Showing posts with label changes. Show all posts
Showing posts with label changes. Show all posts

06 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part II: There's Value in Failure)

Business Intelligence
Business Intelligence Series

"Results are nothing; the energies which produce them
and which again spring from them are everything."
(Wilhelm von Humboldt,  "On Language", 1836)

When the data is not available and is needed on a continuous basis then usually the solution is to redesign the processes and make sure the data becomes available at the needed quality level. Redesign involves additional costs for the business; therefore, it might be tempting to cancel or postpone data projects, at least until they become feasible, though they’re seldom feasible. 

Just because there’s a set of data, this doesn’t mean that there is important knowledge to be extracted from it, respectively that the investment is feasible. There’s however value in building experience in the internal resources, in identifying the challenges and the opportunities, in identifying what needs to be changed for harnessing the data. Unfortunately, organizations expect that somebody else will do the work for them instead of doing the jump by themselves, and this approach more likely will fail. It’s like expecting to get enlightened after a few theoretical sessions with a guru than walking the path by oneself. 

This is reflected also in organizations’ readiness to do the required endeavors for making the jump on the maturity scale. If organizations can’t approach such topics systematically and address the assumptions, opportunities, and risks adequately, respectively to manage the various aspects, it’s hard to believe that their data journey will be positive. 

A data journey shouldn’t be about politics even if some minds need to be changed in the process, at management as well as at lower level. If the leadership doesn’t recognize the importance of becoming an enabler for such initiatives, then the organization probably deserves to keep the status quo. The drive for change should come from the leadership even if we talk about data culture, data strategy, decision-making, or any critical aspect.

An organization will always need to find the balance between time, scope, cost, and quality, and this applies to operations, tactics, and strategies as well as to projects.  There are hard limits and lot of uncertainty associated with data projects and the tasks involved, limits reflected in cost and time estimations (which frankly are just expert’s rough guesses that can change for the worst in the light of new information). Therefore, especially in data projects one needs to be able to compromise, to change scope and timelines as seems fit, and why not, to cancel the projects if the objectives aren’t feasible anymore, respectively if compromises can’t be reached.

An organization must be able to take the risks and invest in failure, otherwise the opportunities for growth don’t change. Being able to split a roadmap into small iterative steps that allow besides breaking down the complexity and making progress to evaluate the progress and the knowledge resulted, respectively incorporate the feedback and knowledge in the next steps, can prove to be what organizations lack in coping with the high uncertainty. Instead, organizations seem to be fascinated by the big bang, thinking that technology can automatically fill the organizational gaps.

Doing the same thing repeatedly and expecting different results is called insanity. Unfortunately, this is what organizations and service providers do in what concerns Project Management in general and data projects in particular. Building something without a foundation, without making sure that the employees have the skillset, maturity and culture to manage the data-related tasks, challenges and opportunities is pure insanity!

Bottom line, harnessing the data requires a certain maturity and it starts with recognizing and pursuing opportunities, setting goals, following roadmaps, learning to fail and getting value from failure, respectively controlling the failure. Growth or instant enlightenment without a fair amount of sweat is possible, though that’s an exception for few in sight!

Previous Post <<||>> Next Post

29 November 2018

🔭Data Science: Change (Just the Quotes)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"It is clear that one who attempts to study precisely things that are changing must have a great deal to do with measures of change." (Charles Cooley, "Observations on the Measure of Change", Journal of the American Statistical Association (21), 1893)

"Given any object, relatively abstracted from its surroundings for study, the behavioristic approach consists in the examination of the output of the object and of the relations of this output to the input. By output is meant any change produced in the surroundings by the object. By input, conversely, is meant any event external to the object that modifies this object in any manner." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Teleology", Philosophy of Science 10, 1943)

"The general method involved may be very simply stated. In cases where the equilibrium values of our variables can be regarded as the solutions of an extremum (maximum or minimum) problem, it is often possible regardless of the number of variables involved to determine unambiguously the qualitative behavior of our solution values in respect to changes of parameters." (Paul Samuelson, "Foundations of Economic Analysis", 1947)

"A common and very powerful constraint is that of continuity. It is a constraint because whereas the function that changes arbitrarily can undergo any change, the continuous function can change, at each step, only to a neighbouring value." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"As a simple trick, the discrete can often be carried over into the continuous, in a way suitable for practical purposes, by making a graph of the discrete, with the values shown as separate points. It is then easy to see the form that the changes will take if the points were to become infinitely numerous and close together." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The discrete change has only to become small enough in its jump to approximate as closely as is desired to the continuous change. It must further be remembered that in natural phenomena the observations are almost invariably made at discrete intervals; the 'continuity' ascribed to natural events has often been put there by the observer's imagina- tion, not by actual observation at each of an infinite number of points. Thus the real truth is that the natural system is observed at discrete points, and our transformation represents it at discrete points. There can, therefore, be no real incompatibility." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why prediction is so successful in celestial mechanics is that the evolution of the solar system has ground to a halt in what is essentially a dynamic equilibrium with stable parameters. Evolutionary systems, however, by their very nature have unstable parameters. They are disequilibrium systems and in such systems our power of prediction, though not zero, is very limited because of the unpredictability of the parameters themselves. If, of course, it were possible to predict the change in the parameters, then there would be other parameters which were unchanged, but the search for ultimately stable parameters in evolutionary systems is futile, for they probably do not exist… Social systems have Heisenberg principles all over the place, for we cannot predict the future without changing it." (Kenneth E Boulding, Evolutionary Economics, 1981)

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

"A useful description relates the systematic variation to one or more factors; if the residuals dwarf the effects for a factor, we may not be able to relate variation in the data to changes in the factor. Furthermore, changes in the factor may bring no important change in the response. Such comparisons of residuals and effects require a measure of the variation of overlays relative to each other." (Christopher H Schrnid, "Value Splitting: Taking the Data Apart", 1991)

"[…] continuity appears when we try to mathematically express continuously changing phenomena, and differentiability is the result of expressing smoothly changing phenomena."  (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"We analyze numbers in order to know when a change has occurred in our processes or systems. We want to know about such changes in a timely manner so that we can respond appropriately. While this sounds rather straightforward, there is a complication - the numbers can change even when our process does not. So, in our analysis of numbers, we need to have a way to distinguish those changes in the numbers that represent changes in our process from those that are essentially noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation… discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

"After you visualize your data, there are certain things to look for […]: increasing, decreasing, outliers, or some mix, and of course, be sure you’re not mixing up noise for patterns. Also note how much of a change there is and how prominent the patterns are. How does the difference compare to the randomness in the data? Observations can stand out because of human or mechanical error, because of the uncertainty of estimated values, or because there was a person or thing that stood out from the rest. You should know which it is." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"In negative feedback regulation the organism has set points to which different parameters (temperature, volume, pressure, etc.) have to be adapted to maintain the normal state and stability of the body. The momentary value refers to the values at the time the parameters have been measured. When a parameter changes it has to be turned back to its set point. Oscillations are characteristic to negative feedback regulation […]" (Gaspar Banfalvi, "Homeostasis - Tumor – Metastasis", 2014)

"Regression does not describe changes in ability that happen as time passes […]. Regression is caused by performances fluctuating about ability, so that performances far from the mean reflect abilities that are closer to the mean." (Gary Smith, "Standard Deviations", 2014)

"When memorization happens, you may have the illusion that everything is working well because your machine learning algorithm seems to have fitted the in sample data so well. Instead, problems can quickly become evident when you start having it work with out-of-sample data and you notice that it produces errors in its predictions as well as errors that actually change a lot when you relearn from the same data with a slightly different approach. Overfitting occurs when your algorithm has learned too much from your data, up to the point of mapping curve shapes and rules that do not exist [...]. Any slight change in the procedure or in the training data produces erratic predictions." (John P Mueller & Luca Massaron, Machine Learning for Dummies, 2016)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

More quotes on "Change" at the-web-of-knowledge.blogspot.com

17 December 2016

♟️Strategic Management: Managing Change (Just the Quotes)

"Inconsistencies of opinion, arising from changes of circumstances, are often justifiable." (Daniel Webster, [speech] 1846)

"Progress, far from consisting in change, depends on retentiveness. [...] Those who cannot remember the past are condemned to fulfil it." (George Santayana, "The Life of Reason", 1905-1906)

"To improve is to change; to be perfect is to change often." (Winston Churchill, [Speech, House of Commons] 1925)

"When an active individual of sound common sense perceives the sordid state of the world, desire to change it becomes the guiding principle by which he organizes given facts and shapes them into a theory. The methods and categories as well as the transformation of the theory can be understood only in connection with his taking of sides. This, in turn, discloses both his sound common sense and the character of the world. Right thinking depends as much on right willing as right willing on right thinking." (Max Horkheimer, "The Latest Attack on Metaphysics", 1937)

"Many of the obstacles for change which have been attributed to human nature are in fact due to the inertia of institutions and to the voluntary desire of powerful classes to maintain the existing status." (John Dewey, 1938)

"Doing engineering is practicing the art of the organized forcing of technological change." (George Spencer-Brown, Electronics, Vol. 32 (47),  1959)

"People fear change because it undermines their security." (Thomas R Bennett III, Planning For Change, 1961)

"Every part of the system is so related to every other part that a change in a particular part causes a changes in all other parts and in the total system." (Arthur D Hall, "A methodology for systems engineering", 1962)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"So much has been written about employees' resistance to change that we are sometimes tempted to forget that they can also react favorably." (Nathaniel Stewart, "Leadership in the Office", 1963)

"We have overwhelming evidence that available information plus analysis does not lead to knowledge. The management science team can properly analyse a situation and present recommendations to the manager, but no change occurs. The situation is so familiar to those of us who try to practice management science that I hardly need to describe the cases." (C West Churchman, "Managerial acceptance of scientific recommendations", California Management Review Vol 7, 1964)

"[...] long-range plans are most valuable when they are revised and adjusted and set anew at shorter periods. The five-year plan is reconstructed each year in turn for the following five years. The soundest basis for this change is accurate measurement of the results of the first year's experience with the plan against the target of the plan." (George S Odiorne, "Management by Objectives", 1965)

"Any understanding of social and cultural change is impossible without a knowledge of the way media works as environments." (Marshall McLuhan, "The Medium is the Massage: An inventory of effects", 1967)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971) 

"Every goal and every change from the status quo has a price tag on it." (Lyle E Schaller, "The Change Agent", 1972)

"To be productive the individual has to have control, to a substantial extent, over the speed, rhythm, and attention spans with which he is working […] While work is, therefore, best laid out as uniform, working is best organized with a considerable degree of diversity. Working requires latitude to change speed, rhythm, and attention span fairly often. It requires fairly frequent changes in operating routines as well. What is good industrial engineering for work is exceedingly poor human engineering for the worker." (Peter F Drucker, "Management: Tasks, Responsibilities, Practices", 1973)

"Perhaps the fault [for the poor implementation record for models] lies in the origins of managerial model-making - the translation of methods and principles of the physical sciences into wartime operations research. [...] If hypothesis, data, and analysis lead to proof and new knowledge in science, shouldn’t similar processes lead to change in organizations? The answer is obvious-NO! Organizational changes (or decisions or policies) do not instantly pow from evidence, deductive logic, and mathematical optimization." (Edward B Roberts, "Interface", 1977)

"It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be. [...] This, in turn, means that our statesmen, our businessmen, our everyman must take on a science fictional way of thinking." (Isaac Asimov, "My Own View", Encyclopedia of Science Fiction, 1978)

"All organizations do change when put under sufficient pressure. This pressure must be either external to the organization or the result of very strong leadership." (Bruce Henderson, Henderson on Corporate Strategy, 1979)

"It is rare for any organization to generate sufficient pressure internally to produce significant change in direction. Indeed, internal pressure is likely to be regarded as a form of dissatisfaction with the organization's leadership." (Bruce Henderson, Henderson on Corporate Strategy, 1979)

"The acceptance of project management has not been easy, however. Many executives are not willing to accept change and are inflexible when it comes to adapting to a different environment." (Harold Kerzner, "Project Management", 1979)

"A competent manager can usually explain necessary planning changes in terms of specific facts which have contributed to the change. The existing fear, or attitude of failure, which results from missed completion dates should be replaced by a more constructive fear of failing to keep a plan updated." (Philip F Gehring Jr. & Udo W Pooch, "Advances in Computer Programming Management", 1980)

"[Organizational] change is intervention, and intervention even with good intentions can lead to negative results in both the short and long run. For example, a change in structure in going from application of one theory to another might cause the unwanted resignation of a key executive, or the loss of an important customer. [...] the factor of change, acts as an overriding check against continual organizational alterations. It means that regardless of how well meant a change is, or how much logic dictates this change, its possible negative effects must be carefully weighed against the hoped-for benefits." (William A Cohen, "Principles of Technical Management", 1980)

"[...] strategic change is likely to call for different management techniques than continuous running of well-established business-units.... If effectively done, strategic management can have even greater payoffs in rough seas than in clear sailing." (Boris Yavitz & William H Newman, "Strategy in Action", 1982)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Change occurs only when there is a confluence of changing values and economic necessity." (John Naisbett & Patricia Aburdene, "Re-inventing the Corporation", 1985)

"With the changes in technological complexity, especially in information technology, the leadership task has changed. Leadership in a networked organization is a fundamentally different thing from leadership in a traditional hierarchy." (Edgar Schein, "Organizational Culture and Leadership", 1985)

"An ability to tolerate ambiguity helps to avoid overdetermining one's goals. [...] As they proceed, peak performers can adjust goals. [...] What they are doing is balancing between change and stasis, between innovation and consolidation." (Charles Garfield, "Peak Performers", 1986)

"Most organizations, left to their own devices, are going to atrophy, to get so institutional, so bureaucratic, that they get to the point where their original reason for existence has been lost, and they stagnate. So you have to have change, and by that I mean dramatic change." (William G McGowan, Inc. Magazine, August 1986)

"[...] strategic planning and crisis management are complimentary. They coexist comfortably because both deal with the management of change. Crisis management concentrates on those brief moments of instability that must be dealt with first in order to get on with the larger and less time-sensitive job of reaching strategic objectives." (Gerald C Meyers, "When It Hits the Fan", 1986)

"The only [management] practice that's now constant is the practice of constantly accommodating to change." (William G. McGowan, Inc. Magazine, 1986)

"Training frequently fails to pay off in behavioral changes on the job: Trainees go back to work and do it the way they've always done it instead of the way you taught them to do it." (Ruth C Clark, "Manager, Training and Information Services", Training, 1986)

"You can change behavior in an entire organization, provided you treat training as a process rather than an event." (Edward W Jones, "Training", 1986)

"Constant change by everyone requires a dramatic increase in the capacity to accept disruption." (Tom Peters, "Thriving on Chaos", 1987)

"People are asking more cogent questions, and they're observing behavior that begins to be amenable to the ideas of chaotic dynamics." (James Ramsey, The New York Times, 1987)

"Problems can be reduced by allowing employees to help plan changes rather than directing them to execute a plan made by others." (Eugene Raudsepp, MTS Digest, 1987)

"There are only two ways to get people to support corporate change. You should give employees the information they need to understand the reasons for change, and put enough influence behind the information to [gain their] support." (Carla O'Dell, 1987)

"[...] a strategic inflection point is a time in the life of business when its fundamentals are about to change. That change can mean an opportunity to rise to new heights. But it may just as likely signal the beginning of the end." (Andrew S Grove, "Only the Paranoid Survive: How to Exploit the Crisis Points that Challenge Every Company and Career", 1988)

"[...] technology always fosters radical social change." (Neil Postman, "Conscientious Objections", 1988)

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"The importance of top management commitment to organizational change is so well accepted that it is almost cliché to repeat the fact. We would therefore expect managerial values to be just as important in this area as in others that require strategic direction and leadership" (Thomas A Kochan,"The Mutual Gains Enterprise", 1994) 

"Enterprise Engineering is not a single methodology, but a sophisticated synthesis of the most important and successful of today's change methods. 'Enterprise Engineering' first explains in detail all the critical disciplines (including continuous improvement, radical reinvention of business processes, enterprise redesign, and strategic visioning). It then illustrates how to custom-design the right combination of these change methods for your organization's specific needs." (James Martin, "The Great Transition, 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"Commonly, the threats to strategy are seen to emanate from outside a company because of changes in technology or the behavior of competitors. Although external changes can be the problem, the greater threat to strategy often comes from within. A sound strategy is undermined by a misguided view of competition, by organizational failures, and, especially, by the desire to grow." (Michael E Porter, "What is Strategy?", Harvard Business Review, 1996)

"Architecture is that set of design artifacts, or descriptive representations, that are relevant for describing an object, such that it can be produced to requirements (quality) as well as maintained over the period of its useful life (change)." (John A Zachman, "Enterprise architecture: The issue of the century", Database Programming and Design Vol. 10 (3), 1997)

"Issues of quality, timeliness and change are the conditions that are forcing us to face up to the issues of enterprise architecture. The precedent of all the older disciplines known today establishes the concept of architecture as central to the ability to produce quality and timely results and to manage change in complex products. Architecture is the cornerstone for containing enterprise frustration and leveraging technology innovations to fulfill the expectations of a viable and dynamic Information Age enterprise." (John Zachman, "Enterprise Architecture: The Issue of The Century", 1997)

"The basis of leadership is the capacity of the leader to change the mindset, the framework of the other person." (Warren Bennis, "Managing People is Like Herding Cats", 1997)

"Projects sometimes fail long before they deliver anything. At some point they may be determined to be too expensive to continue. Or perhaps they took too long to develop and the business need evaporated. Or perhaps the requirements change so often that the developers can never finish one thing without having to stop and start all over on something new. Certainly these are planning failures." (Kent Beck & Martin Fowler, "Planning Extreme Programming", 2000)

"Strategic planning and strategic change management are really 'strategic thinking'. It’s about clarity and simplicity, meaning and purpose, and focus and direction." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"The business changes. The technology changes. The team changes. The team members change. The problem isn't change, per se, because change is going to happen; the problem, rather, is the inability to cope with change when it comes." (Kent Beck, Extreme Programming Explained, 2000)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"An Enterprise Architecture is a dynamic and powerful tool that helps organisations understand their own structure and the way they work. It provides a ‘map’ of the enterprise and a ‘route planner’ for business and technology change. A well-constructed Enterprise Architecture provides a foundation for the ‘Agile’ business." (Bob Jarvis, "Enterprise Architecture: Understanding the Bigger Picture - A Best Practice Guide for Decision Makers in IT", 2003)

"An enterprise architecture is a blueprint for organizational change defined in models [using words, graphics, and other depictions] that describe (in both business and technology terms) how the entity operates today and how it intends to operate in the future; it also includes a plan for transitioning to this future state." (US Government Accountability Office, "Enterprise Architecture: Leadership Remains Key to Establishing and Leveraging Architectures for Organizational Transformation", GAO-06-831, 2006)

"Change pressures arise from different sectors of a system. At times it is mandated from the top of a hierarchy, other times it forms from participants at a grass-roots level. Some changes are absorbed by the organization without significant impact on, or alterations of, existing methods. In other cases, change takes root. It causes the formation of new methods (how things are done and what is possible) within the organization." (George Siemens, "Knowing Knowledge", 2006)

"Enterprise architecture is the process of translating business vision and strategy into effective enterprise change by creating, communicating and improving the key requirements, principles and models that describe the enterprise's future state and enable its evolution. The scope of the enterprise architecture includes the people, processes, information and technology of the enterprise, and their relationships to one another and to the external environment. Enterprise architects compose holistic solutions that address the business challenges of the enterprise and support the governance needed to implement them." (Anne Lapkin et al, "Gartner Clarifies the Definition of the Term 'Enterprise Architecture", 2008)

"Strategy is the serious work of figuring out how to translate vision and mission into action. Strategy is a general plan of action that describes resource allocation and other activities for dealing with the environment and helping the organization reach its goals. Like vision, strategy changes, but successful companies develop strategies that focus on core competence, develop synergy, and create value for customers. Strategy is implemented through the systems and structures that are the basic architecture for how things get done in the organization." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The other element of systems thinking is learning to influence the system with reinforcing feedback as an engine for growth or decline. [...] Without this kind of understanding, managers will hit blockages in the form of seeming limits to growth and resistance to change because the large complex system will appear impossible to manage. Systems thinking is a significant solution." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"Enterprise engineering is an emerging discipline that studies enterprises from an engineering perspective. The first paradigm of this discipline is that enterprises are purposefully designed and implemented systems. Consequently, they can be re-designed and re-implemented if there is a need for change. The second paradigm of enterprise engineering is that enterprises are social systems. This means that the system elements are social individuals, and that the essence of an enterprise's operation lies in the entering into and complying with commitments between these social individuals." (Erik Proper, "Advances in Enterprise Engineering II", 2009)

"And even if we make good plans based on the best information available at the time and people do exactly what we plan, the effects of our actions may not be the ones we wanted because the environment is nonlinear and hence is fundamentally unpredictable. As time passes the situation will change, chance events will occur, other agents such as customers or competitors will take actions of their own, and we will find that what we do is only one factor among several which create a new situation." (Stephen Bungay, "The Art of Action: How Leaders Close the Gaps between Plans, Actions, and Results", 2010)

"With each theory or model, our concepts of reality and of the fundamental constituents of the universe have changed." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

"Information or data is only valuable if it can be used to provide insights which then actually drive change. Sadly the most effort and expertise and applause is given to those who design and deliver incredibly complex statistical reviews of data over time - the beauty is in the complexity and the presentation not in the usability." (Alan Pennington, "The Customer Experience Book", 2016)

"It is not about deep data analysis to predict behaviour, it is about actively designing experiences and then applying data to enable the delivery. Cumulatively making lots of little changes using very specific pieces of data will aggregate to a bigger impact." (Alan Pennington, "The Customer Experience Book", 2016)

"Remember that for change to happen it has to be relevant at a local and individual level" (Alan Pennington, "The Customer Experience Book", 2016)

"Given enough time and enough users, even the most innocuous change will break something; your analysis of the value of that change must incorporate the difficulty in investigating, identifying, and resolving those breakages." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"Because management deals mostly with the status quo and leadership deals mostly with change, in the next century we are going to have to try to become much more skilled at creating leaders." (John P Kotter)

"Enterprise architecture (EA) is a discipline for proactively and holistically leading enterprise responses to disruptive forces by identifying and analyzing the execution of change toward desired business vision and outcomes. EA delivers value by presenting business and IT leaders with signature-ready recommendations for adjusting policies and projects to achieve target business outcomes that capitalize on relevant business disruptions. EA is used to steer decision making toward the evolution of the future state architecture." (Gartner)

"The normal 'cascade' strategy for implementing change is usually ineffective, because memories remain embedded in the way the organization works after the change. This applies particularly if the change relates to the culture rather than to work practices or systems." (Dick Beckhard)

"There is a remarkable agreement upon the definition of learning as being reflected in a change of behavior as the result of experience." (Ernest A Haggard)

24 December 2011

📉Graphical Representation: Change (Just the Quotes)

"By [diagrams] it is possible to present at a glance all the facts which could be obtained from figures as to the increase,  fluctuations, and relative importance of prices, quantities, and values of different classes of goods and trade with various countries; while the sharp irregularities of the curves give emphasis to the disturbing causes which produce any striking change." (Arthur L Bowley, "A Short Account of England's Foreign Trade in the Nineteenth Century, its Economic and Social Results", 1905)

"To summarize - with the ordinary arithmetical scale, fluctuations in large factors are very noticeable, while relatively greater fluctuations in smaller factors are barely apparent. The logarithmic scale permits the graphic representation of changes in every quantity without respect to the magnitude of the quantity itself. At the same time, the logarithmic scale shows the actual value by reference to the numbers in the vertical scale. By indicating both absolute and relative values and changes, the logarithmic scale combines the advantages of both the natural and the percentage scale without the disadvantages of either." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"With the ordinary scale, fluctuations in large factors are very noticeable, while relatively greater fluctuations in smaller factors are barely apparent. The semi-logarithmic scale permits the graphic representation of changes in every quantity on the same basis, without respect to the magnitude of the quantity itself. At the same time, it shows the actual value by reference to the numbers in the scale column. By indicating both absolute and relative value and changes to one scale, it combines the advantages of both the natural and percentage scale, without the disadvantages of either." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"A graph is a pictorial representation or statement of a series of values all drawn to scale. It gives a mental picture of the results of statistical examination in one case while in another it enables calculations to be made by drawing straight lines or it indicates a change in quantity together with the rate of that change. A graph then is a picture representing some happenings and so designed as to bring out all points of significance in connection with those happenings. When the curve has been plotted delineating these happenings a general inspection of it shows the essential character of the table or formula from which it was derived." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)

"In form, the ratio chart differs from the arithmetic chart in that the vertical scale is not divided into equal spaces to represent equal amounts, but is divided logarithmically to represent percentages of gain or loss. On the arithmetic chart equal vertical distances represent equal amounts of change; on the ratio chart equal vertical distances represent equal percentages of change." (Walter E Weld, "How to Chart; Facts from Figures with Graphs", 1959)

"The fact that index numbers attempt to measure changes of items gives rise to some knotty problems. The dispersion of a group of products increases with the passage of time, principally because some items have a long-run tendency to fall while others tend to rise. Basic changes in the demand is fundamentally responsible. The averages become less and less representative as the distance from the period increases." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The numerous design possibilities include several varieties of line graphs that are geared to particular types of problems. The design of a graph should be adapted to the type of data being structured. The data might be percentages, index numbers, frequency distributions, probability distributions, rates of change, numbers of dollars, and so on. Consequently, the designer must be prepared to structure his graph accordingly." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"At the heart of quantitative reasoning is a single question: Compared to what? Small multiple designs, multivariate and data bountiful, answer directly by visually enforcing comparisons of changes, of the differences among objects, of the scope of alternatives. For a wide range of problems in data presentation, small multiples are the best design solution." (Edward R Tufte, "Envisioning Information", 1990) 

"As a general rule, the fewer the time intervals used in the averaging process, the more closely the moving average curve resembles the curve of the actual data. Conversely, the greater the number of intervals, the smoother the moving average curve. […] Moving average curves tend to have a delayed reaction to changes." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)

"If you want to show the growth of numbers which tend to grow by percentages, plot them on a logarithmic vertical scale. When plotted against a logarithmic vertical axis, equal percentage changes take up equal distances on the vertical axis. Thus, a constant annual percentage rate of change will plot as a straight line. The vertical scale on a logarithmic chart does not start at zero, as it shows the ratio of values (in this case, land values), and dividing by zero is impossible." (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)

"We analyze numbers in order to know when a change has occurred in our processes or systems. We want to know about such changes in a timely manner so that we can respond appropriately. While this sounds rather straightforward, there is a complication - the numbers can change even when our process does not. So, in our analysis of numbers, we need to have a way to distinguish those changes in the numbers that represent changes in our process from those that are essentially noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"In assessing change, the spacing of the observations is much more important than the number of observations." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Comparing series visually can be misleading […]. Local variation is hidden when scaling the trends. We first need to make the series stationary (removing trend and/or seasonal components and/or differences in variability) and then compare changes over time. To do this, we log the series (to equalize variability) and difference each of them by subtracting last year’s value from this year’s value." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"Numbers are often useful in stories because they record a recent change in some amount, or because they are being compared with other numbers. Percentages, ratios and proportions are often better than raw numbers in establishing a context." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"Use a logarithmic scale when it is important to understand percent change or multiplicative factors. […] Showing data on a logarithmic scale can cure skewness toward large values." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"By showing recent change in relation to many past changes, sparklines provide a context for nuanced analysis - and, one hopes, better decisions. [...] Sparklines efficiently display and narrate binary data (presence/absence, occurrence/non-occurrence, win/loss). [...] Sparklines can simultaneously accommodate several variables. [...] Sparklines can narrate on-going results detail for any process producing sequential binary outcomes." (Edward R Tufte, "Beautiful Evidence", 2006)

"Where correlation exists, it is tempting to assume that one of the factors has caused the changes in the other (that is, that there is a cause-and-effect relationship between them). Although this may be true, often it is not. When an unwarranted or incorrect assumption is made about cause and effect, this is referred to as spurious correlation […]" (Alan Graham, "Developing Thinking in Statistics", 2006)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"Correlation measures the degree to which two phenomena are related to one another. [...] Two variables are positively correlated if a change in one is associated with a change in the other in the same direction, such as the relationship between height and weight. [...] A correlation is negative if a positive change in one variable is associated with a negative change in the other, such as the relationship between exercise and weight." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Sparklines aren't necessarily a variation on the line chart, rather, a clever use of them. [...] They take advantage of our visual perception capabilities to discriminate changes even at such a low resolution in terms of size. They facilitate opportunities to construct particularly dense visual displays of data in small space and so are particularly applicable for use on dashboards." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"After you visualize your data, there are certain things to look for […]: increasing, decreasing, outliers, or some mix, and of course, be sure you’re not mixing up noise for patterns. Also note how much of a change there is and how prominent the patterns are. How does the difference compare to the randomness in the data? Observations can stand out because of human or mechanical error, because of the uncertainty of estimated values, or because there was a person or thing that stood out from the rest. You should know which it is." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes." (Gary Smith, "Standard Deviations", 2014)

"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)

"Essentially, magnitude is the size of the effect. It’s a way to determine if the results are meaningful. Without magnitude, it’s hard to get a sense of how much something matters. […] the magnitude of an effect can change, depending on the relationship." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"A well-designed graph clearly shows you the relevant end points of a continuum. This is especially important if you’re documenting some actual or projected change in a quantity, and you want your readers to draw the right conclusions. […]" (Daniel J Levitin, "Weaponized Lies", 2017)

30 October 2007

🏗️Software Engineering: Changes (Just the Quotes)

"Doing engineering is practicing the art of the organized forcing of technological change." (George Spencer-Brown, Electronics, Vol. 32 (47),  1959)

"A clean design is more easily modified as requirements change or as more is learned about what parts of the code consume significant amounts of execution time. A 'clever' design that fails to work or to run fast enough can often be salvaged only at great cost. Efficiency does not have to be sacrificed in the interest of writing readable code - rather, writing readable code is often the only way to ensure efficient programs that are also easy to maintain and modify." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Instrument your programs. Measure before making 'efficiency' changes." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Programs are not used once and discarded, nor are they run forever without change. They evolve. The new version of the integration program has a greater likelihood of surviving changes later without acquiring bugs. It assists instead of intimidating those who must maintain it." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"When the operation to be done is more complex, write a separate subroutine or function. The ease of later comprehending, debugging, and changing the program will more than compensate for any overhead caused by adding the extra modules." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Far be it from me to suggest that all changes in customer objectives and requirements must, can, or should be incorporated in the design. Clearly a threshold has to be established, and it must get higher and higher as development proceeds, or no product ever appears." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"Different levels of documentation are required for the casual user of a program, for the user who must depend upon a program, and for the user who must adapt a program for changes in circumstance or purpose." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"Nevertheless, some changes in objectives are inevitable, and it is better to be prepared for them than to assume that they won't come. Not only are changes in objective inevitable, changes in development strategy and technique are also inevitable. The throw-one-away concept is itself just an acceptance of the fact that as one learns, he changes the design." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"Program maintenance involves no cleaning, lubrication, or repair of deterioration. It consists chiefly of changes that repair design defects. Much more often than with hardware, these changes include added functions. Usually they are visible to the user." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"Structuring an organization for change is much harder than designing a system for change. Each man must be assigned to jobs that broaden him, so that the whole force is technically flexible. [...] Management structures also need to be changed as the system changes." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"The beginning of wisdom for a programmer is to recognize the difference between getting his program to work and getting it right. A program which does not work is undoubtedly wrong; but a program which does work is not necessarily right. It may still be wrong because it is hard to understand; or because it is hard to maintain as the problem requirements change; or because its structure is different from the structure of the problem; or because we cannot be sure that it does indeed work." (Michael A Jackson, "Principles of Program Design", 1975)

"Cohesion can be put into effective practice with the introduction of the idea of an associative principle. In deciding to put certain processing elements into a module, the designer, in effect, invokes a principle that certain properties or characteristics relate the elements possessing it. […] Ironically, this important design concept had to be developed after the fact when it was too late, politically or pragmatically, to change designs - by asking the designer/programmer why a certain processing element was combined with others into a module. It must be kept in mind that cohesion applies over the whole module - that  is, to all pairs of processing elements." (Edward Yourdon & Larry L Constantine, "Structured Design: Fundamentals of a discipline of computer program and systems design", 1978)

"Economic principles underlie the overall structure of the software lifecycle, and its primary refinements of prototyping, incremental development, and advancemanship. The primary economic driver of the life-cycle structure is the significantly increasing cost of making a software change or fixing a software problem, as a function of the phase in which the change or fix is made." (Barry Boehm, "Software Engineering Economics", 1981)

"One should not start full-scale implementation efforts based on early user interface designs. Instead, early usability evaluation can be based on prototypes of the final systems that can be developed much faster and much more cheaply, and which can thus be changed many times until a better understanding of the user interface design has been achieved." (Jakob Nielsen, "Usability Engineering", 1993)

"Our experience with designing and analyzing large and complex software-intensive systems has led us to recognize the role of business and organization in the design of the system and in its ultimate success or failure. Systems are built to satisfy an organization's requirements (or assumed requirements in the case of shrink-wrapped products). These requirements dictate the system's performance, availability, security, compatibility with other systems, and the ability to accommodate change over its lifetime. The desire to satisfy these goals with software that has the requisite properties influences the design choices made by a software architect." (Len Bass et al, "Software Architecture in Practice", 1998)

"Unit tests can be tedious to write, but they save you time in the future (by catching bugs after changes). Less obviously, but just as important, is that they can save you time now: tests focus your design and implementation on simplicity, they support refactoring, and they validate features as you develop." (Ron Jeffries, "Extreme Programming Installed, 2001)

"One problem area for refactoring is databases. Most business applications are tightly coupled to the database schema that supports them. That's one reason that the database is difficult to change. Another reason is data migration. Even if you have carefully layered your system to minimize the dependencies between the database schema and the object model, changing the database schema forces you to migrate the data, which can be a long and fraught task." (Martin Fowler et al, "Refactoring: Improving the Design of Existing Code", 2002)

"Refactoring is risky. It requires changes to working code that can introduce subtle bugs. Refactoring, if not done properly, can set you back days, even weeks. And refactoring becomes riskier when practiced informally or ad hoc." (Erich Gamma, 2002)

"Refactoring changes the programs in small steps. If you make a mistake, it is easy to find the bug." (Martin Fowler et al, "Refactoring: Improving the Design of Existing Code", 2002)

"Without refactoring, the design of the program will decay. As people change code - changes to realize short-term goals or changes made without a full comprehension of the design of the code - the code loses its structure. It becomes harder to see the design by reading the code. Refactoring is rather like tidying up the code. Work is done to remove bits that aren't really in the right place. Loss of the structure of code has a cumulative effect. The harder it is to see the design in the code, the harder it is to preserve it, and the more rapidly it decays. Regular refactoring helps code retain its shape." (Martin Fowler et al, "Refactoring: Improving the Design of Existing Code", 2002)

"As a noun, design is the named (although sometimes unnamable) structure or behavior of a system whose presence resolves or contributes to the resolution of a force or forces on that system. A design thus represents one point in a potential decision space. A design may be singular (representing a leaf decision) or it may be collective (representing a set of other decisions). As a verb, design is the activity of making such decisions. Given a large set of forces, a relatively malleable set of materials, and a large landscape upon which to play, the resulting decision space may be large and complex. As such, there is a science associated with design (empirical analysis can point us to optimal regions or exact points in this design space) as well as an art (within the degrees of freedom that range beyond an empirical decision; there are opportunities for elegance, beauty, simplicity, novelty, and cleverness). All architecture is design but not all design is architecture. Architecture represents the significant design decisions that shape a system, where significant is measured by cost of change." (Grady Booch, "On design", 2006)

"Pick the right ones [abstractions], and programming will flow naturally from design; modules will have small and simple interfaces; and new functionality will more likely fit in without extensive reorganization […] Pick the wrong ones, and programming will be a series of nasty surprises: interfaces will become baroque and clumsy as they are forced to accommodate unanticipated interactions, and even the simplest of changes will be hard to make." (Daniel Jackson, "Software Abstractions", 2006)

"Good software designs accommodate change without huge investments and rework. When we use code that is out of our control, special care must be taken to protect our investment and make sure future change is not too costly."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Software is usually expected to be modified over the course of its productive life. The process of converting one correct program into a different correct program is extremely challenging." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"The majority of the cost of a software project is in long-term maintenance. In order to minimize the potential for defects as we introduce change, it’s critical for us to be able to understand what a system does. As systems become more complex, they take more and more time for a developer to understand, and there is an ever greater opportunity for a misunderstanding. Therefore, code should clearly express the intent of its author. The clearer the author can make the code, the less time others will have to spend understanding it. This will reduce defects and shrink the cost of maintenance." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Agile methods universally rely on an incremental approach to software specification, development, and delivery. They are best suited to application development where the system requirements usually change rapidly during the development process. They are intended to deliver working software quickly to customers, who can then propose new and changed requirements to be included in later iterations of the system. They aim to cut down on process bureaucracy by avoiding work that has dubious long-term value and eliminating documentation that will probably never be used." (Ian Sommerville, "Software Engineering" 9th Ed., 2011)

"But the history of large systems demonstrates that, once the hurdle of stability has been cleared, a more subtle challenge appears. It is the challenge of remaining stable when the rules change. Machines, like organizations or organisms, that fail to meet this challenge find that their previous stability is no longer of any use. The responses that once were life-saving now just make things worse. What is needed now is the capacity to re-write the procedure manual on short notice, or even (most radical change of all) to change goals." (John Gall, "The Systems Bible: The Beginner's Guide to Systems Large and Small"[Systematics 3rd Ed.], 2011)

"Agile teams often do not distinguish between bugs, enhancements, or change requests. They use a general unit called change to track progress. Change seems to be a valid unit for both development and operations because operations teams primarily think in terms of changes to the production system. Using changes as a shared term for both development and operations makes it easier to stream production issues back to a work backlog (that is ideally shared by both groups)." (Michael Hüttermann et al, "DevOps for Developers", 2013)

"Good architecture provides good interfaces that separate the shear layers of its implementation: a necessity for evolution and maintenance. Class-oriented programming puts both data evolution and method evolution in the same shear layer: the class. Data tend to remain fairly stable over time, while methods change regularly to support new services and system operations. The tension in these rates of change stresses the design." (James O Coplien & Trygve Reenskaug, "The DCI Paradigm: Taking Object Orientation into the Architecture World", 2014)

"When you write a computer program you've got to not just list things out and sort of take an algorithm and translate it into a set of instructions. But when there's a bug - and all programs have bugs - you've got to debug it. You've got to go in, change it, and then re-execute … and you iterate. And that iteration is really a very, very good approximation of learning." (Nicholas Negroponte, "A 30-year history of the future", [Ted Talk] 2014)

"The fact that software engineering is not like other forms of engineering should really come as no surprise. Medicine is not like the law. Carpentry is not like baking. Software development is like one thing, and one thing only: software development. We need practices that make what we do more efficient, more verifiable, and easier to change. If we can do this, we can slash the short-term cost of building software, and all but eliminate the crippling long-term cost of maintaining it." (David S Bernstein, "Beyond Legacy Code", 2015)

"This is what the Agile Manifesto means when it says responding to change over following a plan. To maximize adaptability, it is essential to have good, fast feedback loops. This is why there is so much emphasis on iterative development." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Why is continuous deployment such a powerful tool? Fundamentally, it allows engineers to make and deploy small, incremental changes rather than the larger, batched changes typical at other companies. That shift in approach eliminates a significant amount of overhead associated with traditional release processes, making it easier to reason about changes and enabling engineers to iterate much more quickly." (Edmond Lau, "The Effective Engineer: How to Leverage Your Efforts In Software Engineering to Make a Disproportionate and Meaningful Impact", 2015)

"Given enough time and enough users, even the most innocuous change will break something; your analysis of the value of that change must incorporate the difficulty in investigating, identifying, and resolving those breakages." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"When an engineer refactors the internals of a system without modifying its interface, whether for performance, clarity, or any other reason, the system’s tests shouldn’t need to change. The role of tests in this case is to ensure that the refactoring didn’t change the system’s behavior. Tests that need to be changed during a refactoring indicate that either the change is affecting the system’s behavior and isn’t a pure refactoring, or that the tests were not written at an appropriate level of abstraction." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

 

02 October 2006

⛩️Neal Ford - Collected Quotes

"All too often architects make a decision that is the correct decision at the time but becomes a bad decision over time because of changing conditions like dynamic equilibrium. For example, architects design a system as a desktop application, yet the industry herds them toward a web application as users’ habits change. The original decision wasn’t incorrect, but the ecosystem shifted in unexpected ways." (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

"By placing an external tool or framework at the heart of the architecture, developers severely restrict their ability to evolve in two key ways, both technically and from a business process standpoint. Developers are technically constrained by choices the vendor makes in terms of persistence, supported infrastructure, and a host of other constraints." (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

"DBAs who rarely genuinely restructure schemas build an increasingly fossilized world, with byzantine grouping and bunching strategies. When DBAs don’t restructure the database, they’re not preserving a precious enterprise resource, they’re instead creating the concretized remains of every version of the schema, all overlaid upon one another via join tables." (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

"Even if the ecosystem doesn’t change, what about the gradual erosion of architectural characteristics that occurs? Architects design architectures, but then expose them to the messy real world of implementing things atop the architecture. How can architects protect the important parts they have defined?" (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

"For any dimension in our architecture that requires protection from the side effects of evolution, we create fitness functions. A common practice in microservices architectures is the use of consumer-driven contracts, which are atomic integration architecture fitness functions." (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

"Metrics are a common adjunct to the deployment pipeline in incremental change environments. If teams use this effort as a proof-of-concept, developers should gather appropriate metrics for both before and after scenarios. Gathering concrete data is the best way to for developers to vet the approach; remember the adage that demonstration defeats discussion." (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

"The other new role that evolutionary architecture creates has enterprise architects defining enterprise-wide fitness functions. Enterprise architects are typically responsible for enterprise-wide nonfunctional requirements, such as scalability and security. Many organizations lack the ability to automatically assess how well projects perform individually and in aggregate for these characteristics. Once projects adopt fitness functions to protect parts of their architecture, enterprise architects can utilize the same mechanism to verify that enterprise-wide characteristics remain intact."  (Neal Ford, "Building Evolutionary Architectures: Support Constant Change", 2017)

28 September 2006

🖌️Paul Gibbons - Collected Quotes

"According to the traditional distinction from economics, risk is measurable, whereas uncertainty is indefinite or incalculable. In truth, risk can never be measured precisely except in dice rolls and games of chance, called a priori probability. Risk can only be estimated from observations in the real world, but to do that, we need to take a sample, and estimate the underlying distribution. In a sense, our estimates of real-world volatility are themselves volatile. Failure to realize this fundamental untidiness of the real world is called the ludic fallacy from the Latin for games. […] However, when the term risk measurement is used as opposed to risk estimation, a degree of precision is suggested that is unrealistic, and the choice of language suggests that we know more than we do. Even the language '​​​​​​risk management'​​​​​​ implies we can do more than we can." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"Because the perfect system cannot be designed, there will always be weak spots that human ingenuity and resourcefulness can exploit." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"Change strategy is, by this definition, the way a business (1) manages the portfolio of change to make sure that the parts deliver the whole business strategy, (2) creates the context for change, and (3) monitors change risk and change performance across the entire business." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"Culture is an emergent phenomenon produced by structures, practices, leadership behavior, incentives, symbols, rituals, and processes. All those levers have to be pulled to have any chance of success. However, one driver of culture change is more important than the others. Culture change fails when the most visible symbols of it fail to change. Those key symbols are almost always the top leader’​​​​​​s behavior, which speaks much louder than anything they might say." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"One way of managing complexity is to constrain the freedom of the parts: to hold some of those nonlinear interactions still. Businesses accomplish this with tight rules, processes, hierarchies, policies, and rigid strategies. Gathering people together under a corporate roof reduces complexity by constraining individual autonomy. The upside, of course, is collaboration, alignment of goals, and faster exchange of information." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"Our minds, especially our intuitions, are not equipped to deal with a probabilistic world. Risk and prediction are widely misunderstood, […] All decision making in a probabilistic world involves estimating the likelihood of an event and how much we will value it (affective forecasting). Humans are bad at both - ​​​​​ particularly at the former. […] In business, understanding the psychology of risk is more important than understanding the mathematics of risk." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"Strategic coherence is more important than strategic precision in an uncertain world. It is impossible to get everything right because of market volatility, but we can ensure strategies do not collide. In large, complex organizations where many executives are empowered to launch major change, strategic incoherence can be a big problem." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"Strategy that takes no account of tactical practicalities is doomed, and great tactics without strategy produce incoherence and nonalignment. Despite this, the strategy-tactics dialogue happens too rarely in organizations." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"The more complex the system, the more variable (risky) the outcomes. The profound implications of this essential feature of reality still elude us in all the practical disciplines. Sometimes variance averages out, but more often fat-tail events beget more fat-tail events because of interdependencies. If there are multiple projects running, outlier (fat-tail) events may also be positively correlated - one IT project falling behind will stretch resources and increase the likelihood that others will be compromised." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"The planning fallacy is the systematic tendency for project plans and budgets to undershoot. […] The reasons for the planning fallacy are partly psychological, partly cultural, and partly to do with our limited ability to think probabilistically." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

"What is commonly called change strategy is not very strategic because strategy properly focuses on goals and not on how to deliver those goals." (Paul Gibbons, "The Science of Successful Organizational Change",  2015)

12 September 2006

🖌️Tim Brown - Collected Quotes

"A culture that believes that it is better to ask forgiveness afterward rather than permission before, that rewards people for success but gives them permission to fail, has removed one of the main obstacles to the formation of new ideas." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009) 

"Although it can at times seem forbiddingly abstract, design thinking is embodied thinking - embodied in teams and projects, to be sure, but embodied in the physical spaces of innovation as well." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Although it might seem as though frittering away valuable time on sketches and models and simulations will slow work down, prototyping generates results faster." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Anything tangible that lets us explore an idea, evaluate it, and push it forward is a prototype." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Design has the power to enrich our lives by engaging our emotions through image, form, texture, color, sound, and smell. The intrinsically human-centered nature of design thinking points to the next step: we can use our empathy and understanding of people to design experiences that create opportunities for active engagement and participation." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Design thinking taps into capacities we all have but that are overlooked by more conventional problem-solving practices. It is not only human-centered; it is deeply human in and of itself. Design thinking relies on our ability to be intuitive, to recognize patterns, to construct ideas that have emotional meaning as well as functionality, to express ourselves in media other than words or symbols." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Just as it can accelerate the pace of a project, prototyping allows the exploration of many ideas in parallel. Early prototypes should be fast, rough, and cheap. The greater the investment in an idea, the more committed one becomes to it. Overinvestment in a refined prototype has two undesirable consequences: First, a mediocre idea may go too far toward realization - or even, in the worst case, all the way. Second, the prototyping process itself creates the opportunity to discover new and better ideas at minimal cost." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Mostly we rely on stories to put our ideas into context and give them meaning. It should be no surprise, then, that the human capacity for storytelling plays an important role in the intrinsically human-centered approach to problem solving, design thinking." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Prototypes should command only as much time, effort, and investment as is necessary to generate useful feedback and drive an idea forward. The greater the complexity and expense, the more 'finished' it is likely to seem and the less likely its creators will be to profit from constructive feedback - or even to listen to it. The goal of prototyping is not to create a working model. It is to give form to an idea to learn about its strengths and weaknesses and to identify new directions for the next generation of more detailed, more refined prototypes. A prototype’s scope should be limited. The purpose of early prototypes might be to understand whether an idea has functional value." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Prototyping at work is giving form to an idea, allowing us to learn from it, evaluate it against others, and improve upon it." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Prototyping is always inspirational - not in the sense of a perfected artwork but just the opposite: because it inspires new ideas. Prototyping should start early in the life of a project, and we expect them to be numerous, quickly executed, and pretty ugly." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Since openness to experimentation is the lifeblood of any creative organization, prototyping - the willingness to go ahead and try something by building it - is the best evidence of experimentation." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"The project is the vehicle that carries an idea from concept to reality." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Traditionally, one of the problems with architectural design is that full-scale prototyping is virtually impossible because it is just too expensive." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"To be sure, prototyping new organizational structures is difficult. By their nature, they are suspended in webs of interconnectedness. No unit can be tinkered with without affecting other parts of the organization. Prototyping with peoples’ lives is also a delicate proposition because there is, rightly, less tolerance for error. But despite this complexity, some institutions have taken a designer’s approach to organizational change." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.