Showing posts with label common table expressions. Show all posts
Showing posts with label common table expressions. Show all posts

04 February 2023

💎SQL Reloaded: Alternatives for Better Code Maintainability in SQL Server & Azure Synapse II

Few of the answers we search resume to simple queries as the one considered in the previous post. Usually, there are at least 5-10 tables involved, with more or less complex joins and different levels of aggregation. With each table added the number of options for implementing the logic increases. Based on analysis' particularities we can use a combination of views, table-valued functions, CTEs, temporary tables or table variables.

Let's consider two more tables involving aggregations on Sales orders and On-hand:

-- products analysis (via JOINs)
SELECT ITM.ProductNumber
, ITM.Name
, IsNull(OHD.OnHand, 0) OnHand
, IsNull(SOL.SalesQty, 0) SalesQty
, IsNull(POL.PurchQty, 0) PurchQty
FROM [Production].[Product] ITM
     LEFT JOIN ( -- cumulated on hand 
		SELECT OHD.ProductId
		, SUM(OHD.Quantity) OnHand
		, 0 SalesQty
		, 0 PurchQty
		FROM [Production].[ProductInventory] OHD
		GROUP BY OHD.ProductId
	 ) OHD
	   ON ITM.ProductId = OHD.ProductId 
	 LEFT JOIN ( -- cumulated sales orders
		SELECT SOL.ProductId
		, 0 OnHand
		, SUM(SOL.OrderQty) SalesQty
		, 0 PurchQty
		FROM [Sales].[SalesOrderDetail] SOL
		GROUP BY SOL.ProductId
	 ) SOL
	   ON ITM.ProductID = SOL.ProductId
	 LEFT JOIN (-- cumulated open purchase orders
		SELECT POL.ProductId 
		, 0 OnHand 
		, 0 SalesQty
		, SUM(POL.OrderQty) PurchQty
		FROM Purchasing.PurchaseOrderDetail POL
		WHERE OrderQty - (ReceivedQty - RejectedQty)>0
		  --AND POL.DueDate BETWEEN '2014-01-01' AND '2014-12-31'
		GROUP BY POL.ProductId 
	 ) POL
	    ON ITM.ProductId = POL.ProductId
WHERE COALESCE(OHD.ProductId, SOL.ProductId, POL.ProductId) IS NOT NULL
ORDER BY ITM.ProductNumber

With the help of CTEs the final query can be simplified considerably:

-- products analysis (via CTEs)
WITH OnHand 
AS ( -- cumulated on hand 
	SELECT OHD.ProductId
	, SUM(OHD.Quantity) OnHand
	, 0 SalesQty
	, 0 PurchQty
	FROM [Production].[ProductInventory] OHD
	GROUP BY OHD.ProductId
)
, SalesOrders
AS ( -- cumulated sales orders
		SELECT SOL.ProductId
		, 0 OnHand
		, SUM(SOL.OrderQty) SalesQty
		, 0 PurchQty
		FROM [Sales].[SalesOrderDetail] SOL
		GROUP BY SOL.ProductId
)
, OpenPOs 
AS ( -- cumulated open purchase orders
	SELECT POL.ProductId 
	, 0 OnHand 
	, 0 SalesQty
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
		--AND POL.DueDate BETWEEN '2014-01-01' AND '2014-12-31'
	GROUP BY POL.ProductId 
) 
SELECT ITM.ProductNumber
, ITM.Name
, IsNull(OHD.OnHand, 0) OnHand
, IsNull(SOL.SalesQty, 0) SalesQty
, IsNull(POL.PurchQty, 0) PurchQty
FROM [Production].[Product] ITM
     LEFT JOIN OnHand OHD
	   ON ITM.ProductId = OHD.ProductId 
	 LEFT JOIN SalesOrders SOL
	   ON ITM.ProductID = SOL.ProductId
	 LEFT JOIN OpenPOs POL
	    ON ITM.ProductId = POL.ProductId
WHERE COALESCE(OHD.ProductId, SOL.ProductId, POL.ProductId) IS NOT NULL
ORDER BY ITM.ProductNumber

This way of structuring the code allows us in theory also a better way to troubleshoot the logic on segments (each CTE) and a better grip at the end query. In fact, any of the above alternatives would result in a similar writing of the end query and, with the right indexes and processing power, the performance won't be in general an issue. 

A CTE is just a way of reorganizing a query and the changes made by moving the logic to the CTE  shouldn't have any impact on the performance. Even if the constraints and tables appear somewhere else, the database engine will push down predicates and move operators around to obtain an optimal algebraic tree. In theory, the two approaches should lead to the same query plan. Of course, there are also exceptions, e.g. when restructuring the logic inline in a query without CTE can favor one plan over the other.

There's also the temptation to use CTEs for everything. An extreme case is using a CTE for each table on which a filter is applied instead of bringing the constraints into the JOIN or the WHERE clause. Even if the former approach allows troubleshooting individual sources, it can create further overhead as is needed to check back and forth between CTEs and JOINs, taking thus more time and allowing some errors maybe to escape. CTEs are for breaking down complex logic to a level at which the code can be managed and not create further overhead. There must be a balance between usability and effort. 

Moving to a distributed environment like Azure Synapse, where tables need to be distributed between several compute nodes, because of the dependencies existing between tables, queries based on several aggregations might take longer than expected. Besides following the best practices for table design including tables' distribution (see [1], [2]), it's maybe worth playing around with the query structure and see how the database engine will react to it. 

For example, the considered query could be restructured as follows by transforming the many LEFT JOINs to UNIONs: 

-- products analysis (via UNIONs)
SELECT ITM.ProductNumber
, ITM.Name
, SUM(DAT.OnHand) OnHand
, SUM(DAT.SalesQty) SalesQty
, SUM(DAT.PurchQty) PurchQty
FROM [Production].[Product] ITM
     JOIN (
		-- cumulated on hand 
		SELECT OHD.ProductId
		, SUM(OHD.Quantity) OnHand
		, 0 SalesQty
		, 0 PurchQty
		FROM [Production].[ProductInventory] OHD
		GROUP BY OHD.ProductId
		UNION ALL
		-- cumulated sales orders
		SELECT SOL.ProductId
		, 0 OnHand
		, SUM(SOL.OrderQty) SalesQty
		, 0 PurchQty
		FROM [Sales].[SalesOrderDetail] SOL
		GROUP BY SOL.ProductId
		UNION ALL
		-- cumulated open purchase orders
		SELECT POL.ProductId 
		, 0 OnHand 
		, 0 SalesQty
		, SUM(POL.OrderQty) PurchQty
		FROM Purchasing.PurchaseOrderDetail POL
		WHERE OrderQty - (ReceivedQty - RejectedQty)>0
		  --AND POL.DueDate BETWEEN '2014-01-01' AND '2014-12-31'
		GROUP BY POL.ProductId 
	) DAT
	ON ITM.ProductId = DAT.ProductId
GROUP BY ITM.ProductNumber
, ITM.Name
ORDER BY ITM.ProductNumber

In similar situations I found this approach to provide better performance, especially when working with serverless SQL pools. Though, this might depend also on tables' particularities. 

If the queries take long time and the result sets are needed frequently, it might be useful to store the intermediary or final result sets in (base) tables, or in case of serverless SQL pool to parquet files and have the data updated on a regular basis. Upon case, unless the data chance too often, this might prove a much better option than using temporary tables or table variables.

Happy coding!


Resources:
[1] Microsoft Learn (2022) Guidance for designing distributed tables using dedicated SQL pool in Azure Synapse Analytics (link)
[2] Microsoft Learn (2022) Design tables using dedicated SQL pool in Azure Synapse Analytics (link)


01 February 2023

💎SQL Reloaded: Alternatives for Better Code Maintainability in SQL Server & Azure Synapse I

Introduction

Queries can become quite complex and with the increased complexity they'll be harder to read and/or maintain. Since the early days of SQL Server, views and table-valued user-defined functions (UDFs) are the standard ways of encapsulating logic for reuse in queries, allowing to minimize the duplication of logic. Then came the common table expressions (CTEs), which allow a further layer of structuring the code, independently whether a view or UDF was used. 

These are the main 3 options that can be combined in various ways to better structure the code. On the other side, also a temporary table or table variable could be used for the same purpose, though they have further implications.

To exemplify the various approaches, let's consider a simple query based on two tables from the AdventureWorks database. For the sake of simplicity, further business rules have been left out.

Inline Subqueries

-- products with open purchase orders
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN ( -- cumulated open purchase orders by product
		SELECT POL.ProductId 
		, SUM(POL.OrderQty) PurchQty
		FROM Purchasing.PurchaseOrderDetail POL
		WHERE OrderQty - (ReceivedQty - RejectedQty)>0
		GROUP BY POL.ProductId 
	) POL
	ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

As can be seen, the logic for the "Open purchase orders" result set is built within an inline subquery (aka inline view). As its logic becomes more complex, the simplest way to handle this is to move it into a CTE.

Common Table Expressions (CTEs)

A common table expression can be thought of as a temporary result set defined within the execution scope of a single SELECT, INSERT, UPDATE, DELETE or CREATE VIEW statement [1]. Thus, the CTE can't be reused between queries.

The inline query is moved at the beginning within a WITH statement to which is given a proper name that allows easier identification later:

-- products with open purchase orders (common table expression)
WITH OpenPOs
AS (-- cumulated open purchase orders by product
	SELECT POL.ProductId 
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
	GROUP BY POL.ProductId 
)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Thus, this allows us to rewrite the JOIN as if it were between two tables. Multiple CTEs can be used as well, with or without any dependencies between them. Moreover, CTEs allow building recursive queries (see example).

There is no performance gain or loss by using a CTE. It's important to know that the result set is not cached, therefore, if the same CTE is called multiple times (within a query), it will be also "executed" for the same number of times. Except the cases in which the database engine uses a spool operator to save intermediate query results for a CTE, there will be created no work table in tempdb for CTEs.

If the inline query needs to be reused in several queries, defining a view is a better alternative.

Views

A view is a database object used to encapsulate a query and that can be referenced from other queries much like a table. In fact, it's also referred as a "virtual table". A view can't be execute by itself (as stored procedures do. No data, only the definition of the view is stored, and the various actions that can be performed on database objects can be performed on views as well.

-- creating the view
CREATE VIEW dbo.vOpenPurchaseOrders
AS
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- testing the view
SELECT top 10 *
FROM dbo.vOpenPurchaseOrders

Once the view is created, it can be called from any query:

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN dbo.vOpenPurchaseOrders POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Besides the schema binding, there are no additional costs for using views. However, views have several limitations (see [2]). Moreover, it's not possible to use parameters with views, scenarios in which tabled-valued UDFs can help.

Indexed Views 

Starting with SQL Server 2015, it's possible to materialize the data in a view, storing the results of the view in a clustered index on the disk in same way a table with a clustered index is stored. This type of view is called an indexed view (aka materialized view, though the concept is used slightly different in Azure Synapse) and for long-running queries can provide considerable performance gains. In case the view contains a GROUP BY is present, its definition must contain COUNT_BIG(*) and must not contain HAVING.

-- dropping the view
--DROP VIEW IF EXISTS Purchasing.vOpenPOs

-- create view
CREATE VIEW Purchasing.vOpenPOs
WITH SCHEMABINDING
AS
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
, COUNT_BIG(*) Count
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 
GO

--Create an index on the view.
CREATE UNIQUE CLUSTERED INDEX IDX_vOpenPOs
   ON Purchasing.vOpenPOs (ProductId);

--testing the view
SELECT top 100 *
FROM Purchasing.vOpenPOs

-- products with open purchase orders (indexed view)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN Purchasing.vOpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

When an indexed view is defined on a table, the query optimizer may use it to speed up the query execution even if it wasn't referenced in the query. Besides the restriction of the view to be deterministic, further limitations apply (see [6]).

Table-Valued Functions

A table-valued function is a user-defined function in which returns a table as a result, as opposed to a single data value, as scalar functions do.

Let's support that we need to restrict base the logic based on a time interval. We'd need then to provide the StartDate & EndDate as parameters. Compared with other UDFs table-valued functions, as their name implies, need to return a table:

-- creating the UDF function 
CREATE FUNCTION dbo.tvfOpenPurchaseOrdersByProduct( 
  @StartDate date 
, @EndDate date) 
RETURNS TABLE 
AS RETURN ( 
	SELECT POL.ProductId 
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
	  AND POL.DueDate BETWEEN @StartDate AND @EndDate
	GROUP BY POL.ProductId 
)

-- testing the UDF
SELECT top 10 *
FROM dbo.tvfOpenPurchaseOrdersByProduct('2014-01-01', '2014-12-31')

A table-valued function can be used as a "table with parameters" in JOINs:

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN dbo.tvfOpenPurchaseOrdersByProduct('2014-01-01', '2014-12-31') POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

The parameters are optional, though in such cases using a view might still be a better idea. Table-valued functions used to have poor performance in the past compared with views and in certain scenarios they might still perform poorly. Their benefit resides in allowing to pass and use parameters in the logic, which can make them irreplaceable. Moreover, multi-statement table-valued functions can be built as well (see example)!

Notes:
1) When evaluating table-valued functions for usage consider their limitations as well (see [3])!
2) Scalar UDFs can be used to simplify the code as well, though they apply only to single values, therefore they are not considered in here!

Temporary Tables 

A temporary table is a base table that is stored and managed in tempdb as any other table. It exists only while the database session in which it was created is active. Therefore, it can be called multiple times, behaving much like a standard table:

-- create the temp table
CREATE TABLE dbo.#OpenPOs (
  ProductId int NOT NULL
, PurchQty decimal(8,2) NOT NULL
)

-- insert the cumulated purchase orders
INSERT INTO #OpenPOs
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN dbo.#OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

-- drop the table (cleaning)
-- DROP TABLE IF EXISTS dbo.#OpenPOs;

Being created in the tempdb, system database shared by several databases, temporary table's performance relies on tempdb's configuration and workload. Moreover, the concurrent creation of temporary tables from many sessions can lead to tempdb metadata contention, as each session attempts updating metadata information in the system based tables.

Temporary tables are logged, which adds more burden on the database engine, however being able to create indexes on them and use statistics can help processing result sets more efficiently, especially when called multiple times. 

Also, a temporary table might be cached (see [1]) and not deleted when its purpose ends, which allows operations that drop and create the objects to execute very quickly and reduces page allocation contention.

Table Variables

A table variable is a variable of type TABLE and can be used in functions, stored procedures, and batches. The construct is similar to the temp table and is stored as well in the tempdb and cached under certain scenarios, however they are scoped to the batch or routine in which they are defined and destroyed after that. 

-- create the table variable
DECLARE @OpenPOs TABLE (
  ProductId int NOT NULL
, PurchQty decimal(8,2) NOT NULL
)

-- insert the cumulated purchase orders
INSERT INTO @OpenPOs
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- products with open purchase orders (table variable)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN @OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Table variables don’t participate in transactions or locking, while DML operations done on them are not logged. There are also no statistics maintained and any data changes impacting the table variable will not cause recompilation. Thus, they are usually faster than temporary variables, especially when their size is small, though their performance depends also on how they are used. On the other side, for big result sets and/or when several calls are involved, a temporary table could prove to be more efficient. 

Important!!! Temporary tables and table variables are means of improving the performance of long-running queries. Being able to move pieces of logic around helps in maintaining the code and it also provides a logical structure of the steps, however they shouldn't be used if the performance gain is not the target! Overusing them as technique can considerably decrease the performance of tempdb, which can have impact in other areas!

Azure Synapse

Moving to Azure Synapse there are several important limitations in what concerns the above (see [4]). Even if some features are supported, further limitations might apply. What's important to note is that materialized views act like indexed view in standard SQL Server and that CETAS (Create External Table as SELECT) are available to import/export data to the supported file formats in Hadoop, Azure storage blob or Azure Data Lake Storage Gen2.

FeatureDedicatedServerlessSQL Server
CTEsYesYesYes (2015+)
Recursive CTEsNoNoYes (2015+)
ViewsYesYesYes
Indexed viewsNoNoYes
Materialized viewsYesNoNo
Table-valued functions (single statement)NoYesYes
Table-valued functions (multi-statement)NoNoYes
Scalar UDFs YesNoYes
TablesYesNoYes
Temporary tables (local)YesLimitedYes
Temporary tables (global)NoNoYes
Table variablesYesYesYes
CETASYesLimitedYes (2022+)

Notes:
1) CETAS have two important limitations in serverless SQL Pool
    a) once the data were exported to a file, they can't be overwritten via the same syntax;
    b) logic based on temporary tables can't be exported via pipelines.
2) Temporary tables can be used to replace cursors (see example).

Previous Post  <<||>>  Next Post

Resources:
[1] Microsoft Learn (2012) Capacity Planning for tempdb (link)
[2] Microsoft Learn (2023) CREATE View (link)
[3] Microsoft Learn (2023) CREATE Function (link)
[4] Microsoft Learn (2023) Transact-SQL features supported in Azure Synapse SQL (link)
[5] Redgate (2018) Choosing Between Table Variables and Temporary Tables (ST011, ST012), by Phil Factor (link)
[6] Microsoft Learn (2023) Create indexed views (link)
[7] Microsoft Learn (2023) CREATE MATERIALIZED VIEW AS SELECT (Transact-SQL) (link)
[8] Microsoft Learn (2023) CETAS with Synapse SQL (link)

19 November 2022

💎SQL Reloaded: Tricks with Strings via STRING_SPLIT, PATINDEX and TRANSLATE

Searching for a list of words within a column can be easily achieved by using the LIKE operator:

-- searching for several words via LIKE (SQL Server 2000+)
SELECT * 
FROM Production.Product 
WHERE Name LIKE '%chain%'
   OR Name LIKE '%lock%'
   OR Name LIKE '%rim%'
   OR Name LIKE '%spindle%'

The search is quite efficient, if on the column is defined an index, a clustered index scan being more likely chosen.

If the list of strings to search upon becomes bigger, the query becomes at least more difficult to maintain. Using regular expressions could be a solution. Unfortunately, SQL Server has its limitations in working with patterns. For example, it doesn't have a REGEXP_LIKE function, which is used something like (not tested):

-- Oracle 
SELECT * 
FROM Production.Product 
WHERE REGEXP_LIKE(lower(Name), 'chain|lock|rim|spindle')

However, there's a PATINDEX function which returns the position of a pattern within a string, and which uses the same wildcards that can be used with the LIKE operator:

-- searching for a value via PATINDEX (SQL Server 2000+)
SELECT * 
FROM [Production].[Product] 
WHERE PATINDEX('%rim%', Name)>0

Even if together with the Name can be provided only one of the values, retrieving the values from a table or a table-valued function (TVF) would do the trick. If the values need to be reused in several places, they can be stored in a table or view. If needed only once, a common table expression is more indicated:

-- filtering for several words via PATHINDEX (SQL Server 2008+)
WITH CTE 
AS (
  -- table from list of values (SQL Server 2008+)
SELECT * FROM (VALUES ('chain') , ('lock') , ('rim') , ('spindle')) DAT(words) ) SELECT * FROM Production.Product PRD WHERE EXISTS ( SELECT * FROM CTE WHERE PATINDEX('%'+ CTE.words +'%', PRD.Name)>0 )

The query should return the same records as above in the first query!

Besides own's UDFs (see SplitListWithIndex or SplitList), starting with SQL Server 2017 can be used the STRING_SPLIT function to return the same values as a TVF:

-- filtering for several words via PATHINDEX & STRING_SPLIT (SQL Server 2017+)
SELECT * 
FROM Production.Product PRD
WHERE EXISTS (
	SELECT *
	FROM STRING_SPLIT('chain|lock|rim|spindle', '|') SPL
	WHERE PATINDEX('%'+ SPL.value +'%', PRD.Name)>0
	)

A dynamic list of values can be built as well. For example, the list of words can be obtained from a table and the STRING_SPLIT function:

-- listing the words appearing in a column (SQL Server 2017+)
SELECT DISTINCT SPL.value
FROM Production.Product PRD
     CROSS APPLY STRING_SPLIT(Name, ' ') SPL
ORDER BY SPL.value

One can remove the special characters, the numeric values, respectively the 1- and 2-letters words:

-- listing the words appearing in a column (SQL Server 2017+)
SELECT DISTINCT SPL.value
FROM Production.Product PRD
     CROSS APPLY STRING_SPLIT(Replace(Replace(Replace(Replace(Name, '-', ' '), ',', ' '), '/', ' '), '''', ' '), ' ') SPL
WHERE IsNumeric(SPL.value) = 0 -- removing numbers
  AND Len(SPL.value)>2 -- removing single/double letters
ORDER BY SPL.value

The output looks better, though the more complex the text, the more replacements need to be made. An alternative to a UDF (see ReplaceSpecialChars) is the TRANSLATE function, which replaces a list of characters with another. One needs to be careful and have a 1:1 mapping, the REPLICATE function doing the trick:

-- replacing special characters via TRANSLATE (SQL Server 2017+)
SELECT TRANSLATE(Name, '-,/''', Replicate(' ', 4))
FROM Production.Product PRD

Now the query becomes:

-- listing the words appearing in a column using TRANSLATE (SQL Server 2017+)
SELECT DISTINCT SPL.value
FROM Production.Product PRD
     CROSS APPLY STRING_SPLIT(TRANSLATE(Name, '-,/''', Replicate(' ', 4)), ' ') SPL
WHERE IsNumeric(SPL.value) = 0 -- removing numbers
  AND Len(SPL.value)>2 -- removing single/double letters
ORDER BY SPL.value

Happy coding!

30 October 2022

💎SQL Reloaded: The WINDOW Clause in SQL Server 2022 (Part I: Simple Aggregations)

Between the many new features introduced in SQL Server 2022, Microsoft brings the WINDOW clause for defining the partitioning and ordering of a dataset which uses window functions. But before unveiling the change, let's take a walk down the memory lane.

In the early ages of SQL Server, many of descriptive statistics techniques were resuming in using the averages over a dataset that contained more or less complex logic. For example, to get the total and average of sales per Month, the query based on AdventureWorks database would look something like:

-- aggregated sales orders - detailed (SQL Server 2000+)
SELECT SOL.ProductId
, Year(SOH.OrderDate) [Year]
, Month(SOH.OrderDate) [Month]
, SUM(SOL.OrderQty) TotalQty
, AVG(SOL.OrderQty) AverageQty
FROM Sales.SalesOrderDetail SOL
     JOIN Sales.SalesOrderHeader SOH
	   ON SOL.SalesOrderId = SOH.SalesOrderId
WHERE SOL.ProductId IN (745)
  AND Year(SOH.OrderDate) = 2012
  AND Month(SOH.OrderDate) BETWEEN 1 AND 3
GROUP BY SOL.ProductId
, Year(SOH.OrderDate) 
, Month(SOH.OrderDate)

When possible, the base logic was encapsulated within a view, hiding query's complexity from the users, allowing also reuse and better maintenance, just to mention a few of the benefits of this approach:

-- encapsulating the logic into a view (SQL Server 2000+)
CREATE OR ALTER VIEW Sales.vSalesOrders
AS
-- sales orders details
SELECT SOL.SalesOrderId 
, SOL.ProductId
, Cast(SOH.OrderDate as Date) OrderDate
, Year(SOH.OrderDate) [Year]
, Month(SOH.OrderDate) [Month]
, Cast(SOL.OrderQty as decimal(18,2)) OrderQty
-- many more columns 
FROM Sales.SalesOrderDetail SOL
     JOIN Sales.SalesOrderHeader SOH
	   ON SOL.SalesOrderId = SOH.SalesOrderId
/* -- some constraints can be brought directly into the view
WHERE SOL.ProductId IN (745)
  AND Year(SOH.OrderDate) = 2012
  AND Month(SOH.OrderDate) BETWEEN 1 AND 3
*/

The above query now becomes:
 
-- aggregated sales orders - simplified (SQL Server 2000+)
SELECT SOL.ProductId
, SOL.[Year]
, SOl.[Month]
, SUM(SOL.OrderQty) TotalQty
, AVG(SOL.OrderQty) AverageQty
FROM Sales.vSalesOrders SOL
WHERE SOL.ProductId IN (745)
  AND SOL.[Year] = 2012
  AND SOL.[Month] BETWEEN 1 AND 3
GROUP BY SOL.ProductId
, SOL.[Year]
, SOl.[Month]

In many cases, performing this kind of aggregations was all the users wanted. However, quite often it's useful to look and the individual sales and consider them as part of the broader picture. For example, it would be interesting to know, what's the percentage of an individual value from the total (see OrderQtyPct) or any similar aggregate information. In SQL Server 2000 addressing such requirements would involve a join between the same view - one query with the detailed records, while the other contains the aggregated data:

-- sales orders from the totals (SQL Server 2000+)
SELECT SOL.*
, ASO.TotalQty
, Cast(CASE WHEN ASO.TotalQty <> 0 THEN 100*SOL.OrderQty/ASO.TotalQty ELSE 0 END as decimal(18,2)) OrderQtyPct
, ASO.AverageQty
FROM Sales.vSalesOrders SOL
     JOIN ( -- aggregated sales orders
		SELECT SOL.ProductId
		, SOL.[Year]
		, SOl.[Month]
		, SUM(SOL.OrderQty) TotalQty
		, AVG(SOL.OrderQty) AverageQty
		FROM Sales.vSalesOrders SOL
		WHERE SOL.ProductId IN (745)
		  AND SOL.[Year] = 2012
		  AND SOL.[Month] BETWEEN 1 AND 3
		GROUP BY SOL.ProductId
		, SOL.[Year]
		, SOl.[Month]
	) ASO
	ON SOL.ProductId = ASO.ProductId 
   AND SOL.[Year] = ASO.[Year]
   AND SOL.[Month] = ASO.[Month]
ORDER BY SOL.ProductId
, SOL.OrderDate

Now, just imagine that you can't create a view and having to duplicate the logic each time the view is used! Aggregating the data at different levels would require similar joins to the same view or piece of logic. 

Fortunately, SQL Server 2005 came with two long-awaited features, common table expressions (CTEs) and window functions, which made a big difference. First, CTEs allowed defining inline views that can be referenced multiple times. Secondly, the window functions allowed aggregations within a partition.
 
-- sales orders with CTE SQL Server 2005+ query 
WITH CTE
AS (--sales orders in scope
SELECT SOL.SalesOrderId 
, SOL.ProductId
, Cast(SOH.OrderDate as Date) OrderDate
, Year(SOH.OrderDate) [Year]
, Month(SOH.OrderDate) [Month]
, SOL.OrderQty
FROM Sales.SalesOrderDetail SOL
     JOIN Sales.SalesOrderHeader SOH
	   ON SOL.SalesOrderId = SOH.SalesOrderId
WHERE SOL.ProductId IN (745)
  AND Year(SOH.OrderDate) = 2012
  AND Month(SOH.OrderDate) BETWEEN 1 AND 3
)
SELECT SOL.SalesOrderId 
, SOL.ProductId
, SOL. OrderDate
, SOL.[Year]
, SOL.[Month]
, SOL.OrderQty
, SUM(SOL.OrderQty) OVER(PARTITION BY SOL.[Year], SOL.[Month]) TotalQty
, AVG(SOL.OrderQty)  OVER(PARTITION BY SOL.[Year], SOL.[Month]) AverageQty
FROM CTE SOL
WHERE SOL.ProductId IN (745)
  AND SOL.[Year] = 2012
  AND SOL.[Month] BETWEEN 1 AND 3

This kind of structuring the queries allows to separate the base logic for better maintainability, readability and fast prototyping. Once the logic from CTE becomes stable, it can be moved within a view, following to replace the CTE reference with view's name in the final query. On the other side, the window functions allow writing more flexible and complex code, even if the statements can become occasionally complex (see OrderQtyPct):
 
-- aggregated sales orders (SQL Server 2005+)
SELECT SOL.SalesOrderId 
, SOL.ProductId
, SOL. OrderDate
, SOL.[Year]
, SOL.[Month]
, SOL.OrderQty
, SUM(SOL.OrderQty) OVER(PARTITION BY SOL.[Year], SOL.[Month]) TotalQty
, AVG(SOL.OrderQty)  OVER(PARTITION BY SOL.[Year], SOL.[Month]) AverageQty
, Cast(CASE WHEN SUM(SOL.OrderQty) OVER(PARTITION BY SOL.[Year], SOL.[Month]) <> 0 THEN 100*SOL.OrderQty/SUM(SOL.OrderQty) OVER(PARTITION BY SOL.[Year], SOL.[Month]) ELSE 0 END as decimal(18,2)) OrderQtyPct
FROM Sales.vSalesOrders SOL
WHERE SOL.ProductId IN (745)
  AND SOL.[Year] = 2012
  AND SOL.[Month] BETWEEN 1 AND 3

Now, SQL Server 2022 allows to further simplify the logic by allowing to define with a name the window at the end of the statement and reference the name in several window functions (see last line of the query):

-- Aggregations per month (SQL Server 2022+)
SELECT SOL.SalesOrderId 
, SOL.ProductId
, SOL. OrderDate
, SOL.[Year]
, SOL.[Month]
, SOL.OrderQty
, SUM(SOL.OrderQty) OVER SalesByMonth AS TotalQty
, AVG(SOL.OrderQty) OVER SalesByMonth AS AverageQty
, Cast(CASE WHEN SUM(SOL.OrderQty) OVER SalesByMonth <> 0 THEN 100*SOL.OrderQty/SUM(SOL.OrderQty) OVER SalesByMonth ELSE 0 END as decimal(18,2)) OrderQtyPct
FROM Sales.vSalesOrders SOL
WHERE SOL.ProductId IN (745)
  AND SOL.[Year] = 2012
  AND SOL.[Month] BETWEEN 1 AND 3
WINDOW SalesByMonth AS (PARTITION BY SOL.[Year], SOL.[Month])

Moreover, several windows can be defined. For example, aggregating the data also per year:

-- Aggregations per month and year (SQL Server 2022+) 
SELECT SOL.SalesOrderId 
, SOL.ProductId
, SOL. OrderDate
, SOL.[Year]
, SOL.[Month]
, SOL.OrderQty
, SUM(SOL.OrderQty) OVER SalesByMonth AS TotalQtyByMonth
, AVG(SOL.OrderQty) OVER SalesByMonth AS AverageQtyByMonth
, Cast(CASE WHEN SUM(SOL.OrderQty) OVER SalesByMonth <> 0 THEN 100*SOL.OrderQty/SUM(SOL.OrderQty) OVER SalesByMonth ELSE 0 END as decimal(18,2)) OrderQtyPctByMonth
, SUM(SOL.OrderQty) OVER SalesByYear AS TotalQtyByYear
, AVG(SOL.OrderQty) OVER SalesByYear AS AverageQtyByYear
, Cast(CASE WHEN SUM(SOL.OrderQty) OVER SalesByYear <> 0 THEN 100*SOL.OrderQty/SUM(SOL.OrderQty) OVER SalesByYear ELSE 0 END as decimal(18,2)) OrderQtyPctByYear
FROM Sales.vSalesOrders SOL
WHERE SOL.ProductId IN (745)
  AND SOL.[Year] = 2012
  AND SOL.[Month] BETWEEN 1 AND 3
WINDOW SalesByMonth AS (PARTITION BY SOL.[Year], SOL.[Month])
, SalesByYear AS  (PARTITION BY SOL.[Year])

Isn't that cool? It will take probably some time to get used in writing and reading this kind of queries, though using descriptive names for the windows should facilitate the process! 

As a side note, even if there's no product function like in Excel, there's a mathematical trick to transform a product into a sum of elements by applying the Exp (exponential) and Log (logarithm) functions (see example).

Happy coding!

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.