Showing posts with label bias. Show all posts
Showing posts with label bias. Show all posts

08 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part III: Failure through the Looking Glass)

Business Intelligence
Business Intelligence Series

There’s a huge volume of material available on project failure – resources that document why individual projects failed, why in general projects fail, why project members, managers and/or executives think projects fail, and there seems to be no other more rewarding activity at the end of a project than to theorize why a project failed, the topic culminating occasionally with the blaming game. Success may generate applause, though it's failure that attracts and stirs the most waves (irony, disapproval, and other similar behavior) and everybody seems to be an expert after the consumed endeavor. 

The mere definition of a project failure – not fulfilling project’s objectives within the set budget and timeframe - is a misnomer because budgets and timelines are estimated based on the information available at the beginning of the project, the amount of uncertainty for many projects being considerable, and data projects are no exceptions from it. The higher the uncertainty the less probable are the two estimates. Even simple projects can reveal uncertainty especially when the broader context of the projects is considered. 

Even if it’s not a common practice, one way to cope with uncertainty is to add a tolerance for the estimates, though even this practice probably will not always accommodate the full extent of the unknown as the tolerances are usually small. The general expectation is to have an accurate and precise landing, which for big or exploratory projects is seldom possible!

Moreover, the assumptions under which the estimates hold are easily invalidated in praxis – resources’ availability, first time right, executive’s support to set priorities, requirements’ quality, technologies’ maturity, etc. If one looks beyond the reasons why projects fail in general, quite often the issues are more organizational than technological, the lack of knowledge and experience being some of the factors. 

Conversely, many projects will not get approved if the estimates don’t look positive, and therefore people are pressured in one way or another to make the numbers fit the expectations. Some projects, given their importance, need to be done even if the numbers don’t look good or can’t be quantified correctly. Other projects represent people’s subsistence on the job, respectively people's self-occupation to create motion, though they can occasionally have also a positive impact for the organizations. These kinds of aspects almost never make it in statistics or surveys. Neither do the big issues people are afraid to talk about. Where to consider that in the light of politics and office’s grapevine the facts get distorted!

Data projects reflect all the symptoms of failure projects have in general, though when words like AI, Statistics or Machine Learning are used, the chances for failure are even higher given that the respective fields require a higher level of expertise, the appropriate use of technologies and adherence to the scientific process for the results to be valid. If projects can benefit from general recipes, respectively established procedures and methods, their range of applicability decreases when the mentioned areas are involved. 

Many data projects have an exploratory nature – seeing what’s possible - and therefore a considerable percentage will not reach production. Moreover, even those that reach that far might arrive to be stopped or discarded sooner or later if they don’t deliver the expected value, and probably many of the models created in the process are biased, irrelevant, or incorrectly apply the theory. Where to add that the mere use of tools and algorithms is not Data Science or Data Analysis. 

The challenge for many data projects is to identify which Project Management (PM) best practices to consider. Following all or no practices at all just increases the risks of failure!

Previous Post <<||>> Next Post

05 March 2024

🧭Business Intelligence: Data Culture (Part I: Generative AI - No Silver Bullet)

Business Intelligence
Business Intelligence Series

Talking about holy grails in Data Analytics, another topic of major importance for an organization’s "infrastructure" is data culture, that can be defined as the collective beliefs, values, behaviors, and practices of an organization’s employees in harnessing the value of data for decision-making, operations, or insight. Rooted in data literacy, data culture is an extension of an organization’s culture in respect to data that acts as enabler in harnessing the value of data. It’s about thinking critically about data and how data is used to create value. 

The current topic was suggested by PowerBI.tips’s webcast from today [3] and is based on Brent Dykes’ article from Forbes ‘Why AI Isn’t Going to Solve All Your Data Culture Problems’ [1]. Dykes’ starting point for the discussion is Wavestone's annual data executive survey based on which the number of companies that reported they had "created a data-driven organization" rose sharply from 23.9 percent in 2023 to 48.1 percent in 2024 [2]. The report’s authors concluded that the result is driven by the adoption of Generative AI, the capabilities of OpenAI-like tools to generate context-dependent meaningful text, images, and other content in response to prompts. 

I agree with Dykes that AI technologies can’t be a silver bullet for an organization data culture given that AI either replaces people’s behaviors or augments existing ones, being thus a substitute and not a cure [1]. Even for a disruptive technology like Generative AI, it’s impossible to change so much employees’ mindset in a so short period of time. Typically, a data culture matures over years with sustained effort. Therefore, the argument that the increase is due to respondent’s false perception is more than plausible. There’s indeed a big difference between thinking about an organization as being data-driven and being data-driven. 

The three questions-based evaluation considered in the article addresses this difference, thinking vs. being. Changes in data culture don’t occur just because some people or metrics say so, but when people change their mental models based on data, when the interpersonal relations change, when the whole dynamics within the organization changes (positively). If people continue the same behavior and practices, then there are high chances that no change occurred besides the Brownian movement in a confined space of employees, that’s just chaotic motion.  

Indeed, a data culture should encourage the discovery, exploration, collaboration, discussions [1] respectively knowledge sharing and make people more receptive and responsive about environmental or circumstance changes. However, just involving leadership and having things prioritized and funded is not enough, no matter how powerful the drive. These can act as enablers, though more important is to awaken and guide people’s interest, working on people’s motivation and supporting the learning process through mentoring. No amount of brute force can make a mind move and evolve freely unless the mind is driven by an inborn curiosity!

Driving a self-driving car doesn’t make one a better driver. Technology should challenge people and expand their understanding of how data can be used in different contexts rather than give solutions based on a mass of texts available as input. This is how people grow meaningfully and how an organization’s culture expands. Readily available answers make people become dull and dependent on technology, which in the long-term can create more problems. Technology can solve problems when used creatively, when problems and their context are properly understood, and the solutions customized accordingly.

Unfortunately, for many organizations data culture will be just a topic to philosophy about. Data culture implies a change of mindset, perception, mental models, behavior, and practices based on data and not only consulting the data to confirm one’s biases on how the business operates!

Previous Post <<||>> Next Post

Resources:
[1] Forbes (2024) Why AI Isn’t Going To Solve All Your Data Culture Problems, by Brent Dykes (link)
[2] Wavestone (2024) 2024 Data and AI Leadership Executive Survey (link)
[3] Power BI tips (2024) Ep.299: AI & Data Culture Problems (link)

17 December 2018

🔭Data Science: Bias (Just the Quotes)

"The human mind can hardly remain entirely free from bias, and decisive opinions are often formed before a thorough examination of a subject from all its aspects has been made." (Helena P. Blavatsky, "The Secret Doctrine", 1888)

"The classification of facts, the recognition of their sequence and relative significance is the function of science, and the habit of forming a judgment upon these facts unbiased by personal feeling is characteristic of what may be termed the scientific frame of mind." (Karl Pearson, "The Grammar of Science", 1892)

"It may be impossible for human intelligence to comprehend absolute truth, but it is possible to observe Nature with an unbiased mind and to bear truthful testimony of things seen." (Sir Richard A Gregory, "Discovery, Or, The Spirit and Service of Science", 1916)

"Scientific discovery, or the formulation of scientific theory, starts in with the unvarnished and unembroidered evidence of the senses. It starts with simple observation - simple, unbiased, unprejudiced, naive, or innocent observation - and out of this sensory evidence, embodied in the form of simple propositions or declarations of fact, generalizations will grow up and take shape, almost as if some process of crystallization or condensation were taking place. Out of a disorderly array of facts, an orderly theory, an orderly general statement, will somehow emerge." (Sir Peter B Medawar, "Is the Scientific Paper Fraudulent?", The Saturday Review, 1964)

"Errors may also creep into the information transfer stage when the originator of the data is unconsciously looking for a particular result. Such situations may occur in interviews or questionnaires designed to gather original data. Improper wording of the question, or improper voice inflections. and other constructional errors may elicit nonobjective responses. Obviously, if the data is incorrectly gathered, any graph based on that data will contain the original error - even though the graph be most expertly designed and beautifully presented." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"Numbers have undoubted powers to beguile and benumb, but critics must probe behind numbers to the character of arguments and the biases that motivate them." (Stephen J Gould, "An Urchin in the Storm: Essays About Books and Ideas", 1987)

"But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology." (Stephen J Gould, "This View of Life: In the Mind of the Beholder", "Natural History", Vol. 103, No. 2, 1994)

"Under conditions of uncertainty, both rationality and measurement are essential to decision-making. Rational people process information objectively: whatever errors they make in forecasting the future are random errors rather than the result of a stubborn bias toward either optimism or pessimism. They respond to new information on the basis of a clearly defined set of preferences. They know what they want, and they use the information in ways that support their preferences." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] fiding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Self-selection bias occurs when people choose to be in the data - for example, when people choose to go to college, marry, or have children. […] Self-selection bias is pervasive in 'observational data', where we collect data by observing what people do. Because these people chose to do what they are doing, their choices may reflect who they are. This self-selection bias could be avoided with a controlled experiment in which people are randomly assigned to groups and told what to do." (Gary Smith, "Standard Deviations", 2014)

"Self-selection bias occurs when we compare people who made different choices without thinking about why they made these choices. […] Our conclusions would be more convincing if choice was removed […]" (Gary Smith, "Standard Deviations", 2014)

"We naturally draw conclusions from what we see […]. We should also think about what we do not see […]. The unseen data may be just as important, or even more important, than the seen data. To avoid survivor bias, start in the past and look forward." (Gary Smith, "Standard Deviations", 2014)

"We live in a world with a surfeit of information at our service. It is our choice whether we seek out data that reinforce our biases or choose to look at the world in a critical, rational manner, and allow reality to bend our preconceptions. In the long run, the truth will work better for us than our cherished fictions." (Razib Khan, "The Abortion Stereotype", The New York Times, 2015)

"A popular misconception holds that the era of Big Data means the end of a need for sampling. In fact, the proliferation of data of varying quality and relevance reinforces the need for sampling as a tool to work efficiently with a variety of data, and minimize bias. Even in a Big Data project, predictive models are typically developed and piloted with samples." (Peter C Bruce & Andrew G Bruce, "Statistics for Data Scientists: 50 Essential Concepts", 2016)

"Bias is error from incorrect assumptions built into the model, such as restricting an interpolating function to be linear instead of a higher-order curve. [...] Errors of bias produce underfit models. They do not fit the training data as tightly as possible, were they allowed the freedom to do so. In popular discourse, I associate the word 'bias' with prejudice, and the correspondence is fairly apt: an apriori assumption that one group is inferior to another will result in less accurate predictions than an unbiased one. Models that perform lousy on both training and testing data are underfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Bias occurs normally when the model is underfitted and has failed to learn enough from the training data. It is the difference between the mean of the probability distribution and the actual correct value. Hence, the accuracy of the model is different for different data sets (test and training sets). To reduce the bias error, data scientists repeat the model-building process by resampling the data to obtain better prediction values." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"High-bias models typically produce simpler models that do not overfit and in those cases the danger is that of underfitting. Models with low-bias are typically more complex and that complexity enables us to represent the training data in a more accurate way. The danger here is that the flexibility provided by higher complexity may end up representing not only a relationship in the data but also the noise. Another way of portraying the bias-variance trade-off is in terms of complexity v simplicity." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017) 

"If either bias or variance is high, the model can be very far off from reality. In general, there is a trade-off between bias and variance. The goal of any machine-learning algorithm is to achieve low bias and low variance such that it gives good prediction performance. In reality, because of so many other hidden parameters in the model, it is hard to calculate the real bias and variance error. Nevertheless, the bias and variance provide a measure to understand the behavior of the machine-learning algorithm so that the model model can be adjusted to provide good prediction performance." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"The human brain always concocts biases to aid in the construction of a coherent mental life, exclusively suitable for an individual’s personal needs." (Abhijit Naskar, "We Are All Black: A Treatise on Racism", 2017)

"The tension between bias and variance, simplicity and complexity, or underfitting and overfitting is an area in the data science and analytics process that can be closer to a craft than a fixed rule. The main challenge is that not only is each dataset different, but also there are data points that we have not yet seen at the moment of constructing the model. Instead, we are interested in building a strategy that enables us to tell something about data from the sample used in building the model." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017) 

"When we have all the data, it is straightforward to produce statistics that describe what has been measured. But when we want to use the data to draw broader conclusions about what is going on around us, then the quality of the data becomes paramount, and we need to be alert to the kind of systematic biases that can jeopardize the reliability of any claims." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"We over-fit when we go too far in adapting to local circumstances, in a worthy but misguided effort to be ‘unbiased’ and take into account all the available information. Usually we would applaud the aim of being unbiased, but this refinement means we have less data to work on, and so the reliability goes down. Over-fitting therefore leads to less bias but at a cost of more uncertainty or variation in the estimates, which is why protection against over-fitting is sometimes known as the bias/variance trade-off." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Any machine learning model is trained based on certain assumptions. In general, these assumptions are the simplistic approximations of some real-world phenomena. These assumptions simplify the actual relationships between features and their characteristics and make a model easier to train. More assumptions means more bias. So, while training a model, more simplistic assumptions = high bias, and realistic assumptions that are more representative of actual phenomena = low bias." (Imran Ahmad, "40 Algorithms Every Programmer Should Know", 2020)

"If the data that go into the analysis are flawed, the specific technical details of the analysis don’t matter. One can obtain stupid results from bad data without any statistical trickery. And this is often how bullshit arguments are created, deliberately or otherwise. To catch this sort of bullshit, you don’t have to unpack the black box. All you have to do is think carefully about the data that went into the black box and the results that came out. Are the data unbiased, reasonable, and relevant to the problem at hand? Do the results pass basic plausibility checks? Do they support whatever conclusions are drawn?" (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"If you study one group and assume that your results apply to other groups, this is extrapolation. If you think you are studying one group, but do not manage to obtain a representative sample of that group, this is a different problem. It is a problem so important in statistics that it has a special name: selection bias. Selection bias arises when the individuals that you sample for your study differ systematically from the population of individuals eligible for your study." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"A well-known theorem called the 'no free lunch' theorem proves exactly what we anecdotally witness when designing and building learning systems. The theorem states that any bias-free learning system will perform no better than chance when applied to arbitrary problems. This is a fancy way of stating that designers of systems must give the system a bias deliberately, so it learns what’s intended. As the theorem states, a truly bias- free system is useless." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"Machine learning bias is typically understood as a source of learning error, a technical problem. […] Machine learning bias can introduce error simply because the system doesn’t 'look' for certain solutions in the first place. But bias is actually necessary in machine learning - it’s part of learning itself." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"To accomplish their goals, what are now called machine learning systems must each learn something specific. Researchers call this giving the machine a 'bias'. […] A bias in machine learning means that the system is designed and tuned to learn something. But this is, of course, just the problem of producing narrow problem-solving applications." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"Any time you run regression analysis on arbitrary real-world observational data, there’s a significant risk that there’s hidden confounding in your dataset and so causal conclusions from such analysis are likely to be (causally) biased." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"Science is the search for truth, that is the effort to understand the world: it involves the rejection of bias, of dogma, of revelation, but not the rejection of morality." (Linus Pauling)

"Facts and values are entangled in science. It's not because scientists are biased, not because they are partial or influenced by other kinds of interests, but because of a commitment to reason, consistency, coherence, plausibility and replicability. These are value commitments." (Alva Noë)

"A scientist has to be neutral in his search for the truth, but he cannot be neutral as to the use of that truth when found. If you know more than other people, you have more responsibility, rather than less." (Charles P Snow)

More quotes on "Bias" at the-web-of-knowledge.blogspot.com

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.