Showing posts with label maps. Show all posts
Showing posts with label maps. Show all posts

19 October 2023

📊Graphical Representation: Graphics We Live By II (Discount Rates in MS Excel)

Graphical Representation
Graphical Representation Series

It's difficult, if not impossible, to give general rules on how data visualizations should be built. However, the data professional can use a set of principles, which are less strict than rules, and validate one's work against them. Even then one might need to make concessions and go against the principles or common sense, though such cases should be few, at least in theory. One of such important principles is reflected in Tufte's statement that "if the statistics are boring, then you've got the wrong numbers" [1].

So, the numbers we show should not be boring, but that's the case with most of the numbers we need to show, or we consume in news and other media sources. Unfortunately, in many cases we need to go with the numbers we have and find a way to represent them, ideally by facilitating the reader to make sense of the respective data. This should be our first goal when visualizing data. Secondly, because everybody talks about insights nowadays, one should identify the opportunity for providing views into the data that go beyond the simple visualization, even if this puts more burden on data professional's shoulder. Frankly, from making sense of a set of data and facilitating an 'Aha' moment is a long leap. Thirdly, one should find or use the proper tools and channels for communicating the findings. 

A basic requirement for the data professional to be able to address these goals is to have clear definitions of the numbers, have a good understanding of how the numbers reflect the reality, respectively how the numbers can be put into the broader context. Unfortunately, all these assumptions seem to be a luxury. On the other side, the type of data we work with allows us to address at least the first goal. Upon case, our previous experience can help, though there will be also cases in which we can try to do our best. 

Let's consider a simple set of data retrieved recently from another post - Discount rates (in percentage) per State, in which the values for 5 neighboring States are considered (see the first two columns from diagram A). Without knowing the meaning of data, one could easily create a chart in Excel or any other visualization tool. Because the State has categorical values, probably some visualization tools will suggest using bar and not column charts. Either by own choice or by using the default settings, the data professional might end up with a column chart (see diagram B), which is Ok for some visualizations. 


One can start with a few related questions:
(1) Does it make sense to use a chart to represent 5 values which have small variability (the difference between the first and last value is of only 6%)? 
(2) Does it make sense to use a chart only for the sake of visualizing the data?
(3) Where is the benefit for using a chart as long there's no information conveyed? 

One can see similar examples in the media where non-aggregated values are shown in a chart just for the sake of visualizing the data. Sometimes the authors compensate for the lack of meaning with junk elements, fancy titles or other tricks. Usually, sense-making in a chart takes longer than looking at the values in a table as there are more dimensions or elements to consider. For a table there's the title, headers and the values, nothing more! For a chart one has in addition the axes and some visualization elements that can facilitate or complicate visualization's decoding. Where to add that there are also many tricks to distort the data. 

Tables tend to maximize the amount of digital ink used to represent the data, and minimize the amount used to represent everything else not important to understanding. It's what Tufte calls the data-to-ink ratio (see [1]), a second important principle. This can be translated in (a) removing the border of the chart area, (b) minimizing the number of gridlines shown, (c) minimizing the number of ticks on the axis without leading to information lost, (d) removing redundant information, (e) or information that doesn't help the reader. 

However, the more data is available in the table, the more difficult it becomes to navigate the data. But again, if the chart shows the individual data without any information gained, a table might be still more effective. One shouldn't be afraid to show a table where is the case!

(4) I have a data visualization, what's next?

Ideally, the data professional should try to obtain the maximum of effect with minimum of elements. If this principle aims for the efficiency of design, a fourth related principle aims for the efficiency of effort - one should achieve a good enough visualization with a minimum of effort. Therefore, it's enough maybe if we settle to any of the two above results. 

On the other side, maybe by investing a bit more effort certain aspects can be improved. In this area beginners start playing with the colors, formatting the different elements of the chart. Unfortunately, even if color plays a major role in the encoding and decoding of meaning, is often misused/overused. 

(5) Is there any meaning in the colors used?

In the next examples taken from the web (diagram C and D), the author changed the color of the column with the minimal value to red to contrast it with the other values. Red is usually associated with danger, error, warning, or other similar characteristics with negative impact. The chances are high that the reader will associate the value with a negative connotation, even if red is used also for conveying important information (usually in text). Moreover, the reader will try to interpret the meaning of the other colors. In practice, the color grey has a neutral tone (and calming effect on the mind). Therefore, it's safe to use grey in visualization (see diagram D in contrast with diagram C). Some even advise setting grey as default for the visualization and changing the colors as needed later

In these charts, the author signalized in titles that red denotes the lowest value, though it just reduces the confusion. One can meet titles in which several colors are used, reminding of a Christmas tree. Frankly, this type of encoding is not esthetically pleasing, and it can annoy the reader. 

(6) What's in a name?

The titles and, upon case, the subtitles are important elements in communicating what the data reflects. The title should be in general short and succinct in the information it conveys, having the role of introducing, respectively identifying the chart, especially when multiple charts are used. Some charts can also use a subtitle, which can be longer than the title and have more of a storytelling character by highlighting the message and/or the finding in the data. In diagrams C and D the subtitles were considered as tiles, which is not considerably wrong. 

In the media and presentations with influencing character, subtitles help the user understand the message or the main findings, though it's not appropriate for hardcoding the same in dynamic dashboards. Even if a logic was identified to handle the various scenarios, this shifts users' attention, and the chance is high that they'll stop further investigating the visualization. A data professional should present the facts with minimal interference in how the audience and/or users perceive the data. 

As a recommendation, one should aim for clear general titles and avoid transmitting own message in charts. As a principle this can be summarized as "aim for clarity and equidistance".

(7) What about meaning?

Until now we barely considered the meaning of data. Unfortunately, there's no information about what the Discount rate means. It could be "the minimum interest rate set by the US Federal Reserve (and some other national banks) for lending to other banks" or "a rate used for discounting bills of exchange", to use the definitions given by the Oxford dictionary. Searching on the web, the results lead to discount rates for royalty savings, resident tuitions, or retail for discount transactions. Most probably the Discount rates from the data set refer to the latter.

We need a definition of the Discount rate to understand what the values represent when they are ordered. For example, when Texas has a value of 25% (see B), does this value have a negative or a positive impact when compared with other values? It depends on how it's used in the associated formula. The last two charts consider that the minimum value has a negative impact, though without more information the encoding might be wrong! 

Important formulas and definitions should be considered as side information in the visualization, accompanying text or documentation! If further resources are required for understanding the data, then links to the required resources should be provided as well. At least this assures that the reader can acquire the right information without major overhead. 

(8) What do readers look for? 

Frankly, this should have been the first question! Readers have different expectations from data visualizations. First of all, it's the curiosity - how the data look in row and/or aggregated form, or in more advanced form how are they shaped (e.g. statistical characteristics like dispersion, variance, outliers). Secondly, readers look in the first phase to understand mainly whether the "results" are good or bad, even if there are many shades of grey in between. Further on, there must be made distinction between readers who want to learn more about the data, models, and processes behind, respectively readers who just want a confirmation of their expectations, opinions and beliefs (aka bias). And, in the end, there are also people who are not interested in the data and what it tells, where the title and/or subtitle provide enough information. 

Besides this there are further categories of readers segmented by their role in the decision making, the planning and execution of operational, tactical, or strategic activities. Each of these categories has different needs. However, this exceeds the scope of our analysis. 

Returning to our example, one can expect that the average reader will try to identify the smallest and highest Discount rates from the data set, respectively try to compare the values between the different States. Sorting the data and having the values close to each other facilitates the comparison and ranking, otherwise the reader needing to do this by himself/herself. This latter aspect and the fact that bar charts better handle the display of categorical data such as length and number, make from bar charts the tool of choice (see diagram E). So, whenever you see categorical data, consider using a bar chart!

Despite sorting the data, the reader might still need to subtract the various values to identify and compare the differences. The higher the differences between the values, the more complex these operations become. Diagram F is supposed to help in this area, the comparison to the minimal value being shown in orange. Unfortunately, small variances make numbers' display more challenging especially when the visualization tools don't offer display alternatives.

For showing the data from Diagram F were added in the table the third and fourth columns (see diagram A). There's a fifth column which designates the percentage from a percentage (what's the increase in percentages between the current and minimal value). Even if that's mathematically possible, the gain from using such data is neglectable and can create confusion. This opens the door for another principle that applies in other areas as well: "just because you can, it doesn't mean you should!". One should weigh design decisions against common sense or one's intuition on how something can be (mis)used and/or (mis)understood!

The downside of Diagram F is that the comparisons are made only in relation to the minimum value. The variations are small and allow further comparisons. The higher the differences, the more challenging it becomes to make further comparisons. A matrix display (see diagram G) which compares any two values will help if the number of points is manageable. The upper side of the numbers situated on and above the main diagonal were grayed (and can be removed) because they are either nonmeaningful, or the negatives of the numbers found below the diagram. Such diagrams are seldom used, though upon case they prove to be useful.

Choropleth maps (diagram H) are met almost everywhere data have a geographical dimension. Like all the other visuals they have their own advantages (e.g. relative location on the map) and disadvantages (e.g. encoding or displaying data). The diagram shows only the regions with data (remember the data-to-ink ratio principle).


(9) How about the shape of data?

When dealing with numerical data series, it's useful to show aggregated summaries like the average, quartiles, or standard deviation to understand how the data are shaped. Such summaries don't really make sense for our data set given the nature of the numbers (five values with small variance). One can still calculate them and show them in a box plot, though the benefit is neglectable. 

(10) Which chart should be used?

As mentioned above, each chart has advantages and disadvantages. Given the simplicity and the number of data points, any of the above diagrams will do. A table is simple enough despite not using any visualization effects. Also, the bar charts are simple enough to use, with a plus maybe for diagram F which shows a further dimension of the data. The choropleth map adds the geographical dimension, which could be important for some readers. The matrix table is more appropriate for technical readers and involves more effort to understand, at least at first sight, though the learning curve is small. The column charts were considered only for exemplification purposes, though they might work as well. 

In the end one should go with own experience and consider the audience and the communication channels used. One can also choose 2 different diagrams, especially when they are complementary and offer an additional dimension (e.g. diagrams F and H), though the context may dictate whether their use is appropriate or not. The diagrams should be simple to read and understand, but this doesn't mean that one should stick to the standard visuals. The data professional should explore other means of representing the data, a fresh view having the opportunity of catching the reader's attention.

As a closing remark, nowadays data visualization tools allow building such diagrams without much effort. Conversely, it takes more effort to go beyond the basic functionality and provide more value for thyself and the readers. One should be able to evaluate upfront how much time it makes sense to invest. Hopefully, the few methods, principles and recommendations presented here will help further!

Previous Post <<||>> Next Post

Resources:
[1] Edward R Tufte (1983) "The Visual Display of Quantitative Information"

01 December 2018

🔭Data Science: Data Visualization (Just the Quotes)

"No matter how clever the choice of the information, and no matter how technologically impressive the encoding, a visualization fails if the decoding fails. Some display methods lead to efficient, accurate decoding, and others lead to inefficient, inaccurate decoding. It is only through scientific study of visual perception that informed judgments can be made about display methods." (William S Cleveland, "The Elements of Graphing Data", 1985)

"The greatest possibilities of visual display lie in vividness and inescapability of the intended message. A visual display can stop your mental flow in its tracks and make you think. A visual display can force you to notice what you never expected to see. One should see the intended at once; one should not even have to wait for it to appear." (John W Tukey, "Data-based graphics: Visual display in the decades to come", Statistical Science 5, 1990)

"Data that are skewed toward large values occur commonly. Any set of positive measurements is a candidate. Nature just works like that. In fact, if data consisting of positive numbers range over several powers of ten, it is almost a guarantee that they will be skewed. Skewness creates many problems. There are visualization problems. A large fraction of the data are squashed into small regions of graphs, and visual assessment of the data degrades. There are characterization problems. Skewed distributions tend to be more complicated than symmetric ones; for example, there is no unique notion of location and the median and mean measure different aspects of the distribution. There are problems in carrying out probabilistic methods. The distribution of skewed data is not well approximated by the normal, so the many probabilistic methods based on an assumption of a normal distribution cannot be applied." (William S Cleveland, "Visualizing Data", 1993)

"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)

"One important aspect of reality is improvisation; as a result of special structure in a set of data, or the finding of a visualization method, we stray from the standard methods for the data type to exploit the structure or the finding." (William S Cleveland, "Visualizing Data", 1993)

"There are two components to visualizing the structure of statistical data - graphing and fitting. Graphs are needed, of course, because visualization implies a process in which information is encoded on visual displays. Fitting mathematical functions to data is needed too. Just graphing raw data, without fitting them and without graphing the fits and residuals, often leaves important aspects of data undiscovered." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an approach to data analysis that stresses a penetrating look at the structure of data. No other approach conveys as much information. […] Conclusions spring from data when this information is combined with the prior knowledge of the subject under investigation." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an effective framework for drawing inferences from data because its revelation of the structure of data can be readily combined with prior knowledge to draw conclusions. By contrast, because of the formalism of probablistic methods, it is typically impossible to incorporate into them the full body of prior information." (William S Cleveland, "Visualizing Data", 1993)

"When visualization tools act as a catalyst to early visual thinking about a relatively unexplored problem, neither the semantics nor the pragmatics of map signs is a dominant factor. On the other hand, syntactics (or how the sign-vehicles, through variation in the visual variables used to construct them, relate logically to one another) are of critical importance." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"The nature of maps and of their use in science and society is in the midst of remarkable change - change that is stimulated by a combination of new scientific and societal needs for geo-referenced information and rapidly evolving technologies that can provide that information in innovative ways. A key issue at the heart of this change is the concept of ‘visualization’." (Alan M MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"Visualization for large data is an oxymoron - the art is to reduce size before one visualizes. The contradiction (and challenge) is that we may need to visualize first in order to find out how to reduce size." (Peter Huber, "Massive datasets workshop: Four years after", Journal of Computational and Graphical Statistics Vol 8, 1999)

"Functional visualizations are more than innovative statistical analyses and computational algorithms. They must make sense to the user and require a visual language system that uses color, shape, line, hierarchy and composition to communicate clearly and appropriately, much like the alphabetic and character-based languages used worldwide between humans." (Matt Woolman, "Digital Information Graphics", 2002)

"Visualizations can be used to explore data, to confirm a hypothesis, or to manipulate a viewer. [...] In exploratory visualization the user does not necessarily know what he is looking for. This creates a dynamic scenario in which interaction is critical. [...] In a confirmatory visualization, the user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System parameters are often predetermined." (Usama Fayyad et al, "Information Visualization in Data Mining and Knowledge Discovery", 2002) 

"Dashboards and visualization are cognitive tools that improve your 'span of control' over a lot of business data. These tools help people visually identify trends, patterns and anomalies, reason about what they see and help guide them toward effective decisions. As such, these tools need to leverage people's visual capabilities. With the prevalence of scorecards, dashboards and other visualization tools now widely available for business users to review their data, the issue of visual information design is more important than ever." (Richard Brath & Michael Peters, "Dashboard Design: Why Design is Important," DM Direct, 2004)

"Merely drawing a plot does not constitute visualization. Visualization is about conveying important information to the reader accurately. It should reveal information that is in the data and should not impose structure on the data." (Robert Gentleman, "Bioinformatics and Computational Biology Solutions using R and Bioconductor", 2005)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006) 

"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008) 

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"The purpose of visualization is insight, not pictures." (Ben Shneiderman, "Extreme visualization: squeezing a billion records into a million pixels",  SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD, 2008)

"With the ever increasing amount of empirical information that scientists from all disciplines are dealing with, there exists a great need for robust, scalable and easy to use clustering techniques for data abstraction, dimensionality reduction or visualization to cope with and manage this avalanche of data."  (Jörg Reichardt, "Structure in Complex Networks", 2009)

"So what is the difference between a chart or graph and a visualization? […] a chart or graph is a clean and simple atomic piece; bar charts contain a short story about the data being presented. A visualization, on the other hand, seems to contain much more ʻchart junkʼ, with many sometimes complex graphics or several layers of charts and graphs. A visualization seems to be the super-set for all sorts of data-driven design." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The goal of visualization is to aid our understanding of data by leveraging the human visual system’s highly tuned ability to see patterns, spot trends, and identify outliers." (J Heer et al, "A tour through the visualization zoo", Queue 8, 2010) 

"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)

"Exploratory data visualizations are appropriate when you have a whole bunch of data and you’re not sure what’s in it. […] By contrast, explanatory data visualization is appropriate when you already know what the data has to say, and you are trying to tell that story to somebody else." (Noah Iliinsky & Julie Steele, "Designing Data Visualizations", 2011)

"In data visualization, the number one rule of thumb to bear is mind is: Function first, suave second." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"The first and main goal of any graphic and visualization is to be a tool for your eyes and brain to perceive what lies beyond their natural reach." (Alberto Cairo, "The Functional Art", 2011)

"Thinking of graphics as art leads many to put bells and whistles over substance and to confound infographics with mere illustrations." (Alberto Cairo, "The Functional Art", 2011)

"[...] the terms data visualization and information visualization (casually, data viz and info viz) are useful for referring to any visual representation of data that is: (•) algorithmically drawn (may have custom touches but is largely rendered with the help of computerized methods); (•) easy to regenerate with different data (the same form may be repurposed to represent different datasets with similar dimensions or characteristics); (•) often aesthetically barren (data is not decorated); and (•) relatively data-rich (large volumes of data are welcome and viable, in contrast to infographics)." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Visualizations act as a campfire around which we gather to tell stories." (Al Shalloway, 2011)

"Good infographic design is about storytelling by combining data visualization design and graphic design." (Randy Krum, "Good Infographics: Effective Communication with Data Visualization and Design", 2013)

"Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury - which is growing into a necessity - to jump back and forth between data exploration and storytelling." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The biggest thing to know is that data visualization is hard. Really difficult to pull off well. It requires harmonization of several skills sets and ways of thinking: conceptual, analytic, statistical, graphic design, programmatic, interface-design, story-telling, journalism - plus a bit of 'gut feel'. The end result is often simple and beautiful, but the process itself is usually challenging and messy." (David McCandless, 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization is what happens when you make the jump from raw data to bar graphs, line charts, and dot plots. […] In its most basic form, visualization is simply mapping data to geometry and color. It works because your brain is wired to find patterns, and you can switch back and forth between the visual and the numbers it represents. This is the important bit. You must make sure that the essence of the data isn’t lost in that back and forth between visual and the value it represents because if you can’t map back to the data, the visualization is just a bunch of shapes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"What is good visualization? It is a representation of data that helps you see what you otherwise would have been blind to if you looked only at the naked source. It enables you to see trends, patterns, and outliers that tell you about yourself and what surrounds you. The best visualization evokes that moment of bliss when seeing something for the first time, knowing that what you see has been right in front of you, just slightly hidden. Sometimes it is a simple bar graph, and other times the visualization is complex because the data requires it." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Just because data is visualized doesn’t necessarily mean that it is accurate, complete, or indicative of the right course of action. Exhibiting a healthy skepticism is almost always a good thing." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"To be sure, data doesn’t always need to be visualized, and many data visualizations just plain suck. Look around you. It’s not hard to find truly awful representations of information. Some work in concept but fail because they are too busy; they confuse people more than they convey information [...]. Visualization for the sake of visualization is unlikely to produce desired results - and this goes double in an era of Big Data. Bad is still bad, even and especially at a larger scale." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"We are all becoming more comfortable with data. Data visualization is no longer just something we have to do at work. Increasingly, we want to do it as consumers and as citizens. Put simply, visualizing helps us understand what’s going on in our lives - and how to solve problems." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Data visualization is marketed today as the miracle cure that will open the doors to success, whatever its shape. We have enough experience to realize that in reality it’s not always easy to distinguish between real usefulness and zealous marketing. After the initial excitement over the prospects of data visualization comes disillusionment, and after that the possibility of a balanced assessment. The key is to get to this point quickly, without disappointments and at a lower cost." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"[...] data visualization [is] a tool that, by applying perceptual mechanisms to the visual representation of abstract quantitative data, facilitates the search for relevant shapes, order, or exceptions. [...]  We must think of data visualization as a generic field where several (combinations of) perspectives, processes, technologies, and objectives (not forgetting the subjective component of personal style) can coexist. In this sense, data art, infographics, and business visualization are branches of data visualization." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Data visualization is not a science; it is a crossroads at which certain scientific knowledge is used to justify and frame subjective choices. Ÿis doesn’t mean that rules don’t count. Rules exist and are effective when applied within the context for which they were designed." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Creating effective visualizations is hard. Not because a dataset requires an exotic and bespoke visual representation - for many problems, standard statistical charts will suffice. And not because creating a visualization requires coding expertise in an unfamiliar programming language [...]. Rather, creating effective visualizations is difficult because the problems that are best addressed by visualization are often complex and ill-formed. The task of figuring out what attributes of a dataset are important is often conflated with figuring out what type of visualization to use. Picking a chart type to represent specific attributes in a dataset is comparatively easy. Deciding on which data attributes will help answer a question, however, is a complex, poorly defined, and user-driven process that can require several rounds of visualization and exploration to resolve." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"[…] no single visualization is ever quite able to show all of the important aspects of our data at once - there just are not enough visual encoding channels. […] designing effective visualizations to make sense of data is not an art - it is a systematic and repeatable process." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

 "[…] the data itself can lead to new questions too. In exploratory data analysis (EDA), for example, the data analyst discovers new questions based on the data. The process of looking at the data to address some of these questions generates incidental visualizations - odd patterns, outliers, or surprising correlations that are worth looking into further." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"The field of [data] visualization takes on that goal more broadly: rather than attempting to identify a single metric, the analyst instead tries to look more holistically across the data to get a usable, actionable answer. Arriving at that answer might involve exploring multiple attributes, and using a number of views that allow the ideas to come together. Thus, operationalization in the context of visualization is the process of identifying tasks to be performed over the dataset that are a reasonable approximation of the high-level question of interest." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"As a first principle, any visualization should convey its information quickly and easily, and with minimal scope for misunderstanding. Unnecessary visual clutter makes more work for the reader’s brain to do, slows down the understanding (at which point they may give up) and may even allow some incorrect interpretations to creep in." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Data storytelling can be defined as a structured approach for communicating data insights using narrative elements and explanatory visuals." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling involves the skillful combination of three key elements: data, narrative, and visuals. Data is the primary building block of every data story. It may sound simple, but a data story should always find its origin in data, and data should serve as the foundation for the narrative and visual elements of your story." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"(1) Good data visualization is trustworthy: Is it reliable? Is the portrayal of the data and the subject faithful? Do the representation and presentation design have integrity? (2) Good data visualization is accessible: Is it usable? Is the portrayal of the data and the subject relevant? Is the representation and presentation design suitably understandable? (3) Good data visualization is elegant: Is it aesthetic? Is the representation and presentation design appealing?" (Andy Kirk, "Data Visualisation: A Handbook for Data Driven Design" 2nd Ed., 2019)

"In addition to managing how the data is visualized to reduce noise, you can also decrease the visual interference by minimizing the extraneous cognitive load. In these cases, the nonrelevant information and design elements surrounding the data can cause extraneous noise. Poor design or display decisions by the data storyteller can inadvertently interfere with the communication of the intended signal. This form of noise can occur at both a macro and micro level." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"There is often no one 'best' visualization, because it depends on context, what your audience already knows, how numerate or scientifically trained they are, what formats and conventions are regarded as standard in the particular field you’re working in, the medium you can use, and so on. It’s also partly scientific and partly artistic, so you get to express your own design style in it, which is what makes it so fascinating." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019) 

"When visuals are applied to data, they can enlighten the audience to insights that they wouldn’t see without charts or graphs. Many interesting patterns and outliers in the data would remain hidden in the rows and columns of data tables without the help of data visualizations. They connect with our visual nature as human beings and impart knowledge that couldn’t be obtained as easily using other approaches that involve just words or numbers." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"While visuals are an essential part of data storytelling, data visualizations can serve a variety of purposes from analysis to communication to even art. Most data charts are designed to disseminate information in a visual manner. Only a subset of data compositions is focused on presenting specific insights as opposed to just general information. When most data compositions combine both visualizations and text, it can be difficult to discern whether a particular scenario falls into the realm of data storytelling or not." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Another problem is that while data visualizations may appear to be objective, the designer has a great deal of control over the message a graphic conveys. Even using accurate data, a designer can manipulate how those data make us feel. She can create the illusion of a correlation where none exists, or make a small difference between groups look big." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"As presenters of data visualizations, often we just want our audience to understand something about their environment – a trend, a pattern, a breakdown, a way in which things have been progressing. If we ask ourselves what we want our audience to do with that information, we might have a hard time coming up with a clear answer sometimes. We might just want them to know something." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"Data visualizations are either used (1) to help people complete a task, or (2) to give them a general awareness of the way things are, or (3) to enable them to explore the topic for themselves."  (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"Much of the data visualization that bombards us today is decoration at best, and distraction or even disinformation at worst. The decorative function is surprisingly common, perhaps because the data visualization teams of many media organizations are part of the art departments. They are led by people whose skills and experience are not in statistics but in illustration or graphic design. The emphasis is on the visualization, not on the data. It is, above all, a picture." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"A data visualization, or dashboard, is great for summarizing or describing what has gone on in the past, but if people don’t know how to progress beyond looking just backwards on what has happened, then they cannot diagnose and find the ‘why’ behind it." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Data literacy is for the masses, and data visualization is powerful to simplify what could be very complicated." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Understanding the entire data ecosystem, from the production of a data point to its consumption in a dashboard or a visualization, provides the ability to invoke action, which is more valuable than the mere sum of its parts." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"Data visualization is a simplified approach to studying data." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Data visualization is a mix of science and art. Sometimes we want to be closer to the science side of the spectrum - in other words, use visualizations that allow readers to more accurately perceive the absolute values of data and make comparisons. Other times we may want to be closer to the art side of the spectrum and create visuals that engage and excite the reader, even if they do not permit the most accurate comparisons." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"I agree that data visualizations should be visually appealing, driving and utilizing the appeal and power for individuals to utilize it effectively, but sometimes this can take too much time, taking it away from more valuable uses in data. Plus, if the data visualization is not moving the needle of a business goal or objective, how effective is that visualization?" (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data visualization is the practice of taking insights found in data analysis and turning them into numbers, graphs, charts, and other visual concepts to make them easier to grasp, understand, learn from, and utilize.[...] The visualization of data can be thought of as both a science and an art in that the way it is displayed is often as important to its understanding as the actual information that is being displayed." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Visualizations can remove the background noise from enormous sets of data so that only the most important points stand out to the intended audience. This is particularly important in the era of big data. The more data there is, the more chance for noise and outliers to interfere with the core concepts of the data set." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"The best approach is to build visualizations in the most digestible form, fitted to how that executive thinks. You will have to interact with executives, show them different visualizations, and see how they react in order to learn which forms work best for them. Be ready to fail often and learn fast, particularly with visualizations." (John Lucker)

"Visualisation is fundamentally limited by the number of pixels you can pump to a screen. If you have big data, you have way more data than pixels, so you have to summarise your data. Statistics gives you lots of really good tools for this." (Hadley Wickham)

"We often think of visualization as a design and programming task, but the process starts further back with the data. You have to understand the data - its trends and patterns, along with its flaws and imperfections - and the rest follows." (Nathan Yau)

13 May 2018

🔬Data Science: Self-Organizing Map (Definitions)

"A clustering neural net, with topological structure among cluster units." (Laurene V Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications", 1994)

"A self organizing map is a form of Kohonen network that arranges its clusters in a (usually) two-dimensional grid so that the codebook vectors (the cluster centers) that are close to each other on the grid are also close in the k-dimensional feature space. The converse is not necessarily true, as codebook vectors that are close in feature-space might not be close on the grid. The map is similar in concept to the maps produced by descriptive techniques such as multi-dimensional scaling (MDS)." (William J Raynor Jr., "The International Dictionary of Artificial Intelligence", 1999)

"result of a nonparametric regression process that is mainly used to represent high-dimensional, nonlinearly related data items in an illustrative, often two-dimensional display, and to perform unsupervised classification and clustering." (Teuvo Kohonen, "Self-Organizing Maps" 3rd Ed., 2001)

"a method of organizing and displaying textual information according to the frequency of occurrence of text and the relationship of text from one document to another." (William H Inmon, "Building the Data Warehouse", 2005)

"A type of unsupervised neural network used to group similar cases in a sample. SOMs are unsupervised (see supervised network) in that they do not require a known dependent variable. They are typically used for exploratory analysis and to reduce dimensionality as an aid to interpretation of complex data. SOMs are similar in purpose to Ic-means clustering and factor analysis." (David Scarborough & Mark J Somers, "Neural Networks in Organizational Research: Applying Pattern Recognition to the Analysis of Organizational Behavior", 2006)

"A method to learn to cluster input vectors according to how they are naturally grouped in the input space. In its simplest form, the map consists of a regular grid of units and the units learn to represent statistical data described by model vectors. Each map unit contains a vector used to represent the data. During the training process, the model vectors are changed gradually and then the map forms an ordered non-linear regression of the model vectors into the data space." (Atiq Islam et al, "CNS Tumor Prediction Using Gene Expression Data Part II", Encyclopedia of Artificial Intelligence, 2009)

"A neural-network method that reduces the dimensions of data while preserving the topological properties of the input data. SOM is suitable for visualizing high-dimensional data such as microarray data." (Emmanuel Udoh & Salim Bhuiyan, "C-MICRA: A Tool for Clustering Microarray Data", 2009)

"A neural network unsupervised method of vector quantization widely used in classification. Self-Organizing Maps are a much appreciated for their topology preservation property and their associated data representation system. These two additive properties come from a pre-defined organization of the network that is at the same time a support for the topology learning and its representation. (Patrick Rousset & Jean-Francois Giret, "A Longitudinal Analysis of Labour Market Data with SOM" Encyclopedia of Artificial Intelligence, 2009)

"A simulated neural network based on a grid of artificial neurons by means of prototype vectors. In an unsupervised training the prototype vectors are adapted to match input vectors in a training set. After completing this training the SOM provides a generalized K-means clustering as well as topological order of neurons." (Laurence Mukankusi et al, "Relationships between Wireless Technology Investment and Organizational Performance", 2009)

"A subtype of artificial neural network. It is trained using unsupervised learning to produce low dimensional representation of the training samples while preserving the topological properties of the input space." (Soledad Delgado et al, "Growing Self-Organizing Maps for Data Analysis", 2009)

"An unsupervised neural network providing a topology-preserving mapping from a high-dimensional input space onto a two-dimensional output space." (Thomas Lidy & Andreas Rauber, "Music Information Retrieval", 2009)

"Category of algorithms based on artificial neural networks that searches, by means of self-organization, to create a map of characteristics that represents the involved samples in a determined problem." (Paulo E Ambrósio, "Artificial Intelligence in Computer-Aided Diagnosis", 2009)

"Self-organizing maps (SOMs) are a data visualization technique which reduce the dimensions of data through the use of self-organizing neural networks." (Lluís Formiga & Francesc Alías, "GTM User Modeling for aIGA Weight Tuning in TTS Synthesis", Encyclopedia of Artificial Intelligence, 2009)

"SOFM [self-organizing feature map] is a data mining method used for unsupervised learning. The architecture consists of an input layer and an output layer. By adjusting the weights of the connections between input and output layer nodes, this method identifies clusters in the data." (Indranil Bose, "Data Mining in Tourism", 2009)

"The self-organizing map is a subtype of artificial neural networks. It is trained using unsupervised learning to produce low dimensional representation of the training samples while preserving the topological properties of the input space. The self-organizing map is a single layer feed-forward network where the output syntaxes are arranged in low dimensional (usually 2D or 3D) grid. Each input is connected to all output neurons. Attached to every neuron there is a weight vector with the same dimensionality as the input vectors. The number of input dimensions is usually a lot higher than the output grid dimension. SOMs are mainly used for dimensionality reduction rather than expansion." (Larbi Esmahi et al, "Adaptive Neuro-Fuzzy Systems", Encyclopedia of Artificial Intelligence, 2009)

"A type of neural network that uses unsupervised learning to produce two-dimensional representations of an input space." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The Self-organizing map is a non-parametric and non-linear neural network that explores data using unsupervised learning. The SOM can produce output that maps multidimensional data onto a two-dimensional topological map. Moreover, since the SOM requires little a priori knowledge of the data, it is an extremely useful tool for exploratory analyses. Thus, the SOM is an ideal visualization tool for analyzing complex time-series data." (Peter Sarlin, "Visualizing Indicators of Debt Crises in a Lower Dimension: A Self-Organizing Maps Approach", 2012)

"SOMs or Kohonen networks have a grid topology, with unequal grid weights. The topology of the grid provides a low dimensional visualization of the data distribution." (Siddhartha Bhattacharjee et al, "Quantum Backpropagation Neural Network Approach for Modeling of Phenol Adsorption from Aqueous Solution by Orange Peel Ash", 2013)

"An unsupervised neural network widely used in exploratory data analysis and to visualize multivariate object relationships." (Manuel Martín-Merino, "Semi-Supervised Dimension Reduction Techniques to Discover Term Relationships", 2015)

"ANN used for visualizing low-dimensional views of high-dimensional data." (Pablo Escandell-Montero et al, "Artificial Neural Networks in Physical Therapy", 2015)

"Is a unsupervised learning ANN, which means that no human intervention is needed during the learning and that little needs to be known about the characteristics of the input data." (Nuno Pombo et al, "Machine Learning Approaches to Automated Medical Decision Support Systems", 2015)

"A kind of artificial neural network which attempts to mimic brain functions to provide learning and pattern recognition techniques. SOM have the ability to extract patterns from large datasets without explicitly understanding the underlying relationships. They transform nonlinear relations among high dimensional data into simple geometric connections among their image points on a low-dimensional display." (Felix Lopez-Iturriaga & Iván Pastor-Sanz, "Using Self Organizing Maps for Banking Oversight: The Case of Spanish Savings Banks", 2016)

"Neural network which simulated some cerebral functions in elaborating visual information. It is usually used to classify a large amount of data." (Gaetano B Ronsivalle & Arianna Boldi, "Artificial Intelligence Applied: Six Actual Projects in Big Organizations", 2019)

"Classification technique based on unsupervised-learning artificial neural networks allowing to group data into clusters." Julián Sierra-Pérez & Joham Alvarez-Montoya, "Strain Field Pattern Recognition for Structural Health Monitoring Applications", 2020)

"It is a type of artificial neural network (ANN) trained using unsupervised learning for dimensionality reduction by discretized representation of the input space of the training samples called as map." (Dinesh Bhatia et al, "A Novel Artificial Intelligence Technique for Analysis of Real-Time Electro-Cardiogram Signal for the Prediction of Early Cardiac Ailment Onset", 2020)

"Being a particular type of ANNs, the Self Organizing Map is a simple mapping from inputs: attributes directly to outputs: clusters by the algorithm of unsupervised learning. SOM is a clustering and visualization technique in exploratory data analysis." (Yuh-Wen Chen, "Social Network Analysis: Self-Organizing Map and WINGS by Multiple-Criteria Decision Making", 2021)

07 January 2016

♜Strategic Management: Strategy Map (Definitions)

"A strategy map is a tool that enables an organization to articulate its strategy through a series of cross-functional cause-and-effect relationships." (Ralph F Smith, "Business Process Management and the Balanced Scorecard: Using Processes as Strategic Drivers", 2007)

"A specific version of a strategy plan that adheres to the Balanced Scorecard methodology. Strategy maps depict objectives in multiple perspectives with corresponding cause and effect linkages." (Intrafocus)

"A strategy map is a visual representation of an organization’s overall objectives and how they relate to one another. The map is created during the strategic planning process and is used as a primary reference material during periodic strategy check-in and review meetings." (ClearPoint Strategy) [source]

"A Strategy Map provides a visual representation of the organization’s strategy. It is a powerful communication tool that enables employees to understand the company’s strategy and translate it into actions they can take, to ensure the achievement of strategic objectives." (The KPI Institute) [source


05 January 2016

♜Strategic Management: Roadmap (Definitions)

"An abstracted plan for business or technology change, typically operating across multiple disciplines over multiple years." (David Lyle & John G Schmidt, "Lean Integration", 2010)

"Techniques that capture market trends, product launches, technology development, and competence building over time in a multilayer, consistent framework." (Gina C O'Connor & V K Narayanan, "Encyclopedia of Technology and Innovation Management", 2010)

"Defines the actions required to move from current to future (target) state. Similar to a high-level project plan." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

[portfolio roadmap:] "A document that provides the high-level strategic direction and portfolio information in a chronological fashion for portfolio management and ensures dependencies within the portfolio are established and evaluated." (Project Management Institute, "The Standard for Portfolio Management" 3rd Ed., 2012)

"Forward-looking plans intended to be taken by the security program over the foreseeable future." (Mark Rhodes-Ousley, "Information Security: The Complete Reference" 2nd Ed., 2013)

"Within the context of business analytics, a defined set of staged initiatives that deliver tactical returns while moving the team toward strategic outcomes." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"High-level action plan for change that will involve several facets of the enterprise (business, organization, technical)." (Gilbert Raymond & Philippe Desfray, "Modeling Enterprise Architecture with TOGAF", 2014)

"An action plan that matches the organization's business goals with specific technology solutions in order to help meet those goals." (David K Pham, "From Business Strategy to Information Technology Roadmap", 2016)

"The Roadmap is a schedule of events and Milestones that communicate planned Solution deliverables over a timeline. It includes commitments for the planned, upcoming Program Increment (PI) and offers visibility into the deliverables forecasted for the next few PIs." (Dean Leffingwell, "SAFe 4.5 Reference Guide: Scaled Agile Framework for Lean Enterprises" 2nd Ed., 2018)

"A product roadmap is a visual summary of a product’s direction to facilitate communication with customers, prospects, partners, and internal stakeholders." (Pendo) [source]

"A Roadmap is a plan to progress toward a set of defined goals. Depending on the purpose of the Roadmap, it may be either high-level or detailed. In terms of Enterprise Architecture, roadmaps are usually developed as abstracted plans for business or technology changes, typically operating across multiple disciplines over multiple years." (Orbus Software)

"A roadmap is a strategic plan that defines a goal or desired outcome and includes the major steps or milestones needed to reach it." (ProductPlan) [source]

29 December 2014

🕸Systems Engineering: Cognitive Maps (Just the Quotes)

"[…] learning consists not in stimulus-response connections but in the building up in the nervous system of sets which function like cognitive maps […] such cognitive maps may be usefully characterized as varying from a narrow strip variety to a broader comprehensive variety." (Edward C Tolman, "Cognitive maps in rats and men", 1948)

"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)

"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […]  a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)

"The concepts a person uses are represented as points, and the causal links between these concepts are represented as arrows between these points. This gives a pictorial representation of the causal assertions of a person as a graph of points and arrows. This kind of representation of assertions as a graph will be called a cognitive map. The policy alternatives, all of the various causes and effects, the goals, and the ultimate utility of the decision maker can all be thought of as concept variables, and represented as points in the cognitive map. The real power of this approach ap pears when a cognitive map is pictured in graph form; it is then relatively easy to see how each of the concepts and causal relation ships relate to each other, and to see the overall structure of the whole set of portrayed assertions." (Robert Axelrod, "The Cognitive Mapping Approach to Decision Making" [in "Structure of Decision: The Cognitive Maps of Political Elites"], 1976)

"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)

"A fuzzy cognitive map or FCM draws a causal picture. It ties facts and things and processes to values and policies and objectives. And it lets you predict how complex events interact and play out. [...] Neural nets give a shortcut to tuning an FCM. The trick is to let the fuzzy causal edges change as if they were synapses in a neural net. They cannot change with the same math laws because FCM edges stand for causal effect not signal flow. We bombard the FCM nodes with real data. The data state which nodes are on or off and to which degree at each moment in time. Then the edges grow among the nodes."  (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"Under the label 'cognitive maps', mental models have been conceived of as the mental representation of spatial aspects of the environment. A mental model, in this sense, comprises the topology of an area, including relevant districts, landmarks, and paths." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems."  (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"When an individual uses causal mapping to help clarify their own thinking, we call this technique cognitive mapping, because it is related to personal thinking or cognition. When a group maps their own ideas, we call it oval mapping, because we often use oval-shaped cards to record individuals’ ideas so that they can be arranged into a group’s map. Cognitive maps and oval maps can be used to create a strategic plan, because the maps include goals, strategies and actions, just like strategic plans." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

28 November 2014

🕸Systems Engineering: Causal Maps (Just the Quotes)

"Causal maps are representations of individuals (or groups) beliefs about causal relations. They include elements, with only two kinds of properties. The first property is 'relevance'. The second  is the possibility of being in one (of two) 'influence relationships' (positive or negative) with one (of three) strengths (weak. moderate, or strong)." (Kivia Markoczy & Jeff Goldberg, "A method for eliciting and comparing causal maps", 1995)

"Short-term memory can hold 7 ± 2 chunks of information at once. This puts a rather sharp limit on the effective size and complexity of a causal map. Presenting a complex causal map all at once makes it hard to see the loops, understand which are important, or understand how they generate the dynamics. Resist the temptation to put all the loops you and your clients have identified into a single comprehensive diagram." (John D Sterman, "Business Dynamics Systems Thinking and Modeling for a Complex World", 2000)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"A causal map is an abstract representation of the causal relationships among kinds of objects and events in the world. Such relationships are not, for the most part, directly observable, but they can often be accurately inferred from observations. This includes both observations of patterns of contingency and correlation among events as well as observations of the effects of experimental interventions. We can think of everyday theories and theory-formation processes as cognitive systems that allow us to recover an accurate causal map of the world." (Alison Gopnik & Clark Glymour, "Causal maps and Bayes nets: a cognitive and computational account of theory-formation" [in "The cognitive basis of science"], 2002)

"Causal mapping is a simple and useful technique for addressing situations where thinking - as an individual or as a group - matters. A causal map is a word-and-arrow diagram in which ideas and actions are causally linked with one another through the use of arrows. The arrows indicate how one idea or action leads to another. Causal mapping makes it possible to articulate a large number of ideas and their interconnections in such a way that people can know what to do in an area of concern, how to do it and why, because the arrows indicate the causes and consequences of an idea or action." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal mapping is [...]  a technique for linking strategic thinking and acting, helping make sense of complex problems, and communicating to oneself and others what might be done about them. With practice, the use of causal mapping can assist you in moving from 'winging it' when thinking matters to a more concrete and rigorous approach that helps you and others achieve success in an easy and far more reliable way" (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal mapping makes it possible to articulate a large number of ideas and their interconnections in such a way that we can better understand an area of concern. Causal mapping also helps us know what to do about the issue, what it would take to do those things, and what we would like to get out of having done so. Causal mapping is therefore a particularly powerful technique for making sense of complex problems, linking strategic thinking and acting, and helping to communicate to others what might or should be done. " (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"When an individual uses causal mapping to help clarify their own thinking, we call this technique cognitive mapping, because it is related to personal thinking or cognition. When a group maps their own ideas, we call it oval mapping, because we often use oval-shaped cards to record individuals’ ideas so that they can be arranged into a group’s map. Cognitive maps and oval maps can be used to create a strategic plan, because the maps include goals, strategies and actions, just like strategic plans." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"Causal maps include elements called nodes, which are allowed to have causal relationships of different strengths of positive or negative loading depicted with a number, usually in the range of from 1 (weak) to 3 (strong). The relationships of the nodes are depicted with arcs or links labeled with the assumed polarity and loading factor or strength of causality, Links with positive polarity refer to dependency (when A increases B increases proportionally to the loading factor) and negative to inverse dependency (when A increases, B decreases)." (Hannu Kivijärvi et al, "A Support System for the Strategic Scenario Process", Encyclopedia of Decision Making and Decision Support Technologies, 2008)

"Fifth principle: (a) in finding solutions for systemic problems do not be content with symptomatic solutions but look for systemic-structural levers that can produce the more incisive effect; (b) if there are several systemic levers, choose the most efficient, that which produces the maximum effects with the minimum effort; (c) to activate the chosen structural lever identify the most effective decisional lever (action variable) taking into account the time necessary to produce the desired effect; (d) the choice of structural and decisional levers, as well as the intensity of the actions to modify their values, must follow from a careful construction, interpretation and assessment of the system’s causal map." (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"(1) The causal maps are only models of a world of variables and processes; (2) They are models suitable for depicting that world only if they represent a logical image; (3) A logical image is made up of a network of arrows that depict the cause and effect connections among the variables and processes in the world; this network cannot be in contradiction to the world; (4) This depiction of the world relates to the boundaries between the represented and the external systems; the causal maps always depict a portion of a vaster world;" (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"In constructing causal maps, whatever technique is adopted, there is always the problem of identifying or defining the system’s boundaries, either if we zoom in or broaden our perspective by zooming out." (Piero Mella, "Systems Thinking: Intelligence in Action", 2012)

"A Causal Map is hierarchical in structure (linking means to ends) and built with a focus on achieving goals. The process of creating the maps is ideally a group process and this in itself will add lots of value to a collective understanding of goals around EDI, what is required to achieve these and some of the potential challenges around this." (Nicola Morrill, "Supporting Your Efforts on Diversity", 2021)

28 February 2014

🕸Systems Engineering: Causal Map (Definitions)

"Causal maps are representations of individuals (or groups) beliefs about causal relations. They include elements, with only two kinds of properties. The first property is 'relevance'. The second  is the possibility of being in one (of two) 'influence relationships' (positive or negative) with one (of three) strengths (weak. moderate, or strong)." (Kivia Markoczy & Jeff Goldberg, "A method for eliciting and comparing causal maps", 1995)

"A causal map is an abstract representation of the causal relationships among kinds of objects and events in the world. Such relationships are not, for the most part, directly observable, but they can often be accurately inferred from observations." (Alison Gopnik & Clark Glymour, "Causal maps and Bayes nets: a cognitive and computational account of theory-formation" [in "The cognitive basis of science"], 2002)

"A causal map (also called an influence diagram or a cause map) is a directed graph in which causal concepts (or nodes) represent the important variables that make up a domain." (S Nadkarni, Aggregated causal maps: An approach to elicit and aggregate the knowledge of multiple experts, 2003) 

"A causal map is a directed graph that represents an individual’s (an agent, a group of agents or an organization) assertions about its beliefs with respect to its environment." (Nassreddine Garoui & Anis Jarboui, "Cognitive Mapping: Testing Application of Causal Algebra", Applied Mathematics Vol.3 (4),  2012)

"A causal map is a two-dimensional network of nodes and links that conveys the  hierarchical and cause-effect relationships between events or variables within a complex system." (Allan Jeong & Woon Jee Lee, "The Sequential Analysis, Modeling and Visualization of Collaborative Causal Mapping Processes and Effects on Causal Understanding", 2013)

"A word-and-arrow (or statement-and-arrow) diagram in which ideas are causally linked to one another through the use of arrows. The arrows indicate how one idea or action leads to another in a means-ends relationship; in other words, an arrow means 'might cause', 'might lead to', 'might result in', or some other kind of influence relationship." (Fran Ackermann et al, "Visual Strategy: Strategy Mapping for Public and Nonprofit Organizations", 2014)

"A visual depiction of where certain kinds of data exist across an organization. Example: we have produced a data map showing where all customer data exists across our systems." (Gregory Lampshire, "The Data and Analytics Playbook", 2016)

"A Causal Map is hierarchical in structure (linking means to ends) and built with a focus on achieving goals. The process of creating the maps is ideally a group process and this in itself will add lots of value to a collective understanding of goals around EDI, what is required to achieve these and some of the potential challenges around this." (Nicola Morrill, "Supporting Your Efforts on Diversity", 2021)

24 December 2013

🎓Knowledge Management: Mind Maps (Just the Quotes)

"A mind map harnesses the full range of cortical skills—word, image, number, logic, rhythm, color, and spatial awareness - in a single, uniquely powerful technique. In doing so, it gives you the freedom to roam the infinite expanse of your brain." (Tony Buzan, Barry Buzan, "The Mind Map Book: How to Use Radiant Thinking to Maximize Your Brain's Untapped Potential", 1996)

"Delay time, the time between causes and their impacts, can highly influence systems. Yet the concept of delayed effect is often missed in our impatient society, and when it is recognized, it’s almost always underestimated. Such oversight and devaluation can lead to poor decision making as well as poor problem solving, for decisions often have consequences that don’t show up until years later. Fortunately, mind mapping, fishbone diagrams, and creativity/brainstorming tools can be quite useful here." (Stephen G Haines, "The Manager's Pocket Guide to Strategic and Business Planning", 1998)

"An effective mind map is one that works for you and therefore it is your tailoring and your emphasis, images, colours, codes and style that will determine its effectiveness. Try to develop the habit of taking down all your notes in mind map format. If you are required to give presentations, do this from a mind map. When you are at meetings, take down the minutes in mind map layout and just notice the difference in your ability to retain exactly what happened at that meeting and compare it with your usual logical/analytical method of recording minutes." (Peter F Haddon, Mastering Personal and Interpersonal Skills, 1999)

"Mind mapping is a technique whereby information is summarised in a form of pictorial representation which depends very much on the creativity of the individual involved. The idea is that when information is pictured in colourful word associations backed up by sketches or even stick drawings of the key words, it is far more easily remembered, much like when looking at a photograph you can recall in detail the happenings that led up to and followed the incident." (Peter F Haddon, Mastering Personal and Interpersonal Skills, 1999)

"Knowledge maps are node-link representations in which ideas are located in nodes and connected to other related ideas through a series of labeled links. They differ from other similar representations such as mind maps, concept maps, and graphic organizers in the deliberate use of a common set of labeled links that connect ideas. Some links are domain specific (e.g., function is very useful for some topic domains...) whereas other links (e.g., part) are more broadly used. Links have arrowheads to indicate the direction of the relationship between ideas." (Angela M. O’Donnell et al, "Knowledge Maps as Scaffolds for Cognitive Processing", Educational Psychology Review Vol. 14 (1), 2002) 

"Mind Mapping uses the full range of the brain's abilities, placing an image in the center of the page in order to facilitate memorization and the creative generation of ideas, and subsequently branches out in associative networks that mirror externally the brain's internal structures. By using this approach, the preparation of speeches can be reduced in time from days to minutes; problems can be solved both more comprehensively and more rapidly; memory can be improved from absent to perfect; and creative thinkers can generate a limitless number of ideas rather than a truncated list." (Marshall Goldsmith et al, "The Many Facets of Leadership", 2002)

"When people question assumptions, the map may clarify what they are. When logic is challenged, the map may help. When people want to know how goals and strategies are linked, the map may show how they are. The map does not make the decisions. Rather, it provides a record that preserves complexity, yet organizes and categorizes that complexity in such a way that people can understand and manage it. And if more mapping needs to be done, the map is there as a base on which to build." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"[a mind map is a] "visual note-taking process that includes key words and pictures illustrating the relationships among concepts." (Ruth Colvin Clark, Chopeta Lyons, "Graphics for Learning: Proven guidelines for planning, designing, and evaluating visuals in training materials" 2nd ed., 2011)

"Data visualizations can also play a critical role when it is time to disseminate and communicate evaluation findings. Data visualization engages and supports program stakeholders by increasing their capacity to understand data and participate in the evaluation process. Collaboratively developed mind maps, logic models, and graphic illustrations can facilitate understanding of the findings and their implications by depicting a program’s most important activities, outcomes, and ultimate goal in a concise and clear manner. Well-designed interactive visualizations for reporting and community engagement help stakeholders answer questions of import within context and place engaged stakeholders in the driver’s seat in terms of defining variables and interpreting results." (Tarek Azzam et al, "Data Visualization and Evaluation", "Data visualization, part 1: New Directions for Evaluation", 139], 2013)

"Paradoxically one of the greatest advantages of mind maps is that they are seldom needed again. The very act of constructing a map is itself so effective in fixing ideas in memory that very often a whole map can recalled without going back to it at all. A mind map is so strongly visual and uses so many of the natural functions of memory that frequently it can be simply read off in the mind's eye." (Peter Russell, "The Brain Book: Know Your Own Mind and How to Use it", 2013)

"With the adoption of a more schematic and abstract construct, deprived of realistic arboreal features, a tree diagram could sometimes be rotated along its axis and depicted horizontally, with its ranks arranged most frequently from left to right. Horizontal trees probably emerged as an alternative to vertical trees to address spatial constraints and layout requirements, but they also provide unique advantages. The nesting arrangement of horizontal trees resembles the grammatical construct of a sentence, echoing a natural reading pattern that anyone can relate to. This alternative scheme was often deployed on facing pages of a manuscript, with the root of the tree at the very center, creating a type of mirroring effect that is still found in many digital and interactive executions. Horizontal trees have proved highly efficient for archetypal models such as classification trees, flow charts, mind maps, dendrograms, and, notably, in the display of files on several software applications and operating systems." (Manuel Lima, "The Book of Trees: Visualizing Branches of Knowledge", 2014)

"Essentially, a mind map is a type of node-link diagram in which the nodes represent concepts and the links represent relationships between concepts. The central idea to be explored is placed in the middle of the page and it is expanded out from there. Usually mind maps are drawn as tree structures with no cross links between branches, but this can be restrictive." (Colin Ware, "Information Visualization: Perception for Design" 4th Ed., 2021)

"The educational use of mind maps and concept maps would seem to fit well with constructivist theory. To construct such a map, students must actively draw out links between various concepts as they understand them. The problem is that the cognitive engagement tends to be somewhat superficial for mind maps, since it does not require that students think deeply about the nature of the links." (Colin Ware, "Information Visualization: Perception for Design" 4th Ed., 2021)

"Idea mapping offers the power to represent qualitative data, describe relationships, and enable one to see the 'big picture'. Further, mapping allows us to represent data in a way that facilitates the conceptualizing of its meaning. It provides a 'map', which makes it possible to observe macrophenomena, discover trends, and generate creative options. Idea mapping makes it possible to represent multiple dimensions of a situation without losing sight of any of its parts; it is an efficient way to manage an overwhelming amount of qualitative information. Finally, it offers a way to present information to clients in a graphic form that is both easy to understand and data rich. Often, an entire strategic plan can be represented in one map." (Terry Moore)

07 July 2013

🎓Knowledge Management: Concept Map (Definitions)

"Concept maps are built of nodes connected by connectors, which have written descriptions called linking phrases instead of polarity of strength. Concept maps can be used to describe conceptual structures and relations in them and the concept maps suit also aggregation and preservation of knowledge" (Hannu Kivijärvi et al, "A Support System for the Strategic Scenario Process", 2008) 

"A hierarchal picture of a mental map of knowledge." (Gregory MacKinnon, "Concept Mapping as a Mediator of Constructivist Learning", 2009)

"A tool that assists learners in the understanding of the relationships of the main idea and its attributes, also used in brainstorming and planning." (Diane L Judd, "Constructing Technology Integrated Activities that Engage Elementary Students in Learning", 2009)

"Concept maps are graphical knowledge representations that are composed to two components: (1) Nodes: represent the concepts, and (2) Links: connect concepts using a relationship." (Faisal Ahmad et al, "New Roles of Digital Libraries", 2009)

"A concept map is a diagram that depicts concepts and their hierarchical relationships." (Wan Ng & Ria Hanewald, "Concept Maps as a Tool for Promoting Online Collaborative Learning in Virtual Teams with Pre-Service Teachers", 2010)

"A diagram that facilitates organization, presentation, processing and acquisition of knowledge by showing relationships among concepts as node-link networks. Ideas in a concept map are represented as nodes and connected to other ideas/nodes through link labels." (Olusola O Adesope & John C Nesbit, "A Systematic Review of Research on Collaborative Learning with Concept Maps", 2010)

"A visual construct composed of encircled concepts (nodes) that are meaningfully inter-connected by descriptive concept links either directly, by branch-points (hierarchies), or indirectly by cross-links (comparisons). The construction of a concept map can serve as a tool for enhancing communication, either between an author and a student for a reading task, or between two or more students engaged in problem solving. (Dawndra Meers-Scott, "Teaching Critical Thinking and Team Based Concept Mapping", 2010)

"Are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. The visual representation of information through word webs or diagrams enables learners to see how the ideas are connected and understand how to group or organize information effectively." (Robert Z Zheng & Laura B Dahl, "Using Concept Maps to Enhance Students' Prior Knowledge in Complex Learning", 2010)

"Concept maps are hierarchical trees, in which concepts are connected with labelled, graphical links, most general at the top." (Alexandra Okada, "Eliciting Thinking Skills with Inquiry Maps in CLE", 2010)

"One powerful knowledge presentation format, devised by Novak, to visualize conceptual knowledge as graphs in which the nodes represent the concepts, and the links between the nodes are the relationships between these concepts." (Diana Pérez-Marín et al, "Adaptive Computer Assisted Assessment", 2010)

"A form of visualization showing relationships among concepts as arrows between labeled boxes, usually in a downward branching hierarchy." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A graphical depiction of relationships ideas, principals, and activities leading to one major theme." (Carol A Brown, "Using Logic Models for Program Planning in K20 Education", 2013)

"A diagram that presents the relationships between concepts." (Gwo-Jen Hwang, "Mobile Technology-Enhanced Learning", 2015)

"A graphical two-dimensional display of knowledge. Concepts, usually presented within boxes or circles, are connected by directed arcs that encode, as linking phrases, the relationships between the pairs of concepts." (Anna Ursyn, "Visualization as Communication with Graphic Representation", 2015)

"A graphical tool for representing knowledge structure in a form of a graph whose nodes represent concepts, while arcs between nodes correspond to interrelations between them." (Yigal Rosen & Maryam Mosharraf, "Evidence-Centered Concept Map in Computer-Based Assessment of Critical Thinking", 2016) 

"Is a directed graph that shows the relationship between the concepts. It is used to organize and structure knowledge." (Anal Acharya & Devadatta Sinha, "A Web-Based Collaborative Learning System Using Concept Maps: Architecture and Evaluation", 2016)

"A graphic depiction of brainstorming, which starts with a central concept and then includes all related ideas." (Carolyn W Hitchens et al, "Studying Abroad to Inform Teaching in a Diverse Society", 2017)

"A graphic visualization of the connections between ideas in which concepts (drawn as nodes or boxes) are linked by explanatory phrases (on arrows) to form a network of propositions that depict the quality of the mapper’s understanding" (Ian M Kinchin, "Pedagogic Frailty and the Ecology of Teaching at University: A Case of Conceptual Exaptation", 2019)

"A diagram in which related concepts are linked to each other." (Steven Courchesne &Stacy M Cohen, "Using Technology to Promote Student Ownership of Retrieval Practice", 2020)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.