Showing posts with label similarity. Show all posts
Showing posts with label similarity. Show all posts

27 December 2014

🕸Systems Engineering: Similarity (Just the Quotes)

"Symmetry is evidently a kind of unity in variety, where a whole is determined by the rhythmic repetition of similar." (George Santayana, "The Sense of Beauty", 1896)

"To apply the category of cause and effect means to find out which parts of nature stand in this relation. Similarly, to apply the gestalt category means to find out which parts of nature belong as parts to functional wholes, to discover their position in these wholes, their degree of relative independence, and the articulation of larger wholes into sub-wholes." (Kurt Koffka, 1931)

"By a model we thus mean any physical or chemical system which has a similar relation-structure to that of the process it imitates. By ’relation-structure’ I do not mean some obscure non-physical entity which attends the model, but the fact that it is a physical working model which works in the same way as the process it parallels, in the aspects under consideration at any moment." (Kenneth Craik, "The Nature of Explanation", 1943)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12" (4), 1945)

"Industrial production, the flow of resources in the economy, the exertion of military effort in a war theater-all are complexes of numerous interrelated activities. Differences may exist in the goals to be achieved, the particular processes involved, and the magnitude of effort. Nevertheless, it is possible to abstract the underlying essential similarities in the management of these seemingly disparate systems." (George Dantzig, "Linear programming and extensions", 1963) 

"System' is the concept that refers both to a complex of interdependencies between parts, components, and processes, that involves discernible regularities of relationships, and to a similar type of interdependency between such a complex and its surrounding environment." (Talcott Parsons, "Systems Analysis: Social Systems", 1968)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic" (that is fixed) rules" (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order" (a pattern) within disorder" (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting. " (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"From a more general philosophical perspective we can say that we wish to model complex systems because we want to understand them better.  The main requirement for our models accordingly shifts from having to be correct to being rich in information.  This does not mean that the relationship between the model and the system itself becomes less important, but the shift from control and prediction to understanding does have an effect on our approach to complexity: the evaluation of our models in terms of performance can be deferred. Once we have a better understanding of the dynamics of complexity, we can start looking for the similarities and differences between different complex systems and thereby develop a clearer understanding of the strengths and limitations of different models." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder. " (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Although the detailed moment-to-moment behavior of a chaotic system cannot be predicted, the overall pattern of its 'random' fluctuations may be similar from scale to scale. Likewise, while the fine details of a chaotic system cannot be predicted one can know a little bit about the range of its 'random' fluctuation." (F David Peat, "From Certainty to Uncertainty", 2002)

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"Diverse groups of problem solvers outperformed the groups of the best individuals at solving complex problems. The reason: the diverse groups got stuck less often than the smart individuals, who tended to think similarly." (Scott E Page, [interview in The New York Times] 2008)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems. " (Albert-László Barabási, "Network Science", 2016)

"The exploding interest in network science during the first decade of the 21st century is rooted in the discovery that despite the obvious diversity of complex systems, the structure and the evolution of the networks behind each system is driven by a common set of fundamental laws and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, and scope of real networks, most networks are driven by common organizing principles. Once we disregard the nature of the components and the precise nature of the interactions between them, the obtained networks are more similar than different from each other." (Albert-László Barabási, "Network Science", 2016)

See also the quotes on Similarity in Graphical Representation series

26 November 2011

📉Graphical Representation: Similarity (Just the Quotes)

"Two important characteristics of maps should be noticed. A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its usefulness. If the map could be ideally correct, it would include, in a reduced scale, the map of the map; the map of the map, of the map [...]" (Alfred Korzybski, "Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics", 1933)

"Some believe that the vertical bar should be used when comparing similar items for different time periods and the horizontal bar for comparing different items for the same time period. However, most people find the vertical-bar format easier to prepare and read. and a more effective way to show most types of comparisons." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"In order to be easily understood, a display of information must have a logical structure which is appropriate for the user's knowledge and needs, and this structure must be clearly represented visually. In order to indicate structure, it is necessary to be able to eemphasiz, divide and relate items of information. Visual emphasis can be used to indicate a hierarchical relationship between items of information, as in the case of systems of headings and subheadings for example. Visual separation of items can be used to indicate that they are different in kind or are unrelated functionally, and similarly a visual relationship between items will imply that they are of a similar kind or bear some functional relation to one another. This kind of visual 'coding' helps the reader to appreciate the extent and nature of the relationship between items of information, and to adopt an appropriate scanning strategy." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Scatter charts show the relationships between information, plotted as points on a grid. These groupings can portray general features of the source data, and are useful for showing where correlationships occur frequently. Some scatter charts connect points of equal value to produce areas within the grid which consist of similar features." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Two types of graphic organizers are commonly used for comparison: the Venn diagram and the comparison matrix [...] the Venn diagram provides students with a visual display of the similarities and differences between two items. The similarities between elements are listed in the intersection between the two circles. The differences are listed in the parts of each circle that do not intersect. Ideally, a new Venn diagram should be completed for each characteristic so that students can easily see how similar and different the elements are for each characteristic used in the comparison." (Robert J. Marzano et al, "Classroom Instruction that Works: Research-based strategies for increasing student achievement, 2001)

"Arbitrary category sequence and misplaced pie chart emphasis lead to general confusion and weaken messages. Although this can be used for quite deliberate and targeted deceit, manipulation of the category axis only really comes into its own with techniques that bend the relationship between the data and the optics in a more calculated way. Many of these techniques are just twins of similar ruses on the value axis. but are none the less powerful for that." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"We tend automatically to think of all the categories represented on the horizontal axis of a column Chart as being equally important. They vary of course on the value axis. Otherwise, there would be little point in the chart, but there is somehow this feeling that they are in other respects similar members of a group. This convention can be put to good use to manipulate the message of the most boring bar or column chart." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"For a given dataset there is not a great deal of advice which can be given on content and context. Those who know their own data should know best for their specific purposes. It is advisable to think hard about what should be shown and to check with others if the graphic makes the desired impression. Design should be let to designers, though some basic guidelines should be followed: consistency is important (sets of graphics should be in similar style and use equivalent scaling); proximity is helpful (place graphics on the same page, or on the facing page, of any text that refers to them); and layout should be checked" (graphics should be neither too small nor too large and be attractively positioned relative to the whole page or display)." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"A histogram for discrete numerical data is a graph of the frequency or relative frequency distribution, and it is similar to the bar chart for categorical data. Each frequency or relative frequency is represented by a rectangle centered over the corresponding value" (or range of values) and the area of the rectangle is proportional to the corresponding frequency or relative frequency." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"With further similarities to small multiples, heatmaps enable us to perform rapid pattern matching to detect the order and hierarchy of different quantitative values across a matrix of categorical combinations. The use of a color scheme with decreasing saturation or increasing lightness helps create the sense of data magnitude ranking." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Tree maps are similar to pie charts in that they show parts of a whole but, unlike pie charts, they can incorporate more individual pieces without cluttering the graphic. Tree maps are particularly good at presenting information like budgets, which often include more elements than can be effectively communicated through a pie chart." (Christopher Lysy, "Developments in Quantitative Data Display and Their Implications for Evaluation", 2013)

"Upon discovering a visual image, the brain analyzes it in terms of primitive shapes and colors. Next, unity contours and connections are formed. As well, distinct variations are segmented. Finally, the mind attracts active attention to the significant things it found. That process is permanently running to react to similarities and dissimilarities in shapes, positions, rhythms, colors, and behavior. It can reveal patterns and pattern-violations among the hundreds of data values. That natural ability is the most important thing used in diagramming." (Vasily Pantyukhin, "Principles of Design Diagramming", 2015)

"A histogram represents the frequency distribution of the data. Histograms are similar to bar charts but group numbers into ranges. Also, a histogram lets you show the frequency distribution of continuous data. This helps in analyzing the distribution" (for example, normal or Gaussian), any outliers present in the data, and skewness." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"A taxonomy is a classification scheme that organizes categories in a broader-narrower hierarchy. Items that share similar qualities are grouped into the same category, and the taxonomy provides a global organization by relating categories to one another." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"A well-designed dashboard needs to provide a similar experience; information cannot be placed just anywhere on the dashboard. Charts that relate to one another are usually positioned close to one another. Important charts often appear larger and more visually prominent than less important ones. In other words, there are natural sizes for how a dashboard comprises charts based on the task and context." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Unlike text, visual communication is governed less by an agreed-upon convention between 'writer' and 'reader' than by how our visual systems react to stimuli, often before we’re aware of it. And just as composers use music theory to create music that produces certain predictable effects on an audience, chart makers can use visual perception theory to make more-effective visualizations with similarly predictable effects." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

See also the quotes on Similarity in Systems Engineering


Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.