never be free of value or meaning, even when it attempts to express relationships of formation and their processes. At the same time, a diagram is neither a structure nor an abstraction of structure." (Peter Eisenman, "Written Into the Void: Selected Writings", 1990-2004, 2007)

"A conceptual model of an interactive application is, in summary: the structure of the application - the objects and their operations, attributes, and relation-ships; an idealized view of the how the application works – the model designers hope users will internalize; the mechanism by which users accomplish the tasks the application is intended to support." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"We use the term fuzzy logic to refer to all aspects of representing and manipulating knowledge that employ intermediary truth-values. This general, commonsense meaning of the term fuzzy logic encompasses, in particular, fuzzy sets, fuzzy relations, and formal deductive systems that admit intermediary truth-values, as well as the various methods based on them." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"Mathematical abstraction is the process of considering and manipulating op­erations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content con­nected to particular applications. […] abstraction is the process of passing from things to ideas, properties and relations, to properties of relations and relations of properties, to properties of relations between properties, etc. Being a fundamental thinking process, abstraction has two faces: a logical face and evidently a psychological aspect that is the target of cognitive sciences." (Hourya B Sinaceur,"Facets and Levels of Mathematical Abstraction", Standards of Rigor in Mathematical Practice 18-1, 2014)

More quotes on "Relations" at the-web-of-knowledge.blogspot.com.

23 April 2018

🔭Data Science: Independence (Just the Quotes)

"To apply the category of cause and effect means to find out which parts of nature stand in this relation. Similarly, to apply the gestalt category means to find out which parts of nature belong as parts to functional wholes, to discover their position in these wholes, their degree of relative independence, and the articulation of larger wholes into sub-wholes." (Kurt Koffka, 1931)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"[A] sequence is random if it has every property that is shared by all infinite sequences of independent samples of random variables from the uniform distribution." (Joel N Franklin, 1962)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"In error analysis the so-called 'chi-squared' is a measure of the agreement between the uncorrelated internal and the external uncertainties of a measured functional relation. The simplest such relation would be time independence. Theory of the chi-squared requires that the uncertainties be normally distributed. Nevertheless, it was found that the test can be applied to most probability distributions encountered in practice." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"It is important that uncertainty components that are independent of each other are added quadratically. This is also true for correlated uncertainty components, provided they are independent of each other, i.e., as long as there is no correlation between the components." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"The fact that the same uncertainty (e.g., scale uncertainty) is uncorrelated if we are dealing with only one measurement, but correlated (i.e., systematic) if we look at more than one measurement using the same instrument shows that both types of uncertainties are of the same nature. Of course, an uncertainty keeps its characteristics (e.g., Poisson distributed), independent of the fact whether it occurs only once or more often." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"To fulfill the requirements of the theory underlying uncertainties, variables with random uncertainties must be independent of each other and identically distributed. In the limiting case of an infinite number of such variables, these are called normally distributed. However, one usually speaks of normally distributed variables even if their number is finite." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Bayesian networks provide a more flexible representation for encoding the conditional independence assumptions between the features in a domain. Ideally, the topology of a network should reflect the causal relationships between the entities in a domain. Properly constructed Bayesian networks are relatively powerful models that can capture the interactions between descriptive features in determining a prediction." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015) 

"Bayesian networks use a graph-based representation to encode the structural relationships - such as direct influence and conditional independence - between subsets of features in a domain. Consequently, a Bayesian network representation is generally more compact than a full joint distribution (because it can encode conditional independence relationships), yet it is not forced to assert a global conditional independence between all descriptive features. As such, Bayesian network models are an intermediary between full joint distributions and naive Bayes models and offer a useful compromise between model compactness and predictive accuracy." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"The main differences between Bayesian networks and causal diagrams lie in how they are constructed and the uses to which they are put. A Bayesian network is literally nothing more than a compact representation of a huge probability table. The arrows mean only that the probabilities of child nodes are related to the values of parent nodes by a certain formula (the conditional probability tables) and that this relation is sufficient. That is, knowing additional ancestors of the child will not change the formula. Likewise, a missing arrow between any two nodes means that they are independent, once we know the values of their parents. [...] If, however, the same diagram has been constructed as a causal diagram, then both the thinking that goes into the construction and the interpretation of the final diagram change." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

29 December 2011

📉Graphical Representation: Relations (Just the Quotes)

"While circle charts are not likely to present especially new or creative ideas, they do help the user to visualize relationships. The relationships depicted by circle charts do not tend to be very complex, in contrast to those of some line graphs. Normally, the circle chart is used to portray a common type of relationship (namely. part-to-total) in an attractive manner and to expedite the message transfer from designer to user." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"Logging skewed variables also helps to reveal the patterns in the data. […] the rescaling of the variables by taking logarithms reduces the nonlinearity in the relationship and removes much of the clutter resulting from the skewed distributions on both variables; in short, the transformation helps clarify the relationship between the two variables. It also […] leads to a theoretically meaningful regression coefficient." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"If you want to dramatize comparisons in relation to the whole. use a pie chart. If you want to add coherence to the narrative, the pie chart also helps because it depicts a whole. If your main interest is in stressing the relationship of one factor to another, use bar charts. If you wish to achieve all these effects. you can use either type of chart. and decide on the basis of which one is more aesthetically or pictorially interesting." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Understandability implies that the graph will mean something to the audience. If the presentation has little meaning to the audience, it has little value. Understandability is the difference between data and information. Data are facts. Information is facts that mean something and make a difference to whoever receives them. Graphic presentation enhances understanding in a number of ways. Many people find that the visual comparison and contrast of information permit relationships to be grasped more easily. Relationships that had been obscure become clear and provide new insights." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"In order to be easily understood, a display of information must have a logical structure which is appropriate for the user's knowledge and needs, and this structure must be clearly represented visually. In order to indicate structure, it is necessary to be able to emphasize, divide and relate items of information. Visual emphasis can be used to indicate a hierarchical relationship between items of information, as in the case of systems of headings and subheadings for example. Visual separation of items can be used to indicate that they are different in kind or are unrelated functionally, and similarly a visual relationship between items will imply that they are of a similar kind or bear some functional relation to one another. This kind of visual 'coding' helps the reader to appreciate the extent and nature of the relationship between items of information, and to adopt an appropriate scanning strategy." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Statistics are numerical statements of facts in any department of inquiry, placed in relation to each other; statistical methods are devices for abbreviating and classifying the statements and making clear the relations." (Arthur L Bowley, "An Elementary Manual of Statistics", 1934)

"Scatter charts show the relationships between information, plotted as points on a grid. These groupings can portray general features of the source data, and are useful for showing where correlationships occur frequently. Some scatter charts connect points of equal value to produce areas within the grid which consist of similar features." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Area graphs are generally not used to convey specific values. Instead, they are most frequently used to show trends and relationships, to identify and/or add emphasis to specific information by virtue of the boldness of the shading or color, or to show parts-of-the-whole." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"A good graph displays relationships and structures that are difficult to detect by merely looking at the data." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"The content and context of the numerical data determines the most appropriate mode of presentation. A few numbers can be listed, many numbers require a table. Relationships among numbers can be displayed by statistics. However, statistics, of necessity, are summary quantities so they cannot fully display the relationships, so a graph can be used to demonstrate them visually. The attractiveness of the form of the presentation is determined by word layout, data structure, and design." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Three key aspects of presenting high dimensional data are: rendering, manipulation, and linking. Rendering determines what is to be plotted, manipulation determines the structure of the relationships, and linking determines what information will be shared between plots or sections of the graph." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Color can tell us where to look, what to compare and contrast, and it can give us a visual scale of measure. Because color can be so effective, it is often used for multiple purposes in the same graphic - which can create graphics that are dazzling but difficult to interpret. Separating the roles that color can play makes it easier to apply color specifically for encouraging different kinds of visual thinking. [...] Choose colors to draw attention, to label, to show relationships (compare and contrast), or to indicate a visual scale of measure." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)

"A scatterplot reveals the strength and shape of the relationship between a pair of variables. A scatterplot represents the two variables by axes drawn at right angles to each other, showing the observations as a cloud of points, each point located according to its values on the two variables. Various lines can be added to the plot to help guide our search for understanding." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"A good chart can tell a story about the data, helping you understand relationships among data so you can make better decisions. The wrong chart can make a royal mess out of even the best data set." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Essentially, magnitude is the size of the effect. It’s a way to determine if the results are meaningful. Without magnitude, it’s hard to get a sense of how much something matters. […] the magnitude of an effect can change, depending on the relationship." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Form simplification means simplifying relationships among the components of the whole, emphasizing the whole and reducing the relevance of individual components by standardizing and generalizing relationships. This results in an increased weight of useful information (signal) against useless information (noise)." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"[...] scatterplots had advantages over earlier graphic forms: the ability to see clusters, patterns, trends, and relations in a cloud of points. Perhaps most importantly, it allowed the addition of visual annotations (point symbols, lines, curves, enclosing contours, etc.) to make those relationships more coherent and tell more nuanced stories." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.