Showing posts with label book review. Show all posts
Showing posts with label book review. Show all posts

13 March 2024

🔖Book Review: Zhamak Dehghani's Data Mesh: Delivering Data-Driven Value at Scale (2021)

Zhamak Dehghani's "Data Mesh: Delivering Data-Driven Value at Scale" (2021)

Zhamak Dehghani's "Data Mesh: Delivering Data-Driven Value at Scale" (2021) is a must read book for the data professional. So, here I am, finally managing to read it and give it some thought, even if it will probably take more time and a few more reads for the ideas to grow. Working in the fields of Business Intelligence and Software Engineering for almost a quarter-century, I think I can understand the historical background and the direction of the ideas presented in the book. There are many good ideas but also formulations that make me circumspect about the applicability of some assumptions and requirements considered. 

So, after data marts, warehouses, lakes and lakehouses, the data mesh paradigm seems to be the new shiny thing that will bring organizations beyond the inflection point with tipping potential from where organization's growth will have an exponential effect. At least this seems to be the first impression when reading the first chapters. 

The book follows to some degree the advocative tone of promoting that "our shiny thing is much better than previous thing", or "how bad the previous architectures or paradigms were and how good the new ones are" (see [2]). Architectures and paradigms evolve with the available technologies and our perception of what is important for businesses. Old and new have their place in the order of things, and the old will continue to exist, at least until the new proves its feasibility.  

The definition of the data mash as "a sociotechnical approach to share, access and manage analytical data in complex and large-scale environments - within or across organizations" [1] is too abstract even if it reflects at high level what the concept is about. Compared to other material I read on the topic, the book succeeds in explaining the related concepts as well the goals (called definitions) and benefits (called motivations) associated with the principles behind the data mesh, making the book approachable also by non-professionals. 

Built around four principles "data as a product", "domain-oriented ownership", "self-serve data platform" and "federated governance", the data mesh is the paradigm on which data as products are developed; where the products are "the smallest unit of architecture that can be independently deployed and managed", providing by design the information necessary to be discovered, understood, debugged, and audited.

It's possible to create Lego-like data products, data contracts and/or manifests that address product's usability characteristics, though unless the latter are generated automatically, put in the context of ERP and other complex systems, everything becomes quite an endeavor that requires time and adequate testing, increasing the overall timeframe until a data product becomes available. 

The data mesh describes data products in terms of microservices that structure architectures in terms of a collection of services that are independently deployable and loosely coupled. Asking from data products to behave in this way is probably too hard a constraint, given the complexity and interdependency of the data models behind business processes and their needs. Does all the effort make sense? Is this the "agility" the data mesh solutions are looking for?

Many pioneering organizations are still fighting with the concept of data mesh as it proves to be challenging to implement. At a high level everything makes sense, but the way data products are expected to function makes the concept challenging to implement to the full extent. Moreover, as occasionally implied, the data mesh is about scaling data analytics solutions with the size and complexity of organizations. The effort makes sense when the organizations have a certain size and the departments have a certain autonomy, therefore, it might not apply to small to medium businesses.

Previous Post <<||>>  Next Post

References:
[1] Zhamak Dehghani (2021) "Data Mesh: Delivering Data-Driven Value at Scale" (link)
[2] SQL-troubles (2024) Zhamak Dehghani's Data Mesh - Monolithic Warehouses and Lakes (link)

27 February 2024

🔖Book Review: Rolf Hichert & Jürgen Faisst's International Business Communication Standards (IBCS Version 1.2)

Over the last months I found several references to Rolf Hichert & Jürgen Faisst's booklet on business communication standards [1]. It draw my attention especially because it attempts to provide a standard for reports and data visualizations, which frankly it seems like a tremendous endeavor if done right. The two authors founded the IBCS institute 20 years ago, which is a host, training institute, and certification body of the Creative Commons project called IBCS.

The 150 pages booklet considers various standardization techniques with the help of more than 180 instructive figures, the overall structure being based on a set of principles and rules rooted in an acronym that spells "SUCCESS" - Say, Unify, Condense, Check, Express, Simplify, Structure. On one side the principles seem to form a solid fundament, however the fundament seems to suffer from the same rigidity resulted from fitting something in a nicely-spelled acronym. 

Say or conveying a message reflects the principle that each report should convey a message, otherwise the report is just a data collection. According to this "definition" most of the operational reports are just collections of data. Conversely, lot of communication in organizations revolve around issues, metrics and decision making, scenarios in which the messages conveyed can be powerful though dependent on the business context. Settling on only one message can make the message fall short.

Unifying or applying semantic notation reflects the principle that things that have same meaning should look the same. There are many patterns out there that can be standardized, however it's questionable how much complex visualizations can be standardized, respectively how much liberty of expressing certain aspects the standardization allows. 

Condense or increasing the information density reflects the requirements that all information necessary to understanding the content should, if possible, be included on one page. This allows to easier navigate the content and prioritize what the audience is able to see. The principle however seems to have more to do with the ink-information ratio principle (see [2]). 

Check or ensuring the visual integrity reflects the principle that the information should be presented in the most truthful and the most easily understood way. This is something that many data visualizations out there lack.

Express or choosing the proper visualizations is based on the principle that the visuals considered should be as intuitive as possible. In theory, the more intuitive a visual the easier is to be understood and reused, however this depends on the "visual vocabulary" and "visual grammar" of each individual. Intuition is something that needs to grow through the interplay of these two areas. Having the expectation of displaying everything in terms of basic elements is unrealistic and suboptimal. 

Simplify or avoiding clutter refers to eliminating the unnecessary from a visualization, when there's nothing to take out without changing the meaning of a visualization. At least, the principle is correctly considered even if is in general difficult to apply because quite often one needs to build something more complex and reduce the complexity through iterative steps until the simple is obtained. 

Structure or organizing the content is based on the principle that content should follow (a logical consistent) structure. The interplay between function and structure is an important topic in itself.

Browsing through the many data visualizations given as example, I'd say that many of the recommendations make sense, though from there to a standardization is still a long way. The reader should evaluate against his/her own judgements the practices described and consider what seems to work. 

The book is available on the IBS website as PDF, though the Kindle version is 40% cheaper. Overall, it is worth a read. 

Previous Post <<||>>  Next Post

Resources:
[1] Rolf Hichert & Jürgen Faisst (2022) "International Business Communication Standards (IBCS Version 1.2): Conceptual, perceptual, and semantic design of comprehensible business reports, presentations, and dashboards" (link)
[2] Edward R Tufte (1983) "The Visual Display of Quantitative Information"
[3] IBCS Institude (2024) About (link)

22 August 2023

🔖Book Review: Laurent Bossavit's The Leprechauns of Software Engineering (2015)




Software Engineering should be the "establishment and use of sound engineering principles to obtain economically software that is reliable and works on real machines efficiently" [2]. Working for more than 20 years in the field I feel sometimes that its foundation is a strange mix of sound and questionable ideas that take the form of methodologies, principles, standards, myths, folklore, statistics and other similar concepts that form its backbone.

I tend to look with critical eyes at the important numbers advanced in research and pseudo-scientific papers especially when they’re related to my job, this because I know that statistics are seldom what they appear to be - there are accidental and sometimes even intended errors made to support the facts. Unfortunately, the missing row data and often the information about the methodologies used in collecting and processing the respective data make numbers and/or graphics' understanding more challenging, not to mention the considerable amount of effort and time spent to uncover the evidence trail.
Fortunately, there are other professionals who went further down the path of bibliographical references and shared their findings in blogs, papers, books and other media content. It’s also the case of Laurent Bossavit, who in his book, "The Leprechauns of Software Engineering" (2015), looks behind some of the numbers that over time become part of the leprechaunish folklore of IT professionals, puts them into the historical context and provides in appendix the evidence trails for the reader to validate his findings. Over several chapters the author focuses mainly on the cost of defects, Boehm’s cone of uncertainty, the differences in productivity amount individual programmers (aka 10x claim), respectively the relation between poor requirements and defects.

His most important finding is that the references used in most of the researched sources advancing the above numbers were secondary, while the actual sources provide no direct information of empirical data or the methodology for its collection. The way the numbers are advanced and used makes one question the validity of the measurements performed, respectively the character of the mistakes the authors made. Many of the cited papers hardly match the academic requirements of other scientific fields, being a mix of false claims, improperly conducted research and citations.

Secondly, he argues that the small sample sizes used as basis for the experiments, the small population formed usually of students, respectively the way numbers were mixed without any reliable scientific character makes him (and the reader as well) question even more how the experiments were performed in the respective papers. With this, it is more likely that a bigger number of research based on these sources should raise further concerns. The reader can thus ask himself/herself how deep the domino effect goes inside of the Software Engineering field.

In author’s opinion Software Engineering as social process "needs to be studied with tools that borrow as much from the social and cognitive sciences as they do from the mathematical theories of computation". How much is possible to extend the theories and models of the respective fields is an open topic. The bottom line, the field of Software Engineering needs better and scientific empirical experiments that are based on commonly agreed definitions, data collection and processing techniques, respectively higher standards for research publications. Without this, we’ll continue to compare apples with peaches and mix them in calculations so we can get some stories that support our leprechaunish theories.

Overall, the book is a good read for software engineers as well as for other IT professionals. Even if it barely scratched the surface of software myths and folklore, there’s enough material for the readers who want to dive deeper.

Previous Post  <<||>>  Next Post

References:
[1] Laurent Bossavit (2015) "The Leprechauns of Software Engineering"
[2] Friedrich Bauer (1972) "Software Engineering", Information Processing

03 July 2023

📦🔖💫Data Migrations (DM): Comments on "Planning for Successful Data Migration" II (Technical Aspects in Dynamics 365 Finance & Operations)

 

Data Migration
Data Migrations Series

Introduction

This weekend I read the chapter 5 on Data Migrations (Planning for Successful Data Migration) from Brent Dawson’s recently released book "Becoming a Dynamics 365 Finance and Supply Chain Solution Architect" (published by Packt Publishing, available on Amazon). The chapter makes a few good points, however there are statements that require further clarifications, while others can be questionable.  

Concerning the Data Migration (DM), besides several architectural recommendations, the author makes also several technical recommendations that can be summarized as follows:

(10) migrate transactional data manually via direct input or by using the Excel add-in (and it doesn’t recommend migrating transactional data using data packages because data change frequently)
(11) put in place a data outage should be as a part of the cutover timeframe
(12) new transactional data should be migrated after Go-live;
(13) include the effort for data entry in the cutover plan.

General Aspects

In what concerns the data there are 4 important phases during a cutover: configuring the production environment, migrating the master data, migrating the transactional data, respectively importing/creating the new transactional data. After each of these phases a data validation step is required to assure and sign-off on data quality.

Ideally, one can make sure that the production environment is correctly set up by deploying a copy of the database with the gold configuration (e.g. export the database and restore it in the target environment). Otherwise, direct data entry and templates, when available, can help obtain the same result, though the effort and risks for errors are higher.

Moving to next phases, it’s important to understand that a data migration is not a copy paste of some data from one system to another. Often the systems have different schemas, data definitions or granularity of the data entities. Ideally, a DM layer in between should take as input the source data and prepare the load data for the target system. This applies to master as well as to transactional data.

For importing data in D365 FO there are the following main options: 
(a) manual data entry
(b) import via Excel-add in and templates
(c)  manual/automated data packages
(d) batch API

As rule of thumb, if one has no more than 100-200 records for a data entity, it might be Ok to enter the data manually, eventually by splitting the effort between several users. This would allow users to accommodate themselves with the system, even if errors are made in the process. However, giving the importance of having “clean data” and a repeatable process for Go-Live makes this approach less desirable. On the other side, there will be cases when this will be the only available option.

As soon data's volume goes above this threshold, the effort doesn’t make sense. Preparing the data in Excel and importing them via the Excel add-in is in most cases recommended, as long as the volume of data is manageable. Moreover, data can be partitioned and imported in batches of 1000-2000 records. Ideally, the data should be available in the same structure as required by the templates used.

There will be however a second threshold that makes a batch API solution more attractive.  How big is this threshold? It depends. I was able to import 50-100k records via partitioning in Excel add-in, though these values shouldn’t be taken as fix.

The dependencies existing between data will dictate the order in which data must be imported, while the size of each data entity can be used to decide which approach will be used.

Master Data

In theory, the migration of master data can start as soon as the corresponding configuration is available. However, it is recommended to split the two phases and make sure that the environment is fully configured. This helps take a backup of the configuration, when such a snapshot is not available (see golden configuration in previous post).

Before taking a snapshot of the master data from the source system(s) it’s recommended to disable the access for changing the respective data (aka master data freeze). Otherwise, besides the fact that the changes will not appear in the target system(s), changes can make master data’s validation more complex. Sometimes, that's a risk the business is willing to take. 

The master data are typically imported a few days before the transactional data need to be imported to allow the team to validate the master data and if the data don’t have the expected quality, perform at most one more migration. Thus, the migration of master data can start one or two weeks earlier, however the longer the timeframe, the higher the chances that the business will be impacted by this (e.g. new orders with new products are needed urgently).

Transaction Data

Before migrating the transactional data, a few processes must be run (e.g. monthly/yearly closing, inventory counting, receiving goods in transit, etc.). Once this accomplished, the system can be frozen and thus the access to making changes disabled. This can happen in phases, depending on the requirements (e.g. migrating the balance can happen much later, even weeks after Go-Live).

What one can migrate are only open transactions (e.g. open purchase orders, open sales orders, open customer/vendor invoices, active assets) and balances (e.g. inventory, trial balance). Usually migrating historical data is out of the question. A data warehouse or similar data repository is more appropriate for storing historical data. Otherwise, keeping the source system(s) available for some users for regulatory requirements would be a better option, when feasible.

The biggest issue with transactional data is that the referenced values (products, customers, vendors) must be available in the target system(s). Even if names and descriptions are maybe the same, the unique identifiers or the surrogate keys are more likely to change. E.g. a product, vendor or customer will have other product number, vendor number or customer number than in the source system(s). This means that the old values need to be replaced with the new ones and this can become a tedious and error-prone process even for Excel. Unless the number of records is really small and there’s no other solution, I don’t recommend this approach.

The alternative would be to build a data migration layer that can address many of the challenges of data migrations. The effort for building such a layer might be high comparable with a manual transformation of the data, though it increases the chances of success by a considerable factor.

During and Post-Go-Live

After validating and signing off on the DM, and here extracts from source and target systems can help, the Go-Live will depend only on the functional testing’s results (and many things can go wrong in this area).

During the freeze period(s) of the source systems, more likely that new master and transactional data needed to be created. Ideally, these data should be entered after the Go-Live announcement, though it isn’t a must if a backup of the target system was taken before. For this the Excel add-ins can become the tool of choice.

With the Go-Live the DM should be over, though there will always be inquiries from the business. In fact only when the auditor signed off the DM is over. Even when one thinks that everything is over a few more surprises can appear – forgotten data, data enrichment, data for new features, etc.

Wrap Up

These are the most important aspects the reader should be aware of. There is more to say about the DM architecture and process, there are more best practices that need to be considered in areas like planning, conceptualization, quality assurance, principles, etc.

Comming back to the best practices from the book, it's worth to stress out that the frequency with which data changes is not the main driver for what approach to use in the DM. Definitely more important is the volume and complexity of data entities to be migrated, and this applies to master and transactional data altogether. Therefore, the argumentation behind (10) doesn't stand entirely. 

Concerning (11), a multi-level data freeze is more appropriate than an outage, even if the author intended maybe to say the same thing. 

(12) and (13) make sense, though the new data are part of daily business (business as usual) and not of the DM. Moreover, if the data entry or import fails because of whatever reason, it can't be the DM to blame. Even if the lessons learned during DM can be further used for mass data entry and updates, this doesn't mean that the DM project continues to exist. In theory, the DM layer can be used further on, though the respective layer was build on different premises that become obsolete with the Go-Live. One needs to think only from the perspective of the new system. Data Management or more specifically Master Data Management should be responsible for this type of data changes!

Previous Post <<||>>  Next Post

📦🔖💫Data Migrations (DM): Comments on "Planning for Successful Data Migration" I (Architecture Aspects in Dynamics 365 Finance & Operations)

 

Data Migrations
Data Migrations Series

Introduction

This weekend I read the chapter 5 on Data Migration (Planning for Successful Data Migration) from Brent Dawson’s recently released book "Becoming a Dynamics 365 Finance and Supply Chain Solution Architect" (published by Packt Publishing, available on Amazon). The section on best practices makes many good points, however some of the practices require further clarifications, while some statements can be questionable as the context associated with them can make an important difference.  Overall however the recommendations hold.

Concerining Data Migrations (DM), besides a few teachnical recommendations, the author makes also several architectural recommendations that can be summarized as follows:

(1) put the data into a backup system or database, if possible, and use that system to the data extraction parts of the DM tasks;
(2) use a Tier 2 system for the majority of the development of the data packages;
(3) once the data packages validated, they can be used against production environments;
(4) don’t use the OData protocol for data transfer, but use the Batch API instead;
(5) don’t use dual-write for DM (technology used for data integrations), first complete the DM and after that enable the dual-write;
(6)  have a backup of the environments involved;
(7) have a good internet connection;
(8) plan an environment for DM (at a 2-tier environment, distinct from the one used for functional testing);
(9) for the gold configurations have an environment with limited access.

General Aspects
 
In a Data Migration there are at least 2 systems involved, though in more complex scenarios there can be one more source systems, respectively one or more target systems. At minimum there is a source and a target system.

Ideally, a target production environment should not be used for testing the data migration! On the other side, as long there’s a backup with a given state of the system (e.g. only configuration data, without master or transactional data) a system can be always restored to a previous state. This applies to D365 or to any system for which a database backup and restore can be applied. Even so, as best practice it isn’t recommended to use a production environment for testing as this can increase the complexity of the data migration.

Moreover, the same constraint applies also to the sandbox used for UAT (User Acceptance Testing), given that is supposed to represent at different points in time the same state as the production environment). Thus, at least a third environment will be needed.

There are no hard constraints on the source systems. Ideally, one should use the production source system(s) or environments that resemble the production environments. A read replica of the respective environment(s) will work as well, given that there are typically only reads involved.

The downside of accessing directly a production environment for DM is that the data changes frequently, which makes it more difficult to validate the DM logic – the time factor needing to be considered – data being added, deleted or changed. That’s why an environment with a recent snapshot from production would facilitate the process and would make sure that the DM workloads don’t affect production environment’s performance.

Often, a better alternative would be to have a database in between (aka DM layer) that contains only the data in scope of DM. ETL (Extract Transfer Load) jobs can extract the data on demand and in a consistent manner, this approach assuring a snapshot. This layer can be used to build, test and troubleshoot the DM logic, before Go-Live and after, as issues will be more likely raised by the business and will need to be mitigated.

There are also scenarios in which the direct access to source systems is not possible, a push, respectively a push & pull scenario being needed. If possible, it would be great if the data needed for migration could be exported directly from the source system(s) as needed by the target system(s). In some scenarios this might be achievable, though the bigger the differences in schemas betweeen the systems and the more complex the data, the more transformations are needed, respectively the more difficult it becomes to achieve this. Therefore, moving such logic to an intermediate DM layer would facilitate the DM architecture allowing to address many of the challenges. 
 
Batch API
 
Using Batch API could be a solution when the source environments allow only API access to the data (thus no direct access over SQL scripting) or when the volume of data makes the alternatives unusable. Indeed, OData seems to be slow or unusable when the volume of data exceeds a given threshold, even if the calls can be partitioned.

Another scenario for Batch API is when the source and target systems need to operate in parallel for a considerable amount of time that would make other approaches unusable. Even if a DM typically involves the replacement of one or more systems, there can be exceptions. Such scenario increases a DM’s complexity by several factors and should be avoided. Even if such scenarios seem to be logical and approachable at first sight, the benefits can be easily outrun by the downsides.

Backup

Hopefully, your organization has a backup and restore strategy for the production and other essential environments! The strategy needs to be extended also for the further environments available during the implementation. It’s also true that until Go-Live the target environments don’t suffer many changes. Ideally, a backup should be taken at least when important changes are made to the systems. This can involve the configuration as well the DM. E.g. a setup would be required after the configuration is completed, when the master data, respectively when the transactional data was migrated. A backup of all the systems involved should be taken before Go-Live.

Gold Configuration

Having a system with the gold configuration (the values used to configure the system) available can indeed facilitate the implementation and there are two main reasons for this. Primarily, the gold configuration allows to build reliable processes around its maintenance and to minimize the risk of having discrepancies between expectations and reality. Secondly, the database with the gold configuration can be used to easily setup a new environment and this might be needed often than thought (e.g. for dry runs).

However, in praxis the technical value is easily overrun by the financial aspect as such an environment is barely used and can involve significant costs. As alternative one can use the DAT legal entity from an available environment for storing the gold configuration common across all the legal entities and easily copy it to the other legal entities. In addition, it’s needed to document the deviations, however it’s recommended to document all configurations and use this as baseline for the post-Go-Live changes.
Indeed, the access to the gold configuration should be restrained as much as possible (e.g. only admin, consultants and/or data owners) and change policies should be enforced. Otherwise, one risks having different configurations between the environments. For Go-Live it is critical that the UAT and Go-Live environments have the same configuration.

Independently of the approach used to maintain the gold configuration, it’s recommended to perform a comparison between UAT and production environments to make sure that there are no differences. The comparison can be handled also via SQL scripts, the effort being well-spent when such comparisons needed to be done several times. Even if the data from production isn’t directly accessible, a snapshot of the production database can be copied in another environment. However, this approach requires a good understanding of the tables and/or entities involved. There will be cases (e.g. module parameters) in which it’s easier to perform a manual comparison.

Wrap Up

Coming back to the recommendations, the only points that require some discussion are (1), (2) and maybe (8), while (9) was discussed above (see 'Gold configuration' section).

The recommendation of putting the data into a backup system or database is too vague. A backup system can mean a backup database that can be accessible typically only over DRBMS or an instance of the system having a copy of the data (which usually implies a RDBMS as well). Besides these, a database can refer to a read replica of source system's database or to a DM layer.

Besides price and performance, the main differences between a Tier-1 and a Tier-2 environment (see also the Microsoft documentation) rely in the number of VM machines (aka boxes) involved, how the various components are distributed between them, respectively the edition of SQL Server used. Otherwise, for the users the system will look the same. The most important constraint is that a Tier-1 isn't suitable for UAT or performance testing. In other words, the environment will be slow for concurrent use.

If the performance is acceptable, if the volume of data and the number of users is small, a Tier-1 environment can be used for building data packages, performing initial DM dry-runs and other tasks. However, a Tier-2 resembles closer the production environment and if the UAT is performed using such a system, the more likely is to identify and address the bottlenecks related to performance. Unless they accept the costs blindly, the customers will need to trade between performance and costs from the perspective of their requirements and their business context. 

16 April 2023

🔖Book Review: Willard C Brinton's Graphic Methods for Presenting Facts (1919)

"It is often with impotent exasperation that a person having the knowledge sees some fallacious conclusion accepted, or some wrong policy adopted, just because known facts cannot be marshalled and presented in such manner as to be effective." 

This is the conclusion phrase from the first paragraph of Willard C Brinton's "Graphic Methods for Presenting Facts", in which the author expresses his disappointment about the impossibility of bridging the important gap existing between data collection and presentation on side, and the decision-making on the other. Despite being written more than a century ago (1915), the issue seems to be so actual, the average data professional probably met this kind of situation at least once in a lifetime, if not on a regular basis. 

I found out about this book from Bridget Cogley & Vidya Setlur's "Functional Aesthetics for Data Visualization" (2020), which credits Brinton for "shaping the path toward broad use of charts". I found a digitized copy of the book at Internet Archive and browsing though it I found it appealing for a deeper reading and a first review. 

Written in a simple style stripped of any mathematical or statistical formulae, and thus approachable by the average nontechnical reader, the book addresses the techniques and challenges of graphical authors in preparing charts and other graphical content for their consumption in organizations for insight and decision-making, as well for the masses. It mentions also the projecting of graphs as lantern slides to accompany a talk, a precursor of nowadays' forms of presentations.

The engineering and statistical background of the author can be seen in the meticulosity with which the book was written. The book discusses the graphic methods for presenting facts in graphical form, which are the component parts and how can be used to attract readers' attention, respectively present them in an effective manner. Several principle-like statements are considered though the book and listed together in the last chapters, rules that can be found in modern books as well, though probably less exemplified. 

From organization charts to maps, from circle and bar charts to time plots, the number and variety of graphical displays is overwhelming and at the same time surprising for a book that old, especially when we consider the publishing technologies available. As mentioned by the author, color printing of the book was prohibitive given the costs, only one ink color being used. However, this doesn't diminish the quality of visuals considered. Compared with nowadays' books, which seem to attempt compensating the lack of novelty with too much color and mentions of technologies, book's graphics stand out in their simplicity and richness of exemplifications. It is sad to remark that the graphical displays are better chosen and the book is better written than some of nowadays books on data visualization.

Comparing the language and vocabulary used nowadays with the one used then, the reader can see the difficulties of approaching a subject found in its early years, the author recognizing the lack of standards and the difficulties of showing quantitative facts in true proportions. It's also true that more modern authors like Tufte or Cleveland were facing same challenge 70 years later. 

About the author is worth mentioning that he was chairman of the "Joint Committee on Standards for Graphic Presentation" initiated in 1913, committee that published in 1915 their first brief report which consisted of 17 simply basic rules, a first attempt of standardizing the principles of graphic presentation. In 1939 Brinton published a second book on "Graphic Presentation", with less text and abundant colorful graphical displays. Even if some charts are available in the second book as well, overall, the two books seem to complement each other and should be a lecture for the data professional as well for the average reader interested in understanding the use of graphical methods.

Previous Post <<||>>  Next Post

References:
[1] Willard C Brinton, "Graphic Methods for Presenting Facts", 1919 (link)
[2] Bridget Cogley & Vidya Setlur, "Functional Aesthetics for Data Visualization" (2020)
[3] Willard C Brinton, "Graphic Presentation", 1939 (link)
[4] Joint Committee on Standards for Graphic Presentation, "Publications of the American Statistical Association" Vol.14 (112), 1915 (Jstor)

01 January 2011

🔖Book Review: Lynn Beighley's "Head First SQL" (2011)

I love the Head First O’Reilly book series which besides the book on SQL, has acquired over its short existence several other titles like the ones on Data Analysis, Statistics and Excel, topics strongly correlated with the thematic of the current blog, but also related tangential topics like Project Management, Design Patterns, Object-Oriented Analysis and Design, Software Development, Web Design, Programming, PHP & MySQL, HTML with CSS & XHTML, C#, Java, AJAX, JavaScript, Pyhton, Servlets and JSP, EJB or Rails. (The book series contains more titles which seems to be available also at Head First Labs together with other supporting information.) 

What I like about this book series is that approaches the themes from a basic level, using a rich set of "brain-friendly" visual representations, conversational and personalized style, challenging food for thought, plus some advices on how to use book’s format, facts that allow the reader to make most of the learning process. In fact the books are approachable for any newbies in IT branch, so I recommend the whole set of books to beginners as well to experienced programmers, considering the fact that everybody has something to learn, at least when considering the presentational format of the book.

Coming back to the current title, Head First SQL, it covers almost everything somebody has to know about database design, DML and DDL statements, database objects and security in a nutshell. It focuses only on the SQL Standard (I wish I know which one as there are several versions/revisions, see SQL 1999), so it could be used for all type of RDBMS that implements the standard, even if the book is built around MySQL. A consequence of this aspect is that any vendor specific flavors won’t be found in here, so the book should be used in combination with the documentation or the books that target the vendor-specific functionality. There are also several topics not covered but mentioned roughly: reserved words and special characters, temporary tables, data conversion, some numeric functions and operators, indexes, etc.

I must remark that some of the definitions are somehow ambiguous, and I feel that in some cases additional clarifications are necessary. Some examples in this direction could be considered the very first important definitions, the ones of the database seen as "a container that holds tables and SQL structures related to those tables", the one of column seen as piece of data stored by a table, or of a row seen as a single set of columns that describe attributes of a single thing. The first definition is quite acceptable if it’s ignored the existence of non-relational databases (it’s also true that the book targets RDBMS even if not evident), however the other two definitions are too vague, at least from my point of view. 

It’s also true that more rigor and detail would involve the introduction of other concepts (e.g. entity, matrix, etc.), requiring more space and maybe complicate the topics. The reader could intuit from explanatory text and examples what’s all about, however expecting the reader to bridge such gaps should be avoided especially when we consider the intrinsic nature of this book in particular, and IT books in general. Anyway, this shouldn’t stop you discover and enjoy the book!

Notes:
1. As I learned on the hard way, not all book formats and writing styles are matching everybody’s taste and expectations. The simplistic and rich visually format of the book could annoy as well, so might be a good idea to browse first the book on Scribd before buying it.
2. The source code is available here.

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.