Showing posts with label numbers. Show all posts
Showing posts with label numbers. Show all posts

28 December 2018

Data Science: Statistics' (Mis)usage (Just the Quotes)

"A witty statesman said, you might prove anything by figures." (Thomas Carlyle, Chartism, 1840)

"It is difficult to understand why statisticians commonly limit their inquiries to Averages, and do not revel in more comprehensive views. Their souls seem as dull to the charm of variety as that of the native of one of our flat English counties, whose retrospect of Switzerland was that, if its mountains could be thrown into its lakes, two nuisances would be got rid of at once. An Average is but a solitary fact, whereas if a single other fact be added to it, an entire Normal Scheme, which nearly corresponds to the observed one, starts potentially into existence." (Sir Francis Galton, "Natural Inheritance", 1889)

"No doubt statistics can be easily misinterpreted; and are often very misleading when first applied to new problems. But many of the worst fallacies involved in the misapplications of statistics are definite and can be definitely exposed, till at last no one ventures to repeat them even when addressing an uninstructed audience: and on the whole arguments which can be reduced to statistical forms, though still in a backward condition, are making more sure and more rapid advances than any others towards obtaining the general acceptance of all who have studied the subjects to which they refer." (Alfred Marshall, "Principles of Economics", 1890)

"A statistical estimate may be good or bad, accurate or the reverse; but in almost all cases it is likely to be more accurate than a casual observer’s impression, and the nature of things can only be disproved by statistical methods." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Figures may not lie, but statistics compiled unscientifically and analyzed incompetently are almost sure to be misleading, and when this condition is unnecessarily chronic the so-called statisticians may be called liars." (Edwin B Wilson, "Bulletin of the American Mathematical Society", Vol 18, 1912)

"Great discoveries which give a new direction to currents of thoughts and research are not, as a rule, gained by the accumulation of vast quantities of figures and statistics. These are apt to stifle and asphyxiate and they usually follow rather than precede discovery. The great discoveries are due to the eruption of genius into a closely related field, and the transfer of the precious knowledge there found to his own domain." (Theobald Smith, Boston Medical and Surgical Journal Volume 172, 1915)

"Of itself an arithmetic average is more likely to conceal than to disclose important facts; it is the nature of an abbreviation, and is often an excuse for laziness." (Arthur L Bowley, "The Nature and Purpose of the Measurement of Social Phenomena", 1915)

"Averages are like the economic man; they are inventions, not real. When applied to salaries they hide gaunt poverty at the lower end." (Julia Lathrop, 1919)

"A method is a dangerous thing unless its underlying philosophy is understood, and none more dangerous than the statistical. […] Over-attention to technique may actually blind one to the dangers that lurk about on every side- like the gambler who ruins himself with his system carefully elaborated to beat the game. In the long run it is only clear thinking, experienced methods, that win the strongholds of science." (Edwin B Wilson, "The Statistical Significance of Experimental Data", Science, Volume 58 (1493), 1923)

"[…] the methods of statistics are so variable and uncertain, so apt to be influenced by circumstances, that it is never possible to be sure that one is operating with figures of equal weight." (Havelock Ellis, "The Dance of Life", 1923)

"No human mind is capable of grasping in its entirety the meaning of any considerable quantity of numerical data." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they are therefore no substitutes for such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in explaining the conclusions founded upon them." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"Without an adequate understanding of the statistical methods, the investigator in the social sciences may be like the blind man groping in a dark room for a black cat that is not there. The methods of Statistics are useful in an over-widening range of human activities in any field of thought in which numerical data may be had." (Frederick E Croxton & Dudley J Cowden, "Practical Business Statistics", 1937)

"In earlier times they had no statistics and so they had to fall back on lies. Hence the huge exaggerations of primitive literature, giants, miracles, wonders! It's the size that counts. They did it with lies and we do it with statistics: but it's all the same." (Stephen Leacock, "Model memoirs and other sketches from simple to serious", 1939)

"It has long been recognized by public men of all kinds […] that statistics come under the head of lying, and that no lie is so false or inconclusive as that which is based on statistics." (Hilaire Belloc, "The Silence of the Sea", 1940)

"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)

"By the laws of statistics we could probably approximate just how unlikely it is that it would happen. But people forget - especially those who ought to know better, such as yourself - that while the laws of statistics tell you how unlikely a particular coincidence is, they state just as firmly that coincidences do happen." (Robert A Heinlein, "The Door Into Summer", 1957)

"The statistics themselves prove nothing; nor are they at any time a substitute for logical thinking. There are […] many simple but not always obvious snags in the data to contend with. Variations in even the simplest of figures may conceal a compound of influences which have to be taken into account before any conclusions are drawn from the data." (Alfred R Ilersic, "Statistics", 1959)

"Many people use statistics as a drunkard uses a street lamp - for support rather than illumination. It is not enough to avoid outright falsehood; one must be on the alert to detect possible distortion of truth. One can hardly pick up a newspaper without seeing some sensational headline based on scanty or doubtful data." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Myth is more individual and expresses life more precisely than does science. Science works with concepts of averages which are far too general to do justice to the subjective variety of an individual life." (Carl G Jung, "Memories, Dreams, Reflections", 1963)

"It has been said that data collection is like garbage collection: before you collect it you should have in mind what you are going to do with it." (Russell Fox et al, "The Science of Science", 1964)

"[…] statistical techniques are tools of thought, and not substitutes for thought." (Abraham Kaplan, "The Conduct of Inquiry", 1964)

"He who accepts statistics indiscriminately will often be duped unnecessarily. But he who distrusts statistics indiscriminately will often be ignorant unnecessarily. There is an accessible alternative between blind gullibility and blind distrust. It is possible to interpret statistics skillfully. The art of interpretation need not be monopolized by statisticians, though, of course, technical statistical knowledge helps. Many important ideas of technical statistics can be conveyed to the non-statistician without distortion or dilution. Statistical interpretation depends not only on statistical ideas but also on ordinary clear thinking. Clear thinking is not only indispensable in interpreting statistics but is often sufficient even in the absence of specific statistical knowledge. For the statistician not only death and taxes but also statistical fallacies are unavoidable. With skill, common sense, patience and above all objectivity, their frequency can be reduced and their effects minimised. But eternal vigilance is the price of freedom from serious statistical blunders." (W Allen Wallis & Harry V Roberts, "The Nature of Statistics", 1965)

"The manipulation of statistical formulas is no substitute for knowing what one is doing." (Hubert M Blalock Jr., "Social Statistics" 2nd Ed., 1972)

"Confidence in the omnicompetence of statistical reasoning grows by what it feeds on." (Harry Hopkins, "The Numbers Game: The Bland Totalitarianism", 1973)

"Probably one of the most common misuses (intentional or otherwise) of a graph is the choice of the wrong scale - wrong, that is, from the standpoint of accurate representation of the facts. Even though not deliberate, selection of a scale that magnifies or reduces - even distorts - the appearance of a curve can mislead the viewer." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"No matter how much reverence is paid to anything purporting to be ‘statistics’, the term has no meaning unless the source, relevance, and truth are all checked." (Tom Burnam, "The Dictionary of Misinformation", 1975)

"Crude measurement usually yields misleading, even erroneous conclusions no matter how sophisticated a technique is used." (Henry T Reynolds, "Analysis of Nominal Data", 1977)

"Graphs are used to meet the need to condense all the available information into a more usable quantity. The selection process of combining and condensing will inevitably produce a less than complete study and will lead the user in certain directions, producing a potential for misleading." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"It is all too easy to notice the statistical sea that supports our thoughts and actions. If that sea loses its buoyancy, it may take a long time to regain the lost support." (William Kruskal, "Coordination Today: A Disaster or a Disgrace", The American Statistician, Vol. 37, No. 3, 1983)

"There are two kinds of misrepresentation. In one. the numerical data do not agree with the data in the graph, or certain relevant data are omitted. This kind of misleading presentation. while perhaps hard to determine, clearly is wrong and can be avoided. In the second kind of misrepresentation, the meaning of the data is different to the preparer and to the user." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"’Common sense’ is not common but needs to [be] learnt systematically […]. A ‘simple analysis’ can be harder than it looks […]. All statistical techniques, however sophisticated, should be subordinate to subjective judgment." (Christopher Chatfield, "The Initial Examination of Data", Journal of The Royal Statistical Society, Series A, Vol. 148, 1985)

"The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data." (John Tukey, The American Statistician, 40 (1), 1986)

"Beware of the problem of testing too many hypotheses; the more you torture the data, the more likely they are to confess, but confessions obtained under duress may not be admissible in the court of scientific opinion." (Stephen M. Stigler, "Neutral Models in Biology", 1987)

"[In statistics] you have the fact that the concepts are not very clean. The idea of probability, of randomness, is not a clean mathematical idea. You cannot produce random numbers mathematically. They can only be produced by things like tossing dice or spinning a roulette wheel. With a formula, any formula, the number you get would be predictable and therefore not random. So as a statistician you have to rely on some conception of a world where things happen in some way at random, a conception which mathematicians don’t have." (Lucien LeCam, [interview] 1988)

"Torture numbers, and they will confess to anything." (Gregg Easterbrook, "New Republic", 1989)

"Statistics is a very powerful and persuasive mathematical tool. People put a lot of faith in printed numbers. It seems when a situation is described by assigning it a numerical value, the validity of the report increases in the mind of the viewer. It is the statistician's obligation to be aware that data in the eyes of the uninformed or poor data in the eyes of the naive viewer can be as deceptive as any falsehoods." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"When looking at the end result of any statistical analysis, one must be very cautious not to over interpret the data. Care must be taken to know the size of the sample, and to be certain the method for gathering information is consistent with other samples gathered. […] No one should ever base conclusions without knowing the size of the sample and how random a sample it was. But all too often such data is not mentioned when the statistics are given - perhaps it is overlooked or even intentionally omitted." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"[…] an honest exploratory study should indicate how many comparisons were made […] most experts agree that large numbers of comparisons will produce apparently statistically significant findings that are actually due to chance. The data torturer will act as if every positive result confirmed a major hypothesis. The honest investigator will limit the study to focused questions, all of which make biologic sense. The cautious reader should look at the number of ‘significant’ results in the context of how many comparisons were made." (James L Mills, "Data torturing", New England Journal of Medicine, 1993)

"Fairy tales lie just as much as statistics do, but sometimes you can find a grain of truth in them." (Sergei Lukyanenko, "The Night Watch", 1998)

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No comparison between two values can be global. A simple comparison between the current figure and some previous value and convey the behavior of any time series. […] While it is simple and easy to compare one number with another number, such comparisons are limited and weak. They are limited because of the amount of data used, and they are weak because both of the numbers are subject to the variation that is inevitably present in weak world data. Since both the current value and the earlier value are subject to this variation, it will always be difficult to determine just how much of the difference between the values is due to variation in the numbers, and how much, if any, of the difference is due to real changes in the process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data. Unfortunately, much of the data reported to executives today are aggregated and summed over so many different operating units and processes that they cannot be said to have any context except a historical one - they were all collected during the same time period. While this may be rational with monetary figures, it can be devastating to other types of data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Since the average is a measure of location, it is common to use averages to compare two data sets. The set with the greater average is thought to ‘exceed’ the other set. While such comparisons may be helpful, they must be used with caution. After all, for any given data set, most of the values will not be equal to the average." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Innumeracy - widespread confusion about basic mathematical ideas - means that many statistical claims about social problems don't get the critical attention they deserve. This is not simply because an innumerate public is being manipulated by advocates who cynically promote inaccurate statistics. Often, statistics about social problems originate with sincere, well-meaning people who are themselves innumerate; they may not grasp the full implications of what they are saying. Similarly, the media are not immune to innumeracy; reporters commonly repeat the figures their sources give them without bothering to think critically about them." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Not all statistics start out bad, but any statistic can be made worse. Numbers - even good numbers - can be misunderstood or misinterpreted. Their meanings can be stretched, twisted, distorted, or mangled. These alterations create what we can call mutant statistics - distorted versions of the original figures." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"The ease with which somewhat complex statistics can produce confusion is important, because we live in a world in which complex numbers are becoming more common. Simple statistical ideas - fractions, percentages, rates - are reasonably well understood by many people. But many social problems involve complex chains of cause and effect that can be understood only through complicated models developed by experts. [...] environment has an influence. Sorting out the interconnected causes of these problems requires relatively complicated statistical ideas - net additions, odds ratios, and the like. If we have an imperfect understanding of these ideas, and if the reporters and other people who relay the statistics to us share our confusion - and they probably do - the chances are good that we'll soon be hearing - and repeating, and perhaps making decisions on the basis of - mutated statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"While some social problems statistics are deliberate deceptions, many - probably the great majority - of bad statistics are the result of confusion, incompetence, innumeracy, or selective, self-righteous efforts to produce numbers that reaffirm principles and interests that their advocates consider just and right. The best response to stat wars is not to try and guess who's lying or, worse, simply to assume that the people we disagree with are the ones telling lies. Rather, we need to watch for the standard causes of bad statistics - guessing, questionable definitions or methods, mutant numbers, and inappropriate comparisons." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"This is true only if you torture the statistics until they produce the confession you want." (Larry Schweikart, "Myths of the 1980s Distort Debate over Tax Cuts", 2001) [source]

"Every number has its limitations; every number is a product of choices that inevitably involve compromise. Statistics are intended to help us summarize, to get an overview of part of the world’s complexity. But some information is always sacrificed in the process of choosing what will be counted and how. Something is, in short, always missing. In evaluating statistics, we should not forget what has been lost, if only because this helps us understand what we still have." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"In short, some numbers are missing from discussions of social issues because certain phenomena are hard to quantify, and any effort to assign numeric values to them is subject to debate. But refusing to somehow incorporate these factors into our calculations creates its own hazards. The best solution is to acknowledge the difficulties we encounter in measuring these phenomena, debate openly, and weigh the options as best we can." (Joel Best, "More Damned Lies and Statistics : How numbers confuse public issues", 2004)

"Another way to obscure the truth is to hide it with relative numbers. […] Relative scales are always given as percentages or proportions. An increase or decrease of a given percentage only tells us part of the story, however. We are missing the anchoring of absolute values." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"A sin of omission – leaving something out – is a strong one and not always recognized; itʼs hard to ask for something you donʼt know is missing. When looking into the data, even before it is graphed and charted, there is potential for abuse. Simply not having all the data or the correct data before telling your story can cause problems and unhappy endings." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)

"The search for better numbers, like the quest for new technologies to improve our lives, is certainly worthwhile. But the belief that a few simple numbers, a few basic averages, can capture the multifaceted nature of national and global economic systems is a myth. Rather than seeking new simple numbers to replace our old simple numbers, we need to tap into both the power of our information age and our ability to construct our own maps of the world to answer the questions we need answering." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Even properly done statistics can’t be trusted. The plethora of available statistical techniques and analyses grants researchers an enormous amount of freedom when analyzing their data, and it is trivially easy to ‘torture the data until it confesses’." (Alex Reinhart, "Statistics Done Wrong: The Woefully Complete Guide", 2015)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"If we don’t understand the statistics, we’re likely to be badly mistaken about the way the world is. It is all too easy to convince ourselves that whatever we’ve seen with our own eyes is the whole truth; it isn’t. Understanding causation is tough even with good statistics, but hopeless without them. [...] And yet, if we understand only the statistics, we understand little. We need to be curious about the world that we see, hear, touch, and smell, as well as the world we can examine through a spreadsheet." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Do not put faith in what statistics say until you have carefully considered what they do not say." (William W Watt)

"Errors using inadequate data are much less than those using no data at all." (Charles Babbage)

"Facts are stubborn things, but statistics are pliable." (Mark Twain)

"I can prove anything by statistics except the truth." (George Canning

"If the statistics are boring, you've got the wrong numbers." (Edward Tufte)

"If your experiment needs statistics, you ought to have done a better experiment." (Ernest Rutherford)

"It is easy to lie with statistics. It is hard to tell the truth without it." (Andrejs Dunkels)

24 December 2018

Data Science: Randomness (Just the Quotes)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The definition of random in terms of a physical operation is notoriously without effect on the mathematical operations of statistical theory because so far as these mathematical operations are concerned random is purely and simply an undefined term." (Walter A Shewhart & William E Deming, "Statistical Method from the Viewpoint of Quality Control", 1939)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"Time itself will come to an end. For entropy points the direction of time. Entropy is the measure of randomness. When all system and order in the universe have vanished, when randomness is at its maximum, and entropy cannot be increased, when there is no longer any sequence of cause and effect, in short when the universe has run down, there will be no direction to time - there will be no time." (Lincoln Barnett, "The Universe and Dr. Einstein", 1948)

"We must emphasize that such terms as 'select at random', 'choose at random', and the like, always mean that some mechanical device, such as coins, cards, dice, or tables of random numbers, is used." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"[…] random numbers should not be generated with a method chosen at random. Some theory should be used." (Donald E Knuth, "The Art of Computer Programming" Vol. II, 1968)

"It appears to be a quite general principle that, whenever there is a randomized way of doing something, then there is a nonrandomized way that delivers better performance but requires more thought." (Edwin T Jaynes, "Probability Theory: The Logic of Science", 1979)

"From a purely operational point of viewpoint […] the concept of randomness is so elusive as to cease to be viable." (Mark Kac, 1983)

"Randomness is a difficult notion for people to accept. When events come in clusters and streaks, people look for explanations and patterns. They refuse to believe that such patterns - which frequently occur in random data - could equally well be derived from tossing a coin. So it is in the stock market as well." (Burton G Malkiel, "A Random Walk Down Wall Street", 1989)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Events may appear to us to be random, but this could be attributed to human ignorance about the details of the processes involved." (Brain S Everitt, "Chance Rules", 1999)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Białynicki-Birula & Iwona Białynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"Chance is just as real as causation; both are modes of becoming. The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place. The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"A Black Swan is a highly improbable event with three principal characteristics: It is unpredictable; it carries a massive impact; and, after the fact, we concoct an explanation that makes it appear less random, and more predictable, than it was. […] The Black Swan idea is based on the structure of randomness in empirical reality. [...] the Black Swan is what we leave out of simplification." (Nassim N Taleb, "The Black Swan", 2007)

"[myth:] Random errors can always be determined by repeating measurements under identical conditions. […] this statement is true only for time-related random errors ." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"To fulfill the requirements of the theory underlying uncertainties, variables with random uncertainties must be independent of each other and identically distributed. In the limiting case of an infinite number of such variables, these are called normally distributed. However, one usually speaks of normally distributed variables even if their number is finite." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"While in theory randomness is an intrinsic property, in practice, randomness is incomplete information." (Nassim N Taleb, "The Black Swan", 2007)

"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"The key to understanding randomness and all of mathematics is not being able to intuit the answer to every problem immediately but merely having the tools to figure out the answer." (Leonard Mlodinow,"The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Data always vary randomly because the object of our inquiries, nature itself, is also random. We can analyze and predict events in nature with an increasing amount of precision and accuracy, thanks to improvements in our techniques and instruments, but a certain amount of random variation, which gives rise to uncertainty, is inevitable." (Alberto Cairo, "The Functional Art", 2011)

"Randomness might be defined in terms of order - its absence, that is. […] Everything we care about lies somewhere in the middle, where pattern and randomness interlace." (James Gleick, "The Information: A History, a Theory, a Flood", 2011)

"The storytelling mind is allergic to uncertainty, randomness, and coincidence. It is addicted to meaning. If the storytelling mind cannot find meaningful patterns in the world, it will try to impose them. In short, the storytelling mind is a factory that churns out true stories when it can, but will manufacture lies when it can't." (Jonathan Gottschall, "The Storytelling Animal: How Stories Make Us Human", 2012)

"When some systems are stuck in a dangerous impasse, randomness and only randomness can unlock them and set them free." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

"Too little attention is given to the need for statistical control, or to put it more pertinently, since statistical control (randomness) is so rarely found, too little attention is given to the interpretation of data that arise from conditions not in statistical control." (William E Deming)

More quotes on "Randomness" at the-web-of-knowledge.blogspot.com

20 December 2018

Data Science: Accuracy (Just the Quotes)

"Accurate and minute measurement seems to the nonscientific imagination a less lofty and dignified work than looking for something new. But nearly all the grandest discoveries of science have been but the rewards of accurate measurement and patient long contained labor in the minute sifting of numerical results." (William T Kelvin, "Report of the British Association For the Advancement of Science" Vol. 41, 1871)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"The test of the accuracy and completeness of a description is, not that it may assist, but that it cannot mislead." (Burt G Wilder, "A Partial Revision of Anatomical Nomenclature", Science, 1881)

"Accuracy of statement is one of the first elements of truth; inaccuracy is a near kin to falsehood." (Tyron Edwards, "A Dictionary of Thoughts", 1891)

"A statistical estimate may be good or bad, accurate or the reverse; but in almost all cases it is likely to be more accurate than a casual observer’s impression, and the nature of things can only be disproved by statistical methods." (Arthur L Bowley, "Elements of Statistics", 1901)

"Great numbers are not counted correctly to a unit, they are estimated; and we might perhaps point to this as a division between arithmetic and statistics, that whereas arithmetic attains exactness, statistics deals with estimates, sometimes very accurate, and very often sufficiently so for their purpose, but never mathematically exact." (Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Accuracy is the foundation of everything else." (Thomas H Huxley, "Method and Results", 1893)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"Science begins with measurement and there are some people who cannot be measurers; and just as we distinguish carpenters who can work to this or that traction of an inch of accuracy, so we must distinguish ourselves and our acquaintances as able to observe and record to this or that degree of truthfulness." (John A Thomson, "Introduction to Science", 1911)

"The ordinary mathematical treatment of any applied science substitutes exact axioms for the approximate results of experience, and deduces from these axioms the rigid mathematical conclusions. In applying this method it must not be forgotten that the mathematical developments transcending the limits of exactness of the science are of no practical value. It follows that a large portion of abstract mathematics remains without finding any practical application, the amount of mathematics that can be usefully employed in any science being in proportion to the degree of accuracy attained in the science. Thus, while the astronomer can put to use a wide range of mathematical theory, the chemist is only just beginning to apply the first derivative, i. e. the rate of change at which certain processes are going on; for second derivatives he does not seem to have found any use as yet." (Felix Klein, "Lectures on Mathematics", 1911)

"It [science] involves an intelligent and persistent endeavor to revise current beliefs so as to weed out what is erroneous, to add to their accuracy, and, above all, to give them such shape that the dependencies of the various facts upon one another may be as obvious as possible." (John Dewey, "Democracy and Education", 1916)

"The man of science, by virtue of his training, is alone capable of realising the difficulties - often enormous - of obtaining accurate data upon which just judgment may be based." (Sir Richard Gregory, "Discovery; or, The Spirit and Service of Science", 1918)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"Science does not aim at establishing immutable truths and eternal dogmas; its aim is to approach the truth by successive approximations, without claiming that at any stage final and complete accuracy has been achieved." (Bertrand Russell, "The ABC of Relativity", 1925)

"Science is but a method. Whatever its material, an observation accurately made and free of compromise to bias and desire, and undeterred by consequence, is science." (Hans Zinsser, "Untheological Reflections", The Atlantic Monthly, 1929)

"The structure of a theoretical system tells us what alternatives are open in the possible answers to a given question. If observed facts of undoubted accuracy will not fit any of the alternatives it leaves open, the system itself is in need of reconstruction." (Talcott Parsons, "The structure of social action", 1937)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)

"Being built on concepts, hypotheses, and experiments, laws are no more accurate or trustworthy than the wording of the definitions and the accuracy and extent of the supporting experiments." (Gerald Holton, "Introduction to Concepts and Theories in Physical Science", 1952)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"The precision of a number is the degree of exactness with which it is stated, while the accuracy of a number is the degree of exactness with which it is known or observed. The precision of a quantity is reported by the number of significant figures in it." (Edmund C Berkeley & Lawrence Wainwright, Computers: Their Operation and Applications", 1956)

"The art of using the language of figures correctly is not to be over-impressed by the apparent air of accuracy, and yet to be able to take account of error and inaccuracy in such a way as to know when, and when not, to use the figures. This is a matter of skill, judgment, and experience, and there are no rules and short cuts in acquiring this expertness." (Ely Devons, "Essays in Economics", 1961)

"The two most important characteristics of the language of statistics are first, that it describes things in quantitative terms, and second, that it gives this description an air of accuracy and precision." (Ely Devons, "Essays in Economics", 1961)

"Relativity is inherently convergent, though convergent toward a plurality of centers of abstract truths. Degrees of accuracy are only degrees of refinement and magnitude in no way affects the fundamental reliability, which refers, as directional or angular sense, toward centralized truths. Truth is a relationship." (R Buckminster Fuller, "The Designers and the Politicians", 1962)

"Theories are usually introduced when previous study of a class of phenomena has revealed a system of uniformities. […] Theories then seek to explain those regularities and, generally, to afford a deeper and more accurate understanding of the phenomena in question. To this end, a theory construes those phenomena as manifestations of entities and processes that lie behind or beneath them, as it were." (Carl G Hempel, "Philosophy of Natural Science", 1966)

"Numbers are the product of counting. Quantities are the product of measurement. This means that numbers can conceivably be accurate because there is a discontinuity between each integer and the next. Between two and three there is a jump. In the case of quantity there is no such jump, and because jump is missing in the world of quantity it is impossible for any quantity to be exact. You can have exactly three tomatoes. You can never have exactly three gallons of water. Always quantity is approximate." (Gregory Bateson, "Number is Different from Quantity", CoEvolution Quarterly, 1978)

"Science has become a social method of inquiring into natural phenomena, making intuitive and systematic explorations of laws which are formulated by observing nature, and then rigorously testing their accuracy in the form of predictions. The results are then stored as written or mathematical records which are copied and disseminated to others, both within and beyond any given generation. As a sort of synergetic, rigorously regulated group perception, the collective enterprise of science far transcends the activity within an individual brain." (Lynn Margulis & Dorion Sagan, "Microcosmos", 1986)

"A theory is a good theory if it satisfies two requirements: it must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations." (Stephen Hawking, "A Brief History of Time: From Big Bang To Black Holes", 1988)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"There is no sharp dividing line between scientific theories and models, and mathematics is used similarly in both. The important thing is to possess a delicate judgement of the accuracy of your model or theory. An apparently crude model can often be surprisingly effective, in which case its plain dress should not mislead. In contrast, some apparently very good models can be hiding dangerous weaknesses." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Science is more than a mere attempt to describe nature as accurately as possible. Frequently the real message is well hidden, and a law that gives a poor approximation to nature has more significance than one which works fairly well but is poisoned at the root." (Robert H March, "Physics for Poets", 1996)

"Accuracy of observation is the equivalent of accuracy of thinking." (Wallace Stevens, "Collected Poetry and Prose", 1997)

“Accurate estimates depend at least as much upon the mental model used in forming the picture as upon the number of pieces of the puzzle that have been collected.” (Richards J. Heuer Jr, “Psychology of Intelligence Analysis”, 1999)

"To be numerate means to be competent, confident, and comfortable with one’s judgements on whether to use mathematics in a particular situation and if so, what mathematics to use, how to do it, what degree of accuracy is appropriate, and what the answer means in relation to the context." (Diana Coben, "Numeracy, mathematics and adult learning", 2000)

"Innumeracy - widespread confusion about basic mathematical ideas - means that many statistical claims about social problems don't get the critical attention they deserve. This is not simply because an innumerate public is being manipulated by advocates who cynically promote inaccurate statistics. Often, statistics about social problems originate with sincere, well-meaning people who are themselves innumerate; they may not grasp the full implications of what they are saying. Similarly, the media are not immune to innumeracy; reporters commonly repeat the figures their sources give them without bothering to think critically about them." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"There are two problems with sampling - one obvious, and  the other more subtle. The obvious problem is sample size. Samples tend to be much smaller than their populations. [...] Obviously, it is possible to question results based on small samples. The smaller the sample, the less confidence we have that the sample accurately reflects the population. However, large samples aren't necessarily good samples. This leads to the second issue: the representativeness of a sample is actually far more important than sample size. A good sample accurately reflects (or 'represents') the population." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial. No matter how puzzled we are by the behavior of an electron or an atom, we rarely call it complex, as quantum mechanics offers us the tools to describe them with remarkable accuracy. The demystification of crystals-highly regular networks of atoms and molecules-is one of the major success stories of twentieth-century physics, resulting in the development of the transistor and the discovery of superconductivity. Yet, we continue to struggle with systems for which the interaction map between the components is less ordered and rigid, hoping to give self-organization a chance." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Blissful data consist of information that is accurate, meaningful, useful, and easily accessible to many people in an organization. These data are used by the organization’s employees to analyze information and support their decision-making processes to strategic action. It is easy to see that organizations that have reached their goal of maximum productivity with blissful data can triumph over their competition. Thus, blissful data provide a competitive advantage.". (Margaret Y Chu, "Blissful Data", 2004)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Bialynicki-Birula & Iwona Bialynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Coincidence surprises us because our intuition about the likelihood of an event is often wildly inaccurate." (Michael Starbird, "Coincidences, Chaos, and All That Math Jazz", 2005)

"[myth:] Accuracy is more important than precision. For single best estimates, be it a mean value or a single data value, this question does not arise because in that case there is no difference between accuracy and precision. (Think of a single shot aimed at a target.) Generally, it is good practice to balance precision and accuracy. The actual requirements will differ from case to case." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies. " (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007) 

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Prior to the discovery of the butterfly effect it was generally believed that small differences averaged out and were of no real significance. The butterfly effect showed that small things do matter. This has major implications for our notions of predictability, as over time these small differences can lead to quite unpredictable outcomes. For example, first of all, can we be sure that we are aware of all the small things that affect any given system or situation? Second, how do we know how these will affect the long-term outcome of the system or situation under study? The butterfly effect demonstrates the near impossibility of determining with any real degree of accuracy the long term outcomes of a series of events." (Elizabeth McMillan, Complexity, "Management and the Dynamics of Change: Challenges for practice", 2008)

"In the predictive modeling disciplines an ensemble is a group of algorithms that is used to solve a common problem [...] Each modeling algorithm has specific strengths and weaknesses and each provides a different mathematical perspective on the relationships modeled, just like each instrument in a musical ensemble provides a different voice in the composition. Predictive modeling ensembles use several algorithms to contribute their perspectives on the prediction problem and then combine them together in some way. Usually ensembles will provide more accurate models than individual algorithms which are also more general in their ability to work well on different data sets [...] the approach has proven to yield the best results in many situations." (Gary Miner et al, "Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications", 2012)

"The problem of complexity is at the heart of mankind’s inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

"Validity of a theory is also known as construct validity. Most theories in science present broad conceptual explanations of relationship between variables and make many different predictions about the relationships between particular variables in certain situations. Construct validity is established by verifying the accuracy of each possible prediction that might be made from the theory. Because the number of predictions is usually infinite, construct validity can never be fully established. However, the more independent predictions for the theory verified as accurate, the stronger the construct validity of the theory." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

"The margin of error is how accurate the results are, and the confidence interval is how confident you are that your estimate falls within the margin of error." (Daniel J Levitin, "Weaponized Lies", 2017)

"Are your insights based on data that is accurate and reliable? Trustworthy data is correct or valid, free from significant defects and gaps. The trustworthiness of your data begins with the proper collection, processing, and maintenance of the data at its source. However, the reliability of your numbers can also be influenced by how they are handled during the analysis process. Clean data can inadvertently lose its integrity and true meaning depending on how it is analyzed and interpreted." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"The only way to achieve any accuracy is to ignore most of the information available." (Preston C Hammer) 

17 December 2018

Data Science: Bias (Just the Quotes)

"The human mind can hardly remain entirely free from bias, and decisive opinions are often formed before a thorough examination of a subject from all its aspects has been made." (Helena P. Blavatsky, "The Secret Doctrine", 1888)

"The classification of facts, the recognition of their sequence and relative significance is the function of science, and the habit of forming a judgment upon these facts unbiased by personal feeling is characteristic of what may be termed the scientific frame of mind." (Karl Pearson, "The Grammar of Science", 1892)

"It may be impossible for human intelligence to comprehend absolute truth, but it is possible to observe Nature with an unbiased mind and to bear truthful testimony of things seen." (Sir Richard A Gregory, "Discovery, Or, The Spirit and Service of Science", 1916)

"Scientific discovery, or the formulation of scientific theory, starts in with the unvarnished and unembroidered evidence of the senses. It starts with simple observation - simple, unbiased, unprejudiced, naive, or innocent observation - and out of this sensory evidence, embodied in the form of simple propositions or declarations of fact, generalizations will grow up and take shape, almost as if some process of crystallization or condensation were taking place. Out of a disorderly array of facts, an orderly theory, an orderly general statement, will somehow emerge." (Sir Peter B Medawar, "Is the Scientific Paper Fraudulent?", The Saturday Review, 1964)

"Errors may also creep into the information transfer stage when the originator of the data is unconsciously looking for a particular result. Such situations may occur in interviews or questionnaires designed to gather original data. Improper wording of the question, or improper voice inflections. and other constructional errors may elicit nonobjective responses. Obviously, if the data is incorrectly gathered, any graph based on that data will contain the original error - even though the graph be most expertly designed and beautifully presented." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"Numbers have undoubted powers to beguile and benumb, but critics must probe behind numbers to the character of arguments and the biases that motivate them." (Stephen J Gould, "An Urchin in the Storm: Essays About Books and Ideas", 1987)

"But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology." (Stephen J Gould, "This View of Life: In the Mind of the Beholder", "Natural History", Vol. 103, No. 2, 1994)

"Under conditions of uncertainty, both rationality and measurement are essential to decision-making. Rational people process information objectively: whatever errors they make in forecasting the future are random errors rather than the result of a stubborn bias toward either optimism or pessimism. They respond to new information on the basis of a clearly defined set of preferences. They know what they want, and they use the information in ways that support their preferences." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] fiding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Self-selection bias occurs when people choose to be in the data - for example, when people choose to go to college, marry, or have children. […] Self-selection bias is pervasive in 'observational data', where we collect data by observing what people do. Because these people chose to do what they are doing, their choices may reflect who they are. This self-selection bias could be avoided with a controlled experiment in which people are randomly assigned to groups and told what to do." (Gary Smith, "Standard Deviations", 2014)

"Self-selection bias occurs when we compare people who made different choices without thinking about why they made these choices. […] Our conclusions would be more convincing if choice was removed […]" (Gary Smith, "Standard Deviations", 2014)

"We naturally draw conclusions from what we see […]. We should also think about what we do not see […]. The unseen data may be just as important, or even more important, than the seen data. To avoid survivor bias, start in the past and look forward." (Gary Smith, "Standard Deviations", 2014)

"We live in a world with a surfeit of information at our service. It is our choice whether we seek out data that reinforce our biases or choose to look at the world in a critical, rational manner, and allow reality to bend our preconceptions. In the long run, the truth will work better for us than our cherished fictions." (Razib Khan, "The Abortion Stereotype", The New York Times, 2015)

"A popular misconception holds that the era of Big Data means the end of a need for sampling. In fact, the proliferation of data of varying quality and relevance reinforces the need for sampling as a tool to work efficiently with a variety of data, and minimize bias. Even in a Big Data project, predictive models are typically developed and piloted with samples." (Peter C Bruce & Andrew G Bruce, "Statistics for Data Scientists: 50 Essential Concepts", 2016)

"Bias is error from incorrect assumptions built into the model, such as restricting an interpolating function to be linear instead of a higher-order curve. [...] Errors of bias produce underfit models. They do not fit the training data as tightly as possible, were they allowed the freedom to do so. In popular discourse, I associate the word 'bias' with prejudice, and the correspondence is fairly apt: an apriori assumption that one group is inferior to another will result in less accurate predictions than an unbiased one. Models that perform lousy on both training and testing data are underfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Bias occurs normally when the model is underfitted and has failed to learn enough from the training data. It is the difference between the mean of the probability distribution and the actual correct value. Hence, the accuracy of the model is different for different data sets (test and training sets). To reduce the bias error, data scientists repeat the model-building process by resampling the data to obtain better prediction values." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"High-bias models typically produce simpler models that do not overfit and in those cases the danger is that of underfitting. Models with low-bias are typically more complex and that complexity enables us to represent the training data in a more accurate way. The danger here is that the flexibility provided by higher complexity may end up representing not only a relationship in the data but also the noise. Another way of portraying the bias-variance trade-off is in terms of complexity v simplicity." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017) 

"If either bias or variance is high, the model can be very far off from reality. In general, there is a trade-off between bias and variance. The goal of any machine-learning algorithm is to achieve low bias and low variance such that it gives good prediction performance. In reality, because of so many other hidden parameters in the model, it is hard to calculate the real bias and variance error. Nevertheless, the bias and variance provide a measure to understand the behavior of the machine-learning algorithm so that the model model can be adjusted to provide good prediction performance." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"The human brain always concocts biases to aid in the construction of a coherent mental life, exclusively suitable for an individual’s personal needs." (Abhijit Naskar, "We Are All Black: A Treatise on Racism", 2017)

"The tension between bias and variance, simplicity and complexity, or underfitting and overfitting is an area in the data science and analytics process that can be closer to a craft than a fixed rule. The main challenge is that not only is each dataset different, but also there are data points that we have not yet seen at the moment of constructing the model. Instead, we are interested in building a strategy that enables us to tell something about data from the sample used in building the model." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017) 

"When we have all the data, it is straightforward to produce statistics that describe what has been measured. But when we want to use the data to draw broader conclusions about what is going on around us, then the quality of the data becomes paramount, and we need to be alert to the kind of systematic biases that can jeopardize the reliability of any claims." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"We over-fit when we go too far in adapting to local circumstances, in a worthy but misguided effort to be ‘unbiased’ and take into account all the available information. Usually we would applaud the aim of being unbiased, but this refinement means we have less data to work on, and so the reliability goes down. Over-fitting therefore leads to less bias but at a cost of more uncertainty or variation in the estimates, which is why protection against over-fitting is sometimes known as the bias/variance trade-off." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Any machine learning model is trained based on certain assumptions. In general, these assumptions are the simplistic approximations of some real-world phenomena. These assumptions simplify the actual relationships between features and their characteristics and make a model easier to train. More assumptions means more bias. So, while training a model, more simplistic assumptions = high bias, and realistic assumptions that are more representative of actual phenomena = low bias." (Imran Ahmad, "40 Algorithms Every Programmer Should Know", 2020)

"If the data that go into the analysis are flawed, the specific technical details of the analysis don’t matter. One can obtain stupid results from bad data without any statistical trickery. And this is often how bullshit arguments are created, deliberately or otherwise. To catch this sort of bullshit, you don’t have to unpack the black box. All you have to do is think carefully about the data that went into the black box and the results that came out. Are the data unbiased, reasonable, and relevant to the problem at hand? Do the results pass basic plausibility checks? Do they support whatever conclusions are drawn?" (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"If you study one group and assume that your results apply to other groups, this is extrapolation. If you think you are studying one group, but do not manage to obtain a representative sample of that group, this is a different problem. It is a problem so important in statistics that it has a special name: selection bias. Selection bias arises when the individuals that you sample for your study differ systematically from the population of individuals eligible for your study." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"A well-known theorem called the 'no free lunch' theorem proves exactly what we anecdotally witness when designing and building learning systems. The theorem states that any bias-free learning system will perform no better than chance when applied to arbitrary problems. This is a fancy way of stating that designers of systems must give the system a bias deliberately, so it learns what’s intended. As the theorem states, a truly bias- free system is useless." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"Machine learning bias is typically understood as a source of learning error, a technical problem. […] Machine learning bias can introduce error simply because the system doesn’t 'look' for certain solutions in the first place. But bias is actually necessary in machine learning - it’s part of learning itself." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"To accomplish their goals, what are now called machine learning systems must each learn something specific. Researchers call this giving the machine a 'bias'. […] A bias in machine learning means that the system is designed and tuned to learn something. But this is, of course, just the problem of producing narrow problem-solving applications." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"Any time you run regression analysis on arbitrary real-world observational data, there’s a significant risk that there’s hidden confounding in your dataset and so causal conclusions from such analysis are likely to be (causally) biased." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"Science is the search for truth, that is the effort to understand the world: it involves the rejection of bias, of dogma, of revelation, but not the rejection of morality." (Linus Pauling)

"Facts and values are entangled in science. It's not because scientists are biased, not because they are partial or influenced by other kinds of interests, but because of a commitment to reason, consistency, coherence, plausibility and replicability. These are value commitments." (Alva Noë)

"A scientist has to be neutral in his search for the truth, but he cannot be neutral as to the use of that truth when found. If you know more than other people, you have more responsibility, rather than less." (Charles P Snow)

More quotes on "Bias" at the-web-of-knowledge.blogspot.com

Data Science: Insight (Just the Quotes)

"[…] it is from long experience chiefly that we are to expect the most certain rules of practice, yet it is withal to be remembered, that observations, and to put us upon the most probable means of improving any art, is to get the best insight we can into the nature and properties of those things which we are desirous to cultivate and improve." (Stephen Hales, "Vegetable Staticks", 1727)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"The attempt to characterize exactly models of an empirical theory almost inevitably yields a more precise and clearer understanding of the exact character of a theory. The emptiness and shallowness of many classical theories in the social sciences is well brought out by the attempt to formulate in any exact fashion what constitutes a model of the theory. The kind of theory which mainly consists of insightful remarks and heuristic slogans will not be amenable to this treatment. The effort to make it exact will at the same time reveal the weakness of the theory." (Patrick Suppes," A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences", Synthese  Vol. 12 (2/3), 1960)

"Model-making, the imaginative and logical steps which precede the experiment, may be judged the most valuable part of scientific method because skill and insight in these matters are rare. Without them we do not know what experiment to do. But it is the experiment which provides the raw material for scientific theory. Scientific theory cannot be built directly from the conclusions of conceptual models." (Herbert G Andrewartha," Introduction to the Study of Animal Population", 1961)

"The purpose of computing is insight, not numbers […] sometimes […] the purpose of computing numbers is not yet in sight." (Richard Hamming, "Numerical Methods for Scientists and Engineers", 1962)

"The mediation of theory and praxis can only be clarified if to begin with we distinguish three functions, which are measured in terms of different criteria: the formation and extension of critical theorems, which can stand up to scientific discourse; the organization of processes of enlightenment, in which such theorems are applied and can be tested in a unique manner by the initiation of processes of reflection carried on within certain groups toward which these processes have been directed; and the selection of appropriate strategies, the solution of tactical questions, and the conduct of the political struggle. On the first level, the aim is true statements, on the second, authentic insights, and on the third, prudent decisions." (Jürgen Habermas, "Introduction to Theory and Practice", 1963)

"[...] it is rather more difficult to recapture directness and simplicity than to advance in the direction of ever more sophistication and complexity. Any third-rate engineer or researcher can increase complexity; but it takes a certain flair of real insight to make things simple again." (Ernst F Schumacher, "Small Is Beautiful", 1973)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"There is a tendency to mistake data for wisdom, just as there has always been a tendency to confuse logic with values, intelligence with insight. Unobstructed access to facts can produce unlimited good only if it is matched by the desire and ability to find out what they mean and where they lead." (Norman Cousins, "Human Options : An Autobiographical Notebook", 1981)

"The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts based on small but profound insights; the insights themselves come from concrete special cases." (Paul Halmos, "Selecta: Expository writing", 1983)

"All the efforts of the researcher to find other models, conceptions, different mathematical forms, better linguistic modes of expression, to do justice to newly discovered layers of being mean self-transformation. The researcher in his place is the human being in self-transformation to more profound insight into what is given." (John Dessauer, Universitas: A Quarterly German Review of the Arts and Sciences Vol. 26 (4), 1984)

"[…] new insights fail to get put into practice because they conflict with deeply held internal images of how the world works [...] images that limit us to familiar ways of thinking and acting. That is why the discipline of managing mental models - surfacing, testing, and improving our internal pictures of how the world works - promises to be a major breakthrough for learning organizations." (Peter Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"Management is not founded on observation and experiment, but on a drive towards a set of outcomes. These aims are not altogether explicit; at one extreme they may amount to no more than an intention to preserve the status quo, at the other extreme they may embody an obsessional demand for power, profit or prestige. But the scientist's quest for insight, for understanding, for wanting to know what makes the system tick, rarely figures in the manager's motivation. Secondly, and therefore, management is not, even in intention, separable from its own intentions and desires: its policies express them. Thirdly, management is not normally aware of the conventional nature of its intellectual processes and control procedures. It is accustomed to confuse its conventions for recording information with truths-about-the-business, its subjective institutional languages for discussing the business with an objective language of fact and its models of reality with reality itself." (Stanford Beer, "Decision and Control", 1994)

"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"The purpose of analysis is insight. The best analysis is the simplest analysis which provides the needed insight." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)

"Central tendency is the formal expression for the notion of where data is centered, best understood by most readers as 'average'. There is no one way of measuring where data are centered, and different measures provide different insights." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The other buzzword that epitomizes a bias toward substitution is 'big data'. Today’s companies have an insatiable appetite for data, mistakenly believing that more data always creates more value. But big data is usually dumb data. Computers can find patterns that elude humans, but they don’t know how to compare patterns from different sources or how to interpret complex behaviors. Actionable insights can only come from a human analyst (or the kind of generalized artificial intelligence that exists only in science fiction)." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"As business leaders we need to understand that lack of data is not the issue. Most businesses have more than enough data to use constructively; we just don't know how to use it. The reality is that most businesses are already data rich, but insight poor." (Bernard Marr, Big Data: Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, 2015)

"While Big Data, when managed wisely, can provide important insights, many of them will be disruptive. After all, it aims to find patterns that are invisible to human eyes. The challenge for data scientists is to understand the ecosystems they are wading into and to present not just the problems but also their possible solutions." (Cathy O'Neil, "Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy", 2016)

"Big Data allows us to meaningfully zoom in on small segments of a dataset to gain new insights on who we are." (Seth Stephens-Davidowitz, "Everybody Lies: What the Internet Can Tell Us About Who We Really Are", 2017)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)

"Quantum Machine Learning is defined as the branch of science and technology that is concerned with the application of quantum mechanical phenomena such as superposition, entanglement and tunneling for designing software and hardware to provide machines the ability to learn insights and patterns from data and the environment, and the ability to adapt automatically to changing situations with high precision, accuracy and speed." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)

"The goal of data science is to improve decision making by basing decisions on insights extracted from large data sets. As a field of activity, data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting nonobvious and useful patterns from large data sets. It is closely related to the fields of data mining and machine learning, but it is broader in scope. (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"The patterns that we extract using data science are useful only if they give us insight into the problem that enables us to do something to help solve the problem." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"A random collection of interesting but disconnected facts will lack the unifying theme to become a data story - it may be informative, but it won’t be insightful." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"An essential underpinning of both the kaizen and lean methodologies is data. Without data, companies using these approaches simply wouldn’t know what to improve or whether their incremental changes were successful. Data provides the clarity and specificity that’s often needed to drive positive change. The importance of having baselines, benchmarks, and targets isn’t isolated to just business; it can transcend everything from personal development to social causes. The right insight can instill both the courage and confidence to forge a new direction - turning a leap of faith into an informed expedition." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"An insight is when you mix your creative and intellectual labor with a set of data points to create a point of view resulting in a useful assertion. You 'see into' an object of inquiry to reveal important characteristics about its nature." (Eben Hewitt, "Technology Strategy Patterns: Architecture as strategy" 2nd Ed., 2019)

"An essential underpinning of both the kaizen and lean methodologies is data. Without data, companies using these approaches simply wouldn’t know what to improve or whether their incremental changes were successful. Data provides the clarity and specificity that’s often needed to drive positive change. The importance of having baselines, benchmarks, and targets isn’t isolated to just business; it can transcend everything from personal development to social causes. The right insight can instill both the courage and confidence to forge a new direction - turning a leap of faith into an informed expedition." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Before you can even consider creating a data story, you must have a meaningful insight to share. One of the essential attributes of a data story is a central or main insight. Without a main point, your data story will lack purpose, direction, and cohesion. A central insight is the unifying theme (telos appeal) that ties your various findings together and guides your audience to a focal point or climax for your data story. However, when you have an increasing amount of data at your disposal, insights can be elusive. The noise from irrelevant and peripheral data can interfere with your ability to pinpoint the important signals hidden within its core." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling is transformative. Many people don’t realize that when they share insights, they’re not just imparting information to other people. The natural consequence of sharing an insight is change. Stop doing that, and do more of this. Focus less on them, and concentrate more on these people. Spend less there, and invest more here. A poignant insight will drive an enlightened audience to think or act differently. So, as a data storyteller, you’re not only guiding the audience through the data, you’re also acting as a change agent. Rather than just pointing out possible enhancements, you’re helping your audience fully understand the urgency of the changes and giving them the confidence to move forward." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Some problems are just too complicated for rational logical solutions. They admit of insights, not answers." (Jerome B Wiesner)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.