Showing posts with label flexibility. Show all posts
Showing posts with label flexibility. Show all posts

01 February 2021

📦Data Migrations (DM): Quality Assurance (Part II: Quality Acceptance Criteria II)

Data Migration
Data Migrations Series

Auditability

Auditability is the degree to which the solution allows checking the data for their accuracy, or for their quality in general, respectively the degree to which the DM solution and processes allow to be audited regarding compliance, security and other types of requirements. All these aspects are important in case an external sign-off from an auditor is mandatory. 

Automation

Automation is the degree to which the activities within a DM can be automated. Ideally all the processes or activities should be automated, though other requirements might be impacted negatively. Ideally, one needs to find the right balance between the various requirements. 

Cohesion

Cohesion is the degree to which the tasks performed by the solution, respectively during the migration, are related to each other. Given the dependencies existing between data, their processing and further project-related activities, DM imply a high degree of cohesion that need to be addressed by design. 

Complexity 

Complexity is the degree to which a solution is difficult to understand given the various processing layers and dependencies existing within the data. The complexity of DM revolve mainly around the data structures and the transformations needed to translate the data between the various data models. 

Compliance 

Compliance is the degree to which a solution is compliant with internal or external regulations that apply. There should be differentiated between mandatory requirements, respectively recommendations and other requirements.

Consistency 

Consistency is the degree to which data conform to an equivalent set of data, in this case the entities considered for the DM need to be consistent to each other. A record referenced in any entity of the migration need to be considered, respectively made available in the target system(s) either by parametrization or migration. 

During each iteration, the data need to remain consistent, so it can facilitate the troubleshooting. The data are usually reimported between iterations or during same iteration, typically to reflect the changes occurred in the source systems or other purposes. 

Coupling 

Data coupling is the degree to which different processing areas within a DM share the same data, typically a reflection of the dependencies existing between the data. Ideally, the areas should be decoupled as much as possible. 

Extensibility

Extensibility is the degree to which the solution or parts of the logic can be extended to accommodate further requirements. Typically, this involves changes that deviate from the standard functionality. Extensibility impacts positively the flexibility.

Flexibility 

Flexibility is the degree to which a solution can handle new requirements or ad-hoc changes to the logic. No matter how good everything was planned there’s always something forgotten or new information is identified. Having the flexibility to change code or data on the fly can make an important difference. 

Integrity 

Integrity is the degree to which a solution prevents the changes to data besides the ones considered by design. Users and processes should not be able modifying the data besides the agreed procedures. This means that the data need to be processed in the sequence agreed. All aspects related to data integrity need to be documented accordingly. 

Interoperability 

Interoperability is the degree to which a solution’s components can exchange data and use the respective data. The various layers of a DM’s solutions must be able to process the data and this should be possible by design. 

Maintainability

Maintainability is the degree to which a solution can be modified to or add minor features, change existing code, corrects issues, refactor code, improve performance or address changes in environment. The data required and the transformation rules are seldom known in advance. The data requirements are definitized during the various iterations, the changes needing to be implemented as the iterations progress. Thus, maintainability is a critical requirement.

Previous Post - Next Post

03 April 2010

💎SQL Reloaded: Power of Joins V (Semi-Joins and Anti-Joins)

     An incursion in the world of joins is incomplete without approaching two other important techniques for writing queries: semi-joins and anti-joins, some of the techniques specific to them allowing to speed up queries and reduce queries’ complexity. An anti-join returns rows from the left table where no matches is found in the right table, while an semi-join returns returns rows from the left table if at least a match is found in the second table. The typical techniques for creating semi-joins and anti-joins are based on IN or EXISTS operators, respectively their negations the NOT EXISTS and NOT IN, both operators being available in SQL Server and Oracle. According to the above definitions also the EXCEPT and INTERSECT operators introduced in horizontal joins post could be used to create anti-joins, respectively semi-joins too, they being introduced by Microsoft starting with SQL Server 2005 in order to compare whole rows rather then a smaller set of attributes. Another operators that allows creating anti-joins and semi-joins and introduced with SQL Server 2005 is the CROSS APPLY and OUTER APPLY operators.

     Because the  EXCEPT and INTERSECT operators were introduced in a previous post, this post is focused on the other mentioned operators, for exemplification of the techniques following to use again the Production.Product and Purchasing.PurchaseOrderDetail tables from AdventureWorks database.

      IN operator allows to test whether a given (attribute) value is in a list of values, the respective list could be based also on the values returned by another query, called actually a subquery. The output is not influenced by the eventual duplicates in the list of values, though for the sake of simplicity and testability it makes sense to provide a list of distinct values.
 
      EXISTS operator provides a similar functionality like the IN operator, however it checks only whether a record exists in what is called a correlated suquery (also known as repeated subquery, is a subquery making direct reference to one or more of the attributes of the main query). The subquery used with an IN operator could be easily translated to a correlated subquery by bringing the attribute used to create the list of values into the WHERE clause.

     Let’s start with a simple problem to exemplify the use of a semi-join, for example to select only the products that have a PO (Purchase Order) placed, the query could be written as follows:
 
-- Products with PO placed (IN operator) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost 
FROM Production.Product ITM  
WHERE ITM.ProductID IN (--list of Product IDs with PO placed 
    SELECT DISTINCT POD.ProductID  
     FROM Purchasing.PurchaseOrderDetail POD  
       JOIN Purchasing.PurchaseOrderHeader POH  
          ON POD.PurchaseOrderID = POH.PurchaseOrderID 
      WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
     )  

      The above query could be rewritten using the EXISTS operator, the correlated query being based on ProductID attribute found in both tables:
 
-- Products with PO placed (EXISTS operator) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost 
FROM Production.Product ITM  
WHERE EXISTS (--list of Product IDs with PO placed 
     SELECT 1 
     FROM Purchasing.PurchaseOrderDetail POD  
       JOIN Purchasing.PurchaseOrderHeader POH  
          ON POD.PurchaseOrderID = POH.PurchaseOrderID 
     WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
         AND POD.ProductID = ITM.ProductID -- correlated constraint 
)  

Notes:
1.    As usual special attention must be given to the handling of NULL values either by replacing them with a default value or by handing the NULL case in the WHERE clause.
2.   The Execution Plan for the above two queries is the same, SQL Server using a Hash Match (Left Semi Join) for both operators. I was trying to find information on whether there are any recommendations that advices on the use of one of the two operators in the detriment of the other, however I found nothing in this direction for SQL Server. R. Schrag offers a rule of dumb rooted in Oracle documentation and based on the selectivity of a query, a query being highly selective if it returns the least number of rows:
     “If the main body of your query is highly selective, then an EXISTS clause might be more appropriate to semi-join to the target table. However, if the main body of your query is not so selective and the subquery (the target of the semi-join) is more selective, then an IN clause might be more appropriate.” [1]

     Both above solutions are ideal when no data are needed from the tables used in the subquery, however quite often such a need arises, for example to show the volume of PO placed, the last PO Date, and so on, in such cases an inner join could be used instead:
 
-- Products with PO placed (inner join) SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost 
, POD.TotalOrderQty 
, POD.LastOrderDate 
FROM Production.Product ITM  
JOIN (--aggregated PO details 
    SELECT POD.ProductID  
    , SUM(POD.OrderQty) TotalOrderQty 
    , Max(OrderDate) LastOrderDate 
     FROM Purchasing.PurchaseOrderDetail POD  
       JOIN Purchasing.PurchaseOrderHeader POH  
          ON POD.PurchaseOrderID = POH.PurchaseOrderID 
     WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
     GROUP BY POD.ProductID 
    ) POD 
    ON POD.ProductID = ITM.ProductID 

     For the same purpose could be used also a CROSS APPLY taking care to eliminate the Products for which no record is retrieved in the subquery, this approach is actually a mixture between an inner join and a correlated query:

 -- Products with PO placed (CROSS APPLY) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost  
, POD.TotalOrderQty  
, POD.LastOrderDate  
FROM Production.Product ITM  
     CROSS APPLY (--aggregated PO details  
     SELECT SUM(POD.OrderQty) TotalOrderQty  
     , Max(OrderDate) LastOrderDate  
     FROM Purchasing.PurchaseOrderDetail POD  
           JOIN Purchasing.PurchaseOrderHeader POH  
              ON POD.PurchaseOrderID = POH.PurchaseOrderID  
     WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
        AND POD.ProductID = ITM.ProductID  
    ) POD  
WHERE POD.TotalOrderQty IS NOT NULL

Notes:
1.   The IN and EXISTS query versions seems to provide better performance than the use of vertical joins, though from my experience is often needed to provide information also from the subqueries used with the respective operators, therefore the inner join provides more flexibility in the detriment of relatively poorer performance.
2.  Microsoft’s implementation for IN operator allows using only single list of values, in contrast with Oracle that allows working with lists of n-uples. This problem in theory could be solved using the IN operators with a correlated subquery. An example of such a problem is finding the last PO placed for each Product:

 -- Last PO placed per Product (IN + correlated query) 
SELECT POD.PurchaseOrderDetailID 
, POD.ProductID  
, POH.OrderDate 
, POD.OrderQty 
FROM Purchasing.PurchaseOrderDetail POD  
     JOIN Purchasing.PurchaseOrderHeader POH         ON POD.PurchaseOrderID = POH.PurchaseOrderID 
WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
   AND POH.OrderDate IN (--Last PO Date per Product 
      SELECT Max(POH1.OrderDate) LastOrderDate 
      FROM Purchasing.PurchaseOrderDetail POD1 
          JOIN Purchasing.PurchaseOrderHeader POH1 
             ON POD1.PurchaseOrderID = POH1.PurchaseOrderID 
    WHERE POH1.Status IN (2, 4) -- 2-Approved, 4-Complete  
AND POD1.ProductID = POD.ProductID -- correlated constraint 
) 

      This might not be the best approach to solve this problem though the query is intended only to show a technique. The query could be rewritten using an inner join or the EXISTS operator, but I will show only the later approach because it comes with an interesting technique – because the LastOrderDate and ProductID are used as pair of values in order to retrieve the last PO per Product, given the fact that LastOrderDate is an aggregate value, the correlated constraint needs to be added in HAVING clause:
 
-- Last PO placed per Product (correlated query) 
SELECT POD.PurchaseOrderDetailID 
, POD.ProductID  
, POH.OrderDate 
, POD.OrderQty 
FROM Purchasing.PurchaseOrderDetail POD  
     JOIN Purchasing.PurchaseOrderHeader POH 
        ON POD.PurchaseOrderID = POH.PurchaseOrderID 
WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
     AND EXISTS(--Last PO Date per Product 
     SELECT 1 
     FROM Purchasing.PurchaseOrderDetail POD1 
          JOIN Purchasing.PurchaseOrderHeader POH1 
             ON POD1.PurchaseOrderID = POH1.PurchaseOrderID 
     WHERE POH1.Status IN (2, 4) -- 2-Approved, 4-Complete  
          AND POD1.ProductID = POD.ProductID -- correlated constraint 
     GROUP BY POD1.ProductID 
     HAVING Max(POH1.OrderDate) = POH.OrderDate 
     ) 

     The NOT IN and NOT EXISTS versions of the operators simply negates the use of IN and EXISTS operators, showing thus the records for which a match is not found. The complementary problem of showing the Products with a PO placed is to show the Products without a PO placed, for this, as previously mentioned, being enough to add the NOT keyword in from of IN, respectively EXISTS in the first two queries from this post:

-- Products without PO placed (IN operator) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost 
FROM Production.Product ITM  
WHERE ITM.ProductID NOT IN (--list of Product IDs with PO placed 
    SELECT DISTINCT POD.ProductID 
     FROM Purchasing.PurchaseOrderDetail POD 
       JOIN Purchasing.PurchaseOrderHeader POH 
          ON POD.PurchaseOrderID = POH.PurchaseOrderID 
      WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
     )  

-- Products without PO placed (EXISTS operator) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost 
FROM Production.Product ITM  
WHERE NOT EXISTS (--list of Product IDs with PO placed 
     SELECT 1 
     FROM Purchasing.PurchaseOrderDetail POD 
       JOIN Purchasing.PurchaseOrderHeader POH 
          ON POD.PurchaseOrderID = POH.PurchaseOrderID 
     WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
         AND POD.ProductID = ITM.ProductID -- correlated constraint 
)  

      An alternative to NOT IN and NOT EXISTS is the use of a LEFT JOIN transposing the project of A\B problem:
 
  -- Products without PO placed (left join) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost FROM Production.Product ITM  
    LEFT JOIN (--aggregated PO details 
    SELECT POD.ProductID  
    FROM Purchasing.PurchaseOrderDetail POD 
       JOIN Purchasing.PurchaseOrderHeader POH 
          ON POD.PurchaseOrderID = POH.PurchaseOrderID 
     WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
     GROUP BY POD.ProductID 
    ) POD 
    ON POD.ProductID = ITM.ProductID   
WHERE POD.ProductID IS NULL 

     The CROSS APPLY could be used too, this time the WHERE clause from the main query being modified to show only the records without a match in CROSS APPLY, for this needing to be used a "disguised" aggregate too:
 
 -- Products without PO placed (CROSS APPLY) 
SELECT ITM.ProductID  
, ITM.ProductNumber  
, ITM.StandardCost  FROM Production.Product ITM  
    CROSS APPLY (-- PO details  
    SELECT Max(1) HasPOPlaced 
    FROM Purchasing.PurchaseOrderDetail POD  
          JOIN Purchasing.PurchaseOrderHeader POH  
             ON POD.PurchaseOrderID = POH.PurchaseOrderID  
    WHERE POH.Status IN (2, 4) -- 2-Approved, 4-Complete  
        AND POD.ProductID = ITM.ProductID  
    ) POD 
WHERE POD.HasPOPlaced IS NULL 

    As can be seen there are multiple alternative ways of solving the same problem, none of the above described patters could be considered as best approach because in the end must be weighted between performance, flexibility, reusability and complexity.  In many cases the performance of a query is the most important factor, though the performance of any of the above techniques is relative because it needs to be considered factors like table structures and relations’ cardinality, server’s configuration and available resources, etc.

References:
[1] Schrag R. (2005). Speeding Up Queries with Semi-Joins and Anti-Joins: How Oracle Evaluates EXISTS, NOT EXISTS, IN, and NOT IN. [Online] Available from: http://www.dbspecialists.com/files/presentations/semijoins.html (Accessed: 3 Apr 2010)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.