Showing posts with label laws. Show all posts
Showing posts with label laws. Show all posts

20 December 2018

Data Science: Accuracy (Just the Quotes)

"Accurate and minute measurement seems to the nonscientific imagination a less lofty and dignified work than looking for something new. But nearly all the grandest discoveries of science have been but the rewards of accurate measurement and patient long contained labor in the minute sifting of numerical results." (William T Kelvin, "Report of the British Association For the Advancement of Science" Vol. 41, 1871)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"The test of the accuracy and completeness of a description is, not that it may assist, but that it cannot mislead." (Burt G Wilder, "A Partial Revision of Anatomical Nomenclature", Science, 1881)

"Accuracy of statement is one of the first elements of truth; inaccuracy is a near kin to falsehood." (Tyron Edwards, "A Dictionary of Thoughts", 1891)

"A statistical estimate may be good or bad, accurate or the reverse; but in almost all cases it is likely to be more accurate than a casual observer’s impression, and the nature of things can only be disproved by statistical methods." (Arthur L Bowley, "Elements of Statistics", 1901)

"Great numbers are not counted correctly to a unit, they are estimated; and we might perhaps point to this as a division between arithmetic and statistics, that whereas arithmetic attains exactness, statistics deals with estimates, sometimes very accurate, and very often sufficiently so for their purpose, but never mathematically exact." (Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Accuracy is the foundation of everything else." (Thomas H Huxley, "Method and Results", 1893)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"Science begins with measurement and there are some people who cannot be measurers; and just as we distinguish carpenters who can work to this or that traction of an inch of accuracy, so we must distinguish ourselves and our acquaintances as able to observe and record to this or that degree of truthfulness." (John A Thomson, "Introduction to Science", 1911)

"The ordinary mathematical treatment of any applied science substitutes exact axioms for the approximate results of experience, and deduces from these axioms the rigid mathematical conclusions. In applying this method it must not be forgotten that the mathematical developments transcending the limits of exactness of the science are of no practical value. It follows that a large portion of abstract mathematics remains without finding any practical application, the amount of mathematics that can be usefully employed in any science being in proportion to the degree of accuracy attained in the science. Thus, while the astronomer can put to use a wide range of mathematical theory, the chemist is only just beginning to apply the first derivative, i. e. the rate of change at which certain processes are going on; for second derivatives he does not seem to have found any use as yet." (Felix Klein, "Lectures on Mathematics", 1911)

"It [science] involves an intelligent and persistent endeavor to revise current beliefs so as to weed out what is erroneous, to add to their accuracy, and, above all, to give them such shape that the dependencies of the various facts upon one another may be as obvious as possible." (John Dewey, "Democracy and Education", 1916)

"The man of science, by virtue of his training, is alone capable of realising the difficulties - often enormous - of obtaining accurate data upon which just judgment may be based." (Sir Richard Gregory, "Discovery; or, The Spirit and Service of Science", 1918)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"Science does not aim at establishing immutable truths and eternal dogmas; its aim is to approach the truth by successive approximations, without claiming that at any stage final and complete accuracy has been achieved." (Bertrand Russell, "The ABC of Relativity", 1925)

"Science is but a method. Whatever its material, an observation accurately made and free of compromise to bias and desire, and undeterred by consequence, is science." (Hans Zinsser, "Untheological Reflections", The Atlantic Monthly, 1929)

"The structure of a theoretical system tells us what alternatives are open in the possible answers to a given question. If observed facts of undoubted accuracy will not fit any of the alternatives it leaves open, the system itself is in need of reconstruction." (Talcott Parsons, "The structure of social action", 1937)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)

"Being built on concepts, hypotheses, and experiments, laws are no more accurate or trustworthy than the wording of the definitions and the accuracy and extent of the supporting experiments." (Gerald Holton, "Introduction to Concepts and Theories in Physical Science", 1952)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"The precision of a number is the degree of exactness with which it is stated, while the accuracy of a number is the degree of exactness with which it is known or observed. The precision of a quantity is reported by the number of significant figures in it." (Edmund C Berkeley & Lawrence Wainwright, Computers: Their Operation and Applications", 1956)

"The art of using the language of figures correctly is not to be over-impressed by the apparent air of accuracy, and yet to be able to take account of error and inaccuracy in such a way as to know when, and when not, to use the figures. This is a matter of skill, judgment, and experience, and there are no rules and short cuts in acquiring this expertness." (Ely Devons, "Essays in Economics", 1961)

"The two most important characteristics of the language of statistics are first, that it describes things in quantitative terms, and second, that it gives this description an air of accuracy and precision." (Ely Devons, "Essays in Economics", 1961)

"Relativity is inherently convergent, though convergent toward a plurality of centers of abstract truths. Degrees of accuracy are only degrees of refinement and magnitude in no way affects the fundamental reliability, which refers, as directional or angular sense, toward centralized truths. Truth is a relationship." (R Buckminster Fuller, "The Designers and the Politicians", 1962)

"Theories are usually introduced when previous study of a class of phenomena has revealed a system of uniformities. […] Theories then seek to explain those regularities and, generally, to afford a deeper and more accurate understanding of the phenomena in question. To this end, a theory construes those phenomena as manifestations of entities and processes that lie behind or beneath them, as it were." (Carl G Hempel, "Philosophy of Natural Science", 1966)

"Numbers are the product of counting. Quantities are the product of measurement. This means that numbers can conceivably be accurate because there is a discontinuity between each integer and the next. Between two and three there is a jump. In the case of quantity there is no such jump, and because jump is missing in the world of quantity it is impossible for any quantity to be exact. You can have exactly three tomatoes. You can never have exactly three gallons of water. Always quantity is approximate." (Gregory Bateson, "Number is Different from Quantity", CoEvolution Quarterly, 1978)

"Science has become a social method of inquiring into natural phenomena, making intuitive and systematic explorations of laws which are formulated by observing nature, and then rigorously testing their accuracy in the form of predictions. The results are then stored as written or mathematical records which are copied and disseminated to others, both within and beyond any given generation. As a sort of synergetic, rigorously regulated group perception, the collective enterprise of science far transcends the activity within an individual brain." (Lynn Margulis & Dorion Sagan, "Microcosmos", 1986)

"A theory is a good theory if it satisfies two requirements: it must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations." (Stephen Hawking, "A Brief History of Time: From Big Bang To Black Holes", 1988)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"There is no sharp dividing line between scientific theories and models, and mathematics is used similarly in both. The important thing is to possess a delicate judgement of the accuracy of your model or theory. An apparently crude model can often be surprisingly effective, in which case its plain dress should not mislead. In contrast, some apparently very good models can be hiding dangerous weaknesses." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Science is more than a mere attempt to describe nature as accurately as possible. Frequently the real message is well hidden, and a law that gives a poor approximation to nature has more significance than one which works fairly well but is poisoned at the root." (Robert H March, "Physics for Poets", 1996)

"Accuracy of observation is the equivalent of accuracy of thinking." (Wallace Stevens, "Collected Poetry and Prose", 1997)

“Accurate estimates depend at least as much upon the mental model used in forming the picture as upon the number of pieces of the puzzle that have been collected.” (Richards J. Heuer Jr, “Psychology of Intelligence Analysis”, 1999)

"To be numerate means to be competent, confident, and comfortable with one’s judgements on whether to use mathematics in a particular situation and if so, what mathematics to use, how to do it, what degree of accuracy is appropriate, and what the answer means in relation to the context." (Diana Coben, "Numeracy, mathematics and adult learning", 2000)

"Innumeracy - widespread confusion about basic mathematical ideas - means that many statistical claims about social problems don't get the critical attention they deserve. This is not simply because an innumerate public is being manipulated by advocates who cynically promote inaccurate statistics. Often, statistics about social problems originate with sincere, well-meaning people who are themselves innumerate; they may not grasp the full implications of what they are saying. Similarly, the media are not immune to innumeracy; reporters commonly repeat the figures their sources give them without bothering to think critically about them." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"There are two problems with sampling - one obvious, and  the other more subtle. The obvious problem is sample size. Samples tend to be much smaller than their populations. [...] Obviously, it is possible to question results based on small samples. The smaller the sample, the less confidence we have that the sample accurately reflects the population. However, large samples aren't necessarily good samples. This leads to the second issue: the representativeness of a sample is actually far more important than sample size. A good sample accurately reflects (or 'represents') the population." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial. No matter how puzzled we are by the behavior of an electron or an atom, we rarely call it complex, as quantum mechanics offers us the tools to describe them with remarkable accuracy. The demystification of crystals-highly regular networks of atoms and molecules-is one of the major success stories of twentieth-century physics, resulting in the development of the transistor and the discovery of superconductivity. Yet, we continue to struggle with systems for which the interaction map between the components is less ordered and rigid, hoping to give self-organization a chance." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Blissful data consist of information that is accurate, meaningful, useful, and easily accessible to many people in an organization. These data are used by the organization’s employees to analyze information and support their decision-making processes to strategic action. It is easy to see that organizations that have reached their goal of maximum productivity with blissful data can triumph over their competition. Thus, blissful data provide a competitive advantage.". (Margaret Y Chu, "Blissful Data", 2004)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Bialynicki-Birula & Iwona Bialynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Coincidence surprises us because our intuition about the likelihood of an event is often wildly inaccurate." (Michael Starbird, "Coincidences, Chaos, and All That Math Jazz", 2005)

"[myth:] Accuracy is more important than precision. For single best estimates, be it a mean value or a single data value, this question does not arise because in that case there is no difference between accuracy and precision. (Think of a single shot aimed at a target.) Generally, it is good practice to balance precision and accuracy. The actual requirements will differ from case to case." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies. " (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007) 

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"Prior to the discovery of the butterfly effect it was generally believed that small differences averaged out and were of no real significance. The butterfly effect showed that small things do matter. This has major implications for our notions of predictability, as over time these small differences can lead to quite unpredictable outcomes. For example, first of all, can we be sure that we are aware of all the small things that affect any given system or situation? Second, how do we know how these will affect the long-term outcome of the system or situation under study? The butterfly effect demonstrates the near impossibility of determining with any real degree of accuracy the long term outcomes of a series of events." (Elizabeth McMillan, Complexity, "Management and the Dynamics of Change: Challenges for practice", 2008)

"In the predictive modeling disciplines an ensemble is a group of algorithms that is used to solve a common problem [...] Each modeling algorithm has specific strengths and weaknesses and each provides a different mathematical perspective on the relationships modeled, just like each instrument in a musical ensemble provides a different voice in the composition. Predictive modeling ensembles use several algorithms to contribute their perspectives on the prediction problem and then combine them together in some way. Usually ensembles will provide more accurate models than individual algorithms which are also more general in their ability to work well on different data sets [...] the approach has proven to yield the best results in many situations." (Gary Miner et al, "Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications", 2012)

"The problem of complexity is at the heart of mankind’s inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

"Validity of a theory is also known as construct validity. Most theories in science present broad conceptual explanations of relationship between variables and make many different predictions about the relationships between particular variables in certain situations. Construct validity is established by verifying the accuracy of each possible prediction that might be made from the theory. Because the number of predictions is usually infinite, construct validity can never be fully established. However, the more independent predictions for the theory verified as accurate, the stronger the construct validity of the theory." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

"The margin of error is how accurate the results are, and the confidence interval is how confident you are that your estimate falls within the margin of error." (Daniel J Levitin, "Weaponized Lies", 2017)

"Are your insights based on data that is accurate and reliable? Trustworthy data is correct or valid, free from significant defects and gaps. The trustworthiness of your data begins with the proper collection, processing, and maintenance of the data at its source. However, the reliability of your numbers can also be influenced by how they are handled during the analysis process. Clean data can inadvertently lose its integrity and true meaning depending on how it is analyzed and interpreted." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"The only way to achieve any accuracy is to ignore most of the information available." (Preston C Hammer) 

18 December 2018

Data Science: Discovery (Just the Quotes)

"A good method of discovery is to imagine certain members of a system removed and then see how what is left would behave: for example, where would we be if iron were absent from the world: this is an old example." (Georg C Lichtenberg, Notebook J, 1789-1793)

"Every science has for its basis a system of principles as fixed and unalterable as those by which the universe is regulated and governed. Man cannot make principles; he can only discover them." (Thomas Paine, "The Age of Reason", 1794)

"We learn wisdom from failure much more than from success. We often discover what will do, by finding out what will not do; and probably he who never made a mistake never made a discovery." (Samuel Smiles, "Facilities and Difficulties", 1859)

"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"Every process has laws, known or unknown, according to which it must take place. A consciousness of them is so far from being necessary to the process, that we cannot discover what they are, except by analyzing the results it has left us." (Lord William T Kelvin , "An Outline of the Necessary Laws of Thought", 1866)

"Accurate and minute measurement seems to the nonscientific imagination a less lofty and dignified work than looking for something new. But nearly all the grandest discoveries of science have been but the rewards of accurate measurement and patient long contained labor in the minute sifting of numerical results." (William T Kelvin, "Report of the British Association For the Advancement of Science" Vol. 41, 1871)

"Modern discoveries have not been made by large collections of facts, with subsequent discussion, separation, and resulting deduction of a truth thus rendered perceptible. A few facts have suggested an hypothesis, which means a supposition, proper to explain them. The necessary results of this supposition are worked out, and then, and not till then, other facts are examined to see if their ulterior results are found in Nature." (Augustus de Morgan, "A Budget of Paradoxes", 1872)

"Science arises from the discovery of Identity amid Diversity." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"It would be an error to suppose that the great discoverer seizes at once upon the truth, or has any unerring method of divining it. In all probability the errors of the great mind exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must be many times as numerous as those that prove well founded. The weakest analogies, the most whimsical notions, the most apparently absurd theories, may pass through the teeming brain, and no record remain of more than the hundredth part. […] The truest theories involve suppositions which are inconceivable, and no limit can really be placed to the freedom of hypotheses." (W Stanley Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1877)

"A discoverer is a tester of scientific ideas; he must not only be able to imagine likely hypotheses, and to select suitable ones for investigation, but, as hypotheses may be true or untrue, he must also be competent to invent appropriate experiments for testing them, and to devise the requisite apparatus and arrangements." (George Gore, "The Art of Scientific Discovery", 1878)

"All great scientists have, in a certain sense, been great artists; the man with no imagination may collect facts, but he cannot make great discoveries." (Karl Pearson, "The Grammar of Science", 1892)

"The folly of mistaking a paradox for a discovery, a metaphor for a proof, a torrent of verbiage for a spring of capital truths, and oneself for an oracle, is inborn in us." (Paul Valéry, "Introduction to the Method of Leonardo da Vinci", 1895)

"If we study the history of science we see happen two inverse phenomena […] Sometimes simplicity hides under complex appearances; sometimes it is the simplicity which is apparent, and which disguises extremely complicated realities. […] No doubt, if our means of investigation should become more and more penetrating, we should discover the simple under the complex, then the complex under the simple, then again the simple under the complex, and so on, without our being able to foresee what will be the last term. We must stop somewhere, and that science may be possible, we must stop when we have found simplicity. This is the only ground on which we can rear the edifice of our generalizations." (Henri Poincaré, "Science and Hypothesis", 1901)

"The only true voyage of discovery […] would be not to visit new landscapes, but to possess other eyes, to see the universe through the eyes of another, of a hundred others, to see the hundred universes that each of them sees." (Marcel Proust, "À la recherche du temps perdu", 1913)

"To come very near to a true theory, and to grasp its precise application, are two very different things, as the history of a science teaches us. Everything of importance has been said before by somebody who did not discover it." (Alfred N Whitehead, "The Organization of Thought", 1917)

"Great scientific discoveries have been made by men seeking to verify quite erroneous theories about the nature of things." (Aldous L Huxley, "Life and Letters and the London Mercury" Vol. 1, 1928)

"The art of discovery is confused with the logic of proof and an artificial simplification of the deeper movements of thought results. We forget that we invent by intuition though we prove by logic." (Sarvepalli Radhakrishnan, "An Idealist View of Life", 1929)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935) 

"A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery." (George Polya, "How to solve it", 1944)

"It is always more easy to discover and proclaim general principles than it is to apply them." (Winston Churchill, "The Second World War: The gathering storm", 1948)

"Scientific discovery consists in the interpretation for our own convenience of a system of existence which has been made with no eye to our convenience at all." (Norbert Wiener, "The Human Use of Human Beings", 1949)

"The scientist who discovers a theory is usually guided to his discovery by guesses; he cannot name a method by means of which he found the theory and can only say that it appeared plausible to him, that he had the right hunch or that he saw intuitively which assumption would fit the facts." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"It is important for him who wants to discover not to confine himself to one chapter of science, but to keep in touch with various others." (Jacques S Hadamard, "An Essay on the Psychology of Invention in the Mathematical Field", 1954)

"The true aim of science is to discover a simple theory which is necessary and sufficient to cover the facts, when they have been purified of traditional prejudices." (Lancelot L Whyte, "Accent on Form", 1954)

"There comes a point where the mind takes a leap - call it intuition or what you will - and comes out upon a higher plane of knowledge, but can never prove how it got there. All great discoveries have involved such a leap." (Albert Einstein, [interview in Life, "Death of a Genius"] 1955)

"Discovery follows discovery, each both raising and answering questions, each ending a long search, and each providing the new instruments for a new search." (J Robert Oppenheimer, "Prospects in the Arts and Sciences", 1964)

"Discovery always carries an honorific connotation. It is the stamp of approval on a finding of lasting value. Many laws and theories have come and gone in the history of science, but they are not spoken of as discoveries. […] Theories are especially precarious, as this century profoundly testifies. World views can and do often change. Despite these difficulties, it is still true that to count as a discovery a finding must be of at least relatively permanent value, as shown by its inclusion in the generally accepted body of scientific knowledge." (Richard J. Blackwell, "Discovery in the Physical Sciences", 1969)

"A discovery must be, by definition, at variance with existing knowledge." (Albert Szent-Gyorgyi, "Dionysians and Apollonians", Science 176, 1972)

"It is one of our most exciting discoveries that local discovery leads to a complex of further discoveries. Corollary to this we find that we no sooner get a problem solved than we are overwhelmed with a multiplicity of additional problems in a most beautiful payoff of heretofore unknown, previously unrecognized, and as-yet unsolved problems." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"You cannot learn, through common sense, how things are you can only discover where they fit into the existing scheme of things." (Stuart Hall, 1977)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"Metaphors can have profound significance because, as images or figures, they allow the mind to grasp or discover unsuspected ideal and material relationships between objects." (Giuseppe Del Re, "Cosmic Dance", 1999)

"Alternative models are neither right nor wrong, just more or less useful in allowing us to operate in the world and discover more and better options for solving problems." (Andrew Weil," The Natural Mind: A Revolutionary Approach to the Drug Problem", 2004)

"We tackle a multifaceted universe one face at a time, tailoring our models and equations to fit the facts at hand. Whatever mechanical conception proves appropriate, that is the one to use. Discovering worlds within worlds, a practical observer will deal with each realm on its own terms. It is the only sensible approach to take." (Michael Munowitz, "Knowing: The Nature of Physical Law", 2005)

"Equations seem like treasures, spotted in the rough by some discerning individual, plucked and examined, placed in the grand storehouse of knowledge, passed on from generation to generation. This is so convenient a way to present scientific discovery, and so useful for textbooks, that it can be called the treasure-hunt picture of knowledge." (Robert P Crease, "The Great Equations", 2009)

"Models do not only describe reality, they are also instruments for exploring reality. They are not only involved in the integration of known data, but also in the discovery of new data." (Andreas Bartels, "The Standard Model of Cosmology as a Tool for Interpretation and Discovery", 2013)

More quotes on "Discovery" at the-web-of-knowledge.blogspot.com.

16 December 2018

Data Science: Laws (Just the Quotes)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact." (Pierre-Simon Laplace, "The System of the World", 1809)

"Primary causes are unknown to us; but are subject to simple and constant laws, which may be discovered by observation, the study of them being the object of natural philosophy." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

"But law is no explanation of anything; law is simply a generalization, a category of facts. Law is neither a cause, nor a reason, nor a power, nor a coercive force. It is nothing but a general formula, a statistical table." (Florence Nightingale, "Suggestions for Thought", 1860)

"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890)

"Even one well-made observation will be enough in many cases, just as one well-constructed experiment often suffices for the establishment of a law." (Émile Durkheim, "The Rules of Sociological Method", "The Rules of Sociological Method", 1895)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"It is well to notice in this connection [the mutual relations between the results of counting and measuring] that a natural law, in the statement of which measurable magnitudes occur, can only be understood to hold in nature with a certain degree of approximation; indeed natural laws as a rule are not proof against sufficient refinement of the measuring tools." (Luitzen E J Brouwer, "Intuitionism and Formalism", Bulletin of the American Mathematical Society, Vol. 20, 1913)

"[…] as the sciences have developed further, the notion has gained ground that most, perhaps all, of our laws are only approximations." (William James, "Pragmatism: A New Name for Some Old Ways of Thinking", 1914)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations, or statistical averages." (Bertrand A Russell, "The Analysis of Matter", 1927)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"The world is not made up of empirical facts with the addition of the laws of nature: what we call the laws of nature are conceptual devices by which we organize our empirical knowledge and predict the future." (Richard B Braithwaite, "Scientific Explanation", 1953)

"The methods of science may be described as the discovery of laws, the explanation of laws by theories, and the testing of theories by new observations. A good analogy is that of the jigsaw puzzle, for which the laws are the individual pieces, the theories local patterns suggested by a few pieces, and the tests the completion of these patterns with pieces previously unconsidered." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"Can there be laws of chance? The answer, it would seem should be negative, since chance is in fact defined as the characteristic of the phenomena which follow no law, phenomena whose causes are too complex to permit prediction." (Félix E Borel, "Probabilities and Life", 1962)

"Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected." (Richard Feynman, "The Feynman Lectures on Physics" Vol. 1, 1964)

"At each level of complexity, entirely new properties appear. [And] at each stage, entirely new laws, concepts, and generalizations are necessary, requiring inspiration and creativity to just as great a degree as in the previous one." (Herb Anderson, 1972)

"A good scientific law or theory is falsifiable just because it makes definite claims about the world. For the falsificationist, If follows fairly readily from this that the more falsifiable a theory is the better, in some loose sense of more. The more a theory claims, the more potential opportunities there will be for showing that the world does not in fact behave in the way laid down by the theory. A very good theory will be one that makes very wide-ranging claims about the world, and which is consequently highly falsifiable, and is one that resists falsification whenever it is put to the test." (Alan F Chalmers,  "What Is This Thing Called Science?", 1976)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"The connection between a model and a theory is that a model satisfies a theory; that is, a model obeys those laws of behavior that a corresponding theory explicity states or which may be derived from it. [...[] Computers make possible an entirely new relationship between theories and models. [...] A theory written in the form of a computer program is [...] both a theory and, when placed on a computer and run, a model to which the theory applies." (Joseph Weizenbaum, "Computer Power and Human Reason", 1984)

"We expect to learn new tricks because one of our science based abilities is being able to predict. That after all is what science is about. Learning enough about how a thing works so you'll know what comes next. Because as we all know everything obeys the universal laws, all you need is to understand the laws." (James Burke, "The Day the Universe Changed", 1985)

"A law explains a set of observations; a theory explains a set of laws. […] Unlike laws, theories often postulate unobservable objects as part of their explanatory mechanism." (John L Casti, "Searching for Certainty", 1990)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996) 

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"[...] things that seem hopelessly random and unpredictable when viewed in isolation often turn out to be lawful and predictable when viewed in aggregate." (Steven Strogatz, "The Joy of X: A Guided Tour of Mathematics, from One to Infinity", 2012)

14 December 2018

Data Science: Coincidence (Just the Quotes)

"It is no great wonder if in long process of time, while fortune takes her course hither and thither, numerous coincidences should spontaneously occur. If the number and variety of subjects to be wrought upon be infinite, it is all the more easy for fortune, with such an abundance of material, to effect this similarity of results." (Plutarch, Life of Sertorius, 1st century BC)

"Coincidences, in general, are great stumbling blocks in the way of that class of thinkers who have been educated to know nothing of the theory of probabilities - that theory to which the most glorious objects of human research are indebted for the most glorious of illustrations." (Edgar A Poe, "The Murders in the Rue Morgue", 1841)

"Nothing is more certain in scientific method than that approximate coincidence alone can be expected. In the measurement of continuous quantity perfect correspondence must be accidental, and should give rise to suspicion rather than to satisfaction." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Before we can completely explain a phenomenon we require not only to find its true cause, its chief relations to other causes, and all the conditions which determine how the cause operates, and what its effect and amount of effect are, but also all the coincidences." (George Gore, "The Art of Scientific Discovery", 1878)

"As science progress, it becomes more and more difficult to fit in the new facts when they will not fit in spontaneously. The older theories depend upon the coincidences of so many numerical results which can not be attributed to chance. We should not separate what has been joined together." (Henri Poincaré, "The Ether and Matter", 1912)

"By the laws of statistics we could probably approximate just how unlikely it is that it would happen. But people forget - especially those who ought to know better, such as yourself - that while the laws of statistics tell you how unlikely a particular coincidence is, they state just as firmly that coincidences do happen." (Robert A Heinlein, "The Door Into Summer", 1957)

"There is no coherent knowledge, i.e. no uniform comprehensive account of the world and the events in it. There is no comprehensive truth that goes beyond an enumeration of details, but there are many pieces of information, obtained in different ways from different sources and collected for the benefit of the curious. The best way of presenting such knowledge is the list - and the oldest scientific works were indeed lists of facts, parts, coincidences, problems in several specialized domains." (Paul K Feyerabend, "Farewell to Reason", 1987)

"A tendency to drastically underestimate the frequency of coincidences is a prime characteristic of innumerates, who generally accord great significance to correspondences of all sorts while attributing too little significance to quite conclusive but less flashy statistical evidence." (John A Paulos, "Innumeracy: Mathematical Illiteracy and its Consequences", 1988)

"The law of truly large numbers states: With a large enough sample, any outrageous thing is likely to happen." (Frederick Mosteller, "Methods for Studying Coincidences", Journal of the American Statistical Association Vol. 84, 1989)

"Most coincidences are simply chance events that turn out to be far more probable than many people imagine." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1997)

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Coincidence surprises us because our intuition about the likelihood of an event is often wildly inaccurate." (Michael Starbird, "Coincidences, Chaos, and All That Math Jazz", 2005)

"With our heads spinning in the world of coincidence and chaos, we nevertheless must make decisions and take steps into the minefield of our future. To avoid explosive missteps, we rely on data and statistical reasoning to inform our thinking." (Michael Starbird, "Coincidences, Chaos, and All That Math Jazz", 2005)

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

More quotes on "Coincidence" at the-web-of-knowledge.blogspot.com.

Data Science: Algorithms (Just the Quotes)

"Mathematics is an aspect of culture as well as a collection of algorithms." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Design problems - generating or discovering alternatives - are complex largely because they involve two spaces, an action space and a state space, that generally have completely different structures. To find a design requires mapping the former of these on the latter. For many, if not most, design problems in the real world systematic algorithms are not known that guarantee solutions with reasonable amounts of computing effort. Design uses a wide range of heuristic devices - like means-end analysis, satisficing, and the other procedures that have been outlined - that have been found by experience to enhance the efficiency of search. Much remains to be learned about the nature and effectiveness of these devices." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

"An algorithm must be seen to be believed, and the best way to learn what an algorithm is all about is to try it." (Donald E Knuth, The Art of Computer Programming Vol. I, 1968)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"Algorithmic complexity theory and nonlinear dynamics together establish the fact that determinism reigns only over a quite finite domain; outside this small haven of order lies a largely uncharted, vast wasteland of chaos." (Joseph Ford, "Progress in Chaotic Dynamics: Essays in Honor of Joseph Ford's 60th Birthday", 1988)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Algorithms are a set of procedures to generate the answer to a problem." (Stuart Kauffman, "At Home in the Universe: The Search for Laws of Complexity", 1995)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"The burgeoning field of computer science has shifted our view of the physical world from that of a collection of interacting material particles to one of a seething network of information. In this way of looking at nature, the laws of physics are a form of software, or algorithm, while the material world - the hardware - plays the role of a gigantic computer." (Paul C W Davies, "Laying Down the Laws", New Scientist, 2007)

"An algorithm refers to a successive and finite procedure by which it is possible to solve a certain problem. Algorithms are the operational base for most computer programs. They consist of a series of instructions that, thanks to programmers’ prior knowledge about the essential characteristics of a problem that must be solved, allow a step-by-step path to the solution." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Programming is a science dressed up as art, because most of us don’t understand the physics of software and it’s rarely, if ever, taught. The physics of software is not algorithms, data structures, languages, and abstractions. These are just tools we make, use, and throw away. The real physics of software is the physics of people. Specifically, it’s about our limitations when it comes to complexity and our desire to work together to solve large problems in pieces. This is the science of programming: make building blocks that people can understand and use easily, and people will work together to solve the very largest problems." (Pieter Hintjens, "ZeroMQ: Messaging for Many Applications", 2012)

"These nature-inspired algorithms gradually became more and more attractive and popular among the evolutionary computation research community, and together they were named swarm intelligence, which became the little brother of the major four evolutionary computation algorithms." (Yuhui Shi, "Emerging Research on Swarm Intelligence and Algorithm Optimization", Information Science Reference, 2014)

"[...] algorithms, which are abstract or idealized process descriptions that ignore details and practicalities. An algorithm is a precise and unambiguous recipe. It’s expressed in terms of a fixed set of basic operations whose meanings are completely known and specified. It spells out a sequence of steps using those operations, with all possible situations covered, and it’s guaranteed to stop eventually." (Brian W Kernighan, "Understanding the Digital World", 2017)

"An algorithm is the computer science version of a careful, precise, unambiguous recipe or tax form, a sequence of steps that is guaranteed to compute a result correctly." (Brian W Kernighan, "Understanding the Digital World", 2017)

"Again, classical statistics only summarizes data, so it does not provide even a language for asking [a counterfactual] question. Causal inference provides a notation and, more importantly, offers a solution. As with predicting the effect of interventions [...], in many cases we can emulate human retrospective thinking with an algorithm that takes what we know about the observed world and produces an answer about the counterfactual world." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"Algorithms describe the solution to a problem in terms of the data needed to represent the  problem instance and a set of steps necessary to produce the intended result." (Bradley N Miller et al, "Python Programming in Context", 2019)

"An algorithm, meanwhile, is a step-by-step recipe for performing a series of actions, and in most cases 'algorithm' means simply 'computer program'." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Each of us is sweating data, and those data are being mopped up and wrung out into oceans of information. Algorithms and large datasets are being used for everything from finding us love to deciding whether, if we are accused of a crime, we go to prison before the trial or are instead allowed to post bail. We all need to understand what these data are and how they can be exploited." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Many people have strong intuitions about whether they would rather have a vital decision about them made by algorithms or humans. Some people are touchingly impressed by the capabilities of the algorithms; others have far too much faith in human judgment. The truth is that sometimes the algorithms will do better than the humans, and sometimes they won’t. If we want to avoid the problems and unlock the promise of big data, we’re going to need to assess the performance of the algorithms on a case-by-case basis. All too often, this is much harder than it should be. […] So the problem is not the algorithms, or the big datasets. The problem is a lack of scrutiny, transparency, and debate." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

More quotes on "Algorithms" at the-web-of-knowledge.blogspot.com.

12 December 2018

Data Science: Theory (Just the Quotes)

"The moment a person forms a theory, his imagination sees, in every object, only the traits which favor that theory." (Thomas Jefferson, [letter to Charles Thompson] 1787)

"It is not possible to feel satisfied at having said the last word about some theory as long as it cannot be explained in a few words to any passerby encountered in the street." (Joseph D Gergonne, [letter] 1825)

"[…] in order to observe, our mind has need of some theory or other. If in contemplating phenomena we did not immediately connect them with principles, not only would it be impossible for us to combine these isolated observations, and therefore to derive profit from them, but we should even be entirely incapable of remembering facts, which would for the most remain unnoted by us." (Auguste Comte, "Cours de Philosophie Positive", 1830-1842)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"The function of theory is to put all this in systematic order, clearly and comprehensively, and to trace each action to an adequate, compelling cause. […] Theory should cast a steady light on all phenomena so that we can more easily recognize and eliminate the weeds that always spring from ignorance; it should show how one thing is related to another, and keep the important and the unimportant separate. If concepts combine of their own accord to form that nucleus of truth we call a principle, if they spontaneously compose a pattern that becomes a rule, it is the task of the theorist to make this clear." (Carl von Clausewitz, "On War", 1832)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"Theories usually result from the precipitate reasoning of an impatient mind which would like to be rid of phenomena and replace them with images, concepts, indeed often with mere words." (Johann Wolfgang von Goethe, "Maxims and Reflections", 1833)

"Every detection of what is false directs us towards what is true: every trial exhausts some tempting form of error. Not only so; but scarcely any attempt is entirely a failure; scarcely any theory, the result of steady thought, is altogether false; no tempting form of error is without some latent charm derived from truth." (William Whewell, "Lectures on the History of Moral Philosophy in England", 1852)

"The dimmed outlines of phenomenal things all merge into one another unless we put on the focusing-glass of theory, and screw it up sometimes to one pitch of definition and sometimes to another, so as to see down into different depths through the great millstone of the world." (James C Maxwell, "Are There Real Analogies in Nature?", 1856) 

"[…] ideas may be both novel and important, and yet, if they are incorrect – if they lack the very essential support of incontrovertible fact, they are unworthy of credence. Without this, a theory may be both beautiful and grand, but must be as evanescent as it is beautiful, and as unsubstantial as it is grand." (George Brewster, "A New Philosophy of Matter", 1858)

"If an idea presents itself to us, we must not reject it simply because it does not agree with the logical deductions of a reigning theory." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"Science asks no questions about the ontological pedigree or a priori character of a theory, but is content to judge it by its performance; and it is thus that a knowledge of nature, having all the certainty which the senses are competent to inspire, has been attained - a knowledge which maintains a strict neutrality toward all philosophical systems and concerns itself not with the genesis or a priori grounds of ideas." (Chauncey Wright, "The Philosophy of Herbert Spencer", North American Review, 1865)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"The triumph of a theory is to embrace the greatest number and the greatest variety of facts." (Charles A Wurtz, "A History of Chemical Theory from the Age of Lavoisier to the Present Time", 1869)

"Mathematics is not the discoverer of laws, for it is not induction; neither is it the framer of theories, for it is not hypothesis; but it is the judge over both, and it is the arbiter to which each must refer its claims; and neither law can rule nor theory explain without the sanction of mathematics." (Benjamin Peirce, "Linear Associative Algebra", American Journal of Mathematics, Vol. 4, 1881)

"As for everything else, so for a mathematical theory: beauty can be perceived but not explained." (Arthur Cayley, [president's address] 1883)

"It would be an error to suppose that the great discoverer seizes at once upon the truth, or has any unerring method of divining it. In all probability the errors of the great mind exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must be many times as numerous as those that prove well founded. The weakest analogies, the most whimsical notions, the most apparently absurd theories, may pass through the teeming brain, and no record remain of more than the hundredth part. […] The truest theories involve suppositions which are inconceivable, and no limit can really be placed to the freedom of hypotheses." (W Stanley Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1877)

"Perfect readiness to reject a theory inconsistent with fact is a primary requisite of the philosophic mind. But it, would be a mistake to suppose that this candour has anything akin to fickleness; on the contrary, readiness to reject a false theory may be combined with a peculiar pertinacity and courage in maintaining an hypothesis as long as its falsity is not actually apparent." (William S Jevons, "The Principles of Science", 1887)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890) 

"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890) 

"Facts are not much use, considered as facts. They bewilder by their number and their apparent incoherency. Let them be digested into theory, however, and brought into mutual harmony, and it is another matter. Theory is of the essence of facts. Without theory scientific knowledge would be only worthy of the mad house." (Oliver Heaviside, "Electromagnetic Theory", 1893)

"Scientific facts accumulate rapidly, and give rise to theories with almost equal rapidity. These theories are often wonderfully enticing, and one is apt to pass from one to another, from theory to theory, without taking care to establish each before passing on to the next, without assuring oneself that the foundation on which one is building is secure. Then comes the crash; the last theory breaks down utterly, and on attempting to retrace our steps to firm ground and start anew, we may find too late that one of the cards, possibly at the very foundation of the pagoda, is either faultily placed or in itself defective, and that this blemish easily remedied if detected in time has, neglected, caused the collapse of the whole structure on whose erection so much skill and perseverance have been spent." (Arthur M Marshall, 1894)

"A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to the first man whom you meet on the street." (David Hilbert [paraphrasing Joseph D Gergonne], "Mathematical Problems", 1900)

"One does not ask whether a scientific theory is true, but only whether it is convenient." (Henri Poincaré, "La Science et l'Hypothèse", 1902) 

"But surely it is self-evident that every theory is merely a framework or scheme of concepts together with their necessary relations to one another, and that the basic elements can be constructed as one pleases." (Gottlob Frege, "On the Foundations of Geometry and Formal Theories of Arithmetic" , cca. 1903-1909)

"It [a theory] ought to furnish a compass which, if followed, will lead the observer further and further into previously unexplored regions. Whether these regions will be barren or fertile experience alone will decide; but, at any rate, one who is guided in this way will travel onward in a definite direction, and will not wander aimlessly to and fro." (Sir Joseph J Thomson, "The Corpuscular Theory of Matter", 1907)

"Things and events explain themselves, and the business of thought is to brush aside the verbal and conceptual impediments which prevent them from doing so. Start with the notion that it is you who explain the Object, and not the Object that explains itself, and you are bound to end in explaining it away. It ceases to exist, its place being taken by a parcel of concepts, a string of symbols, a form of words, and you find yourself contemplating, not the thing, but your theory of the thing." (Lawrence P Jacks, "The Usurpation Of Language", 1910)

"The existence of analogies between central features of various theories implies the existence of a general theory which underlies the particular theories and unifies them with respect to those central features." (Eliakim H Moore, "Introduction to a Form of General Analysis", 1910)

"The discovery which has been pointed to by theory is always one of profound interest and importance, but it is usually the close and crown of a long and fruitful period, whereas the discovery which comes as a puzzle and surprise usually marks a fresh epoch and opens a new chapter in science." (Sir Oliver J Lodge, [Becquerel Memorial Lecture] Journal of the Chemical Society, Transactions 101 (2), 1912) 

"There is no great harm in the theorist who makes up a new theory to fit a new event. But the theorist who starts with a false theory and then sees everything as making it come true is the most dangerous enemy of human reason." (Gilbert K Chesterton, "The Flying Inn", 1914)

"Theory is the best guide for experiment - that were it not for theory and the problems and hypotheses that come out of it, we would not know the points we wanted to verify, and hence would experiment aimlessly" (Henry Hazlitt,  "Thinking as a Science", 1916)

"As soon as science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms. We call such a system of thought a theory. The theory finds the justification for its existence in the fact that it correlates a large number of single observations, and it is just here that the 'truth' of the theory lies." (Albert Einstein: "Relativity: The Special and General Theory", 1916)

"No fairer destiny could be allotted to any physical theory, than that it should of itself point out the way to the introduction of a more comprehensive theory, in which it lives on as a limiting case." (Albert Einstein: "Relativity, The Special and General Theory", 1916)

"To come very near to a true theory, and to grasp its precise application, are two very different things, as the history of a science teaches us. Everything of importance has been said before by somebody who did not discover it." (Alfred N Whitehead, "The Organization of Thought", 1917)

"Facts are carpet-tacks under the pneumatic tires of theory." (Austin O’Malley, "Keystones of Thought", 1918)

"Philosophy, like science, consists of theories or insights arrived at as a result of systemic reflection or reasoning in regard to the data of experience. It involves, therefore, the analysis of experience and the synthesis of the results of analysis into a comprehensive or unitary conception. Philosophy seeks a totality and harmony of reasoned insight into the nature and meaning of all the principal aspects of reality." (Joseph A Leighton, "The Field of Philosophy: An outline of lectures on introduction to philosophy", 1919)

"[…] analogies are not ‘aids’ to the establishment of theories; they are an utterly essential part of theories, without which theories would be completely valueless and unworthy of the name. It is often suggested that the analogy leads to the formulation of the theory, but that once the theory is formulated the analogy has served its purpose and may be removed or forgotten. Such a suggestion is absolutely false and perniciously misleading." (Norman R Campbell, "Physics, the Elements", 1920) 

"Nothing is more interesting to the true theorist than a fact which directly contradicts a theory generally accepted up to that time, for this is his particular work." (Max Planck, "A Survey of Physics", 1925)

"[…] the mere collection of facts, without some basis of theory for guidance and elucidation, is foolish and profitless." (Gamaliel Bradford, "Darwin", 1926)

"[…] facts are too bulky to be lugged about conveniently except on the wheels of theory." (Julian Huxley, "Essays of a Biologist", 1929)

 "We can invent as many theories we like, and any one of them can be made to fit the facts. But that theory is always preferred which makes the fewest number of assumptions." (Albert Einstein [interview] 1929)

"Every theory of the course of events in nature is necessarily based on some process of simplification and is to some extent, therefore, a fairy tale." (Sir Napier Shaw, "Manual of Meteorology", 1932)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." (Albert Einstein, [lecture] 1933)

"All the theories and hypotheses of empirical science share this provisional character of being established and accepted ‘until further notice’ [...]" (Carl G Hempel, "Geometry and Empirical Science", 1935)

"[while] the traditional way is to regard the facts of science as something like the parts of a jig-saw puzzle, which can be fitted together in one and only one way, I regard them rather as the tiny pieces of a mosaic, which can be fitted together in many ways. A new theory in an old subject is, for me, a new mosaic pattern made with the pieces taken from an older pattern. [...] Theories come into fashion and theories go out of fashion, but the facts connected with them stay." (William H George, "The Scientist in Action", 1936)

"Every new theory as it arises believes in the flush of youth that it has the long sought goal; it sees no limits to its applicability, and believes that at last it is the fortunate theory to achieve the 'right' answer." (Percy W Bridgman, "The Nature of Physical Theory", 1936)

"When an active individual of sound common sense perceives the sordid state of the world, desire to change it becomes the guiding principle by which he organizes given facts and shapes them into a theory. The methods and categories as well as the transformation of the theory can be understood only in connection with his taking of sides. This, in turn, discloses both his sound common sense and the character of the world. Right thinking depends as much on right willing as right willing on right thinking." (Max Horkheimer, "The Latest Attack on Metaphysics", 1937)

"Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"With the help of physical theories we try to find our way through the maze of observed facts, to order and understand the world of our sense impressions." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"There is nothing as practical as a good theory" (Kurt Z Lewin, "Psychology and the process of group living", Journal of Social Psychology 17, 1943)

"To a scientist a theory is something to be tested. He seeks not to defend his beliefs, but to improve them. He is, above everything else, an expert at ‘changing his mind’." (Wendell Johnson, 1946)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947]) 

"We can put it down as one of the principles learned from the history of science that a theory is only overthrown by a better theory, never merely by contradictory facts." (James B Conant, "On Understanding Science", 1947)

"A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended its area of applicability." (Albert Einstein, "Autobiographical Notes", 1949)

"When a scientific theory is firmly established and confirmed, it changes its character and becomes a part of the metaphysical background of the age: a doctrine is transformed into a dogma." (Max Born, "Natural Philosophy of Cause and Chance", 1949)

"As every mathematician knows, nothing is more fruitful than these obscure analogies, these indistinct reflections of one theory into another, these furtive caresses, these inexplicable disagreements; also nothing gives the researcher greater pleasure." (André Weil, "De la Métaphysique aux Mathématiques", 1960)

"A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data. " (Paul A M Dirac, Scientific American, 1963)

"The final test of a theory is its capacity to solve the problems which originated it." (George Dantzig, "Linear Programming and Extensions", 1963)

"It is easy to obtain confirmations, or verifications, for nearly every theory - if we look for confirmations. Confirmations should count only if they are the result of risky predictions. […] A theory which is not refutable by any conceivable event is non-scientific. Irrefutability is not a virtue of a theory (as people often think) but a vice. Every genuine test of a theory is an attempt to falsify it, or refute it." (Karl R Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a way of blooming into beautiful theories." (Philip J Davis, "Number", Scientific American, No 211 (3), 1964)

"Another thing I must point out is that you cannot prove a vague theory wrong. If the guess that you make is poorly expressed and rather vague, and the method that you use for figuring out the consequences is a little vague - you are not sure, and you say, 'I think everything's right because it's all due to so and so, and such and such do this and that more or less, and I can sort of explain how this works' […] then you see that this theory is good, because it cannot be proved wrong! Also if the process of computing the consequences is indefinite, then with a little skill any experimental results can be made to look like the expected consequences." (Richard P Feynman, "The Character of Physical Law", 1965)

"This is the key of modern science and it was the beginning of the true understanding of Nature - this idea to look at the thing, to record the details, and to hope that in the information thus obtained might lie a clue to one or another theoretical interpretation." (Richard P Feynman, "The Character of Physical Law", 1965)

"Theories are usually introduced when previous study of a class of phenomena has revealed a system of uniformities. […] Theories then seek to explain those regularities and, generally, to afford a deeper and more accurate understanding of the phenomena in question. To this end, a theory construes those phenomena as manifestations of entities and processes that lie behind or beneath them, as it were." (Carl G Hempel, "Philosophy of Natural Science", 1966)

"A theory is scientific only if it can be disproved. But the moment you try to cover absolutely everything the chances are that you cover nothing. " (Sir Hermann Bondi, "Assumption and Myth in Physical Theory", 1967) 

 "As soon as we inquire into the reasons for the phenomena, we enter the domain of theory, which connects the observed phenomena and traces them back to a single ‘pure’ phenomena, thus bringing about a logical arrangement of an enormous amount of observational material." (Georg Joos, "Theoretical Physics", 1968)

"It makes no sense to say what the objects of a theory are, beyond saying how to interpret or reinterpret that theory in another." (Willard v O Quine, "Ontological Relativity and Other Essays", 1969)

"One often hears that successive theories grow ever closer to, or approximate more and more closely to, the truth. Apparently, generalizations like that refer not to the puzzle-solutions and the concrete predictions derived from a theory but rather to its ontology, to the match, that is, between the entities with which the theory populates nature and what is ‘really there’." (Thomas S Kuhn, "The Structure of Scientific Revolutions", 1970)

"Blind commitment to a theory is not an intellectual virtue: it is an intellectual crime." (Imre Lakatos, [radio Lecture] 1973) 

"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975) 

"A physical theory remains an empty shell until we have found a reasonable physical interpretation." (Peter Bergmann, [conference] 1976)

"Owing to his lack of knowledge, the ordinary man cannot attempt to resolve conflicting theories of conflicting advice into a single organized structure. He is likely to assume the information available to him is on the order of what we might think of as a few pieces of an enormous jigsaw puzzle. If a given piece fails to fit, it is not because it is fraudulent; more likely the contradictions and inconsistencies within his information are due to his lack of understanding and to the fact that he possesses only a few pieces of the puzzle. Differing statements about the nature of things […] are to be collected eagerly and be made a part of the individual's collection of puzzle pieces. Ultimately, after many lifetimes, the pieces will fit together and the individual will attain clear and certain knowledge." (Alan R Beals, "Strategies of Resort to Curers in South India" [contributed in Charles M. Leslie (ed.), "Asian Medical Systems: A Comparative Study", 1976]) 

"A good scientific law or theory is falsifiable just because it makes definite claims about the world. For the falsificationist, If follows fairly readily from this that the more falsifiable a theory is the better, in some loose sense of more. The more a theory claims, the more potential opportunities there will be for showing that the world does not in fact behave in the way laid down by the theory. A very good theory will be one that makes very wide-ranging claims about the world, and which is consequently highly falsifiable, and is one that resists falsification whenever it is put to the test." (Alan F Chalmers,  "What Is This Thing Called Science?", 1976)

"Facts do not ‘speak for themselves’; they are read in the light of theory. Creative thought, in science as much as in the arts, is the motor of changing opinion. Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin", 1977)

"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)

"The theory of our modern technic shows that nothing is as practical as the theory." (J Robert Oppenheimer, "Reflex", 1977)

"Science has so accustomed us to devising and accepting theories to account for the facts we observe, however fantastic, that our minds must begin their manufacture before we are aware of it." (Gene Wolfe, "Seven American Nights", 1978) 

"For mathematicians, only one test was necessary: once the elements of any mathematical theory were seen to be consistent, then they were mathematically acceptable. Nothing more was required." (Joseph W  Dauben, "Georg Cantor: His Mathematics and Philosophy of the Infinite", 1979)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)

"A real change of theory is not a change of equations - it is a change of mathematical structure, and only fragments of competing theories, often not very important ones conceptually, admit comparison with each other within a limited range of phenomena." (Yuri I Manin, "Mathematics and Physics", 1981)

"The principal aim of physical theories is understanding. A theory's ability to find a number is merely a useful criterion for a correct understanding." (Yuri I Manin, "Mathematics and Physics", 1981)

"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]" (George Greenstein, "Frozen Star", 1983)

"In all scientific fields, theory is frequently more important than experimental data. Scientists are generally reluctant to accept the existence of a phenomenon when they do not know how to explain it. On the other hand, they will often accept a theory that is especially plausible before there exists any data to support it." (Richard Morris, 1983) 

"Physics is like that. It is important that the models we construct allow us to draw the right conclusions about the behaviour of the phenomena and their causes. But it is not essential that the models accurately describe everything that actually happens; and in general it will not be possible for them to do so, and for much the same reasons. The requirements of the theory constrain what can be literally represented. This does not mean that the right lessons cannot be drawn. Adjustments are made where literal correctness does not matter very much in order to get the correct effects where we want them; and very often, as in the staging example, one distortion is put right by another. That is why it often seems misleading to say that a particular aspect of a model is false to reality: given the other constraints that is just the way to restore the representation." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Scientific theories must tell us both what is true in nature, and how we are to explain it. […] Scientific theories are thought to explain by dint of the descriptions they give of reality." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts based on small but profound insights; the insights themselves come from concrete special cases." (Paul Halmos, "Selecta: Expository writing", 1983)

"A final goal of any scientific theory must be the derivation of numbers. Theories stand or fall, ultimately, upon numbers." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Until now, physical theories have been regarded as merely models with approximately describe the reality of nature. As the models improve, so the fit between theory and reality gets closer. Some physicists are now claiming that supergravity is the reality, that the model and the real world are in mathematically perfect accord." (Paul C W Davies, "Superforce", 1984)

"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985) 

"Experience without theory teaches nothing." (William E Deming, "Out of the Crisis", 1986)

"All great theories are expansive, and all notions so rich in scope and implication are underpinned by visions about the nature of things. You may call these visions ‘philosophy’, or ‘metaphor’, or ‘organizing principle’, but one thing they are surely not - they are not simple inductions from observed facts of the natural world." (Stephen J Gould, "Time’s Arrow, Time’s Cycle", 1987)

"Facts do not 'speak for themselves'. They speak for or against competing theories. Facts divorced from theory or visions are mere isolated curiosities." (Thomas Sowell, "A Conflict of Visions: Ideological Origins of Political Struggles", 1987)

"[…] no good model ever accounted for all the facts, since some data was bound to be misleading if not plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do this and would thus be open to suspicion." (Francis H C Crick, "What Mad Pursuit: A Personal View of Scientific Discovery", 1988)

"Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory." (Stephen Hawking,  "A Brief History of Time", 1988)

"Theories are not so much wrong as incomplete." (Isaac Asimov, "The Relativity of Wrong", 1988)

"A discovery in science, or a new theory, even where it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalyzed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow: it takes a vast world unchallenged and for granted." (James R Oppenheimer, "Atom and Void", 1989)

"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)

"A law explains a set of observations; a theory explains a set of laws. […] Unlike laws, theories often postulate unobservable objects as part of their explanatory mechanism." (John L Casti, "Searching for Certainty", 1990)

"It is in the nature of theoretical science that there can be no such thing as certainty. A theory is only ‘true’ for as long as the majority of the scientific community maintain the view that the theory is the one best able to explain the observations." (Jim Baggott, "The Meaning of Quantum Theory", 1992)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Science is not about control. It is about cultivating a perpetual condition of wonder in the face of something that forever grows one step richer and subtler than our latest theory about it. It is about  reverence, not mastery." (Richard Power, "Gold Bug Variations", 1993) 

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"The amount of understanding produced by a theory is determined by how well it meets the criteria of adequacy - testability, fruitfulness, scope, simplicity, conservatism - because these criteria indicate the extent to which a theory systematizes and unifies our knowledge." (Theodore Schick Jr.,  "How to Think about Weird Things: Critical Thinking for a New Age", 1995)

"Scientists, being as a rule more or less human beings, passionately stick up for their ideas, their pet theories. It's up to someone else to show you are wrong." (Niles Eldredge, "Reinventing Darwin", 1995)

"There are two kinds of mistakes. There are fatal mistakes that destroy a theory; but there are also contingent ones, which are useful in testing the stability of a theory." (Gian-Carlo Rota, [lecture] 1996)

"Paradigms are the most general-rather like a philosophical or ideological framework. Theories are more specific, based on the paradigm and designed to describe what happens in one of the many realms of events encompassed by the paradigm. Models are even more specific providing the mechanisms by which events occur in a particular part of the theory's realm. Of all three, models are most affected by empirical data - models come and go, theories only give way when evidence is overwhelmingly against them and paradigms stay put until a radically better idea comes along." (Lee R Beach, "The Psychology of Decision Making: People in Organizations", 1997)

"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)

"An individual understands a concept, skill, theory, or domain of knowledge to the extent that he or she can apply it appropriately in a new situation." (Howard Gardner, "The Disciplined Mind", 1999)

"[…] philosophical theories are structured by conceptual metaphors that constrain which inferences can be drawn within that philosophical theory. The (typically unconscious) conceptual metaphors that are constitutive of a philosophical theory have the causal effect of constraining how you can reason within that philosophical framework." (George Lakoff, "Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought", 1999)

"All scientific theories, even those in the physical sciences, are developed in a particular cultural context. Although the context may help to explain the persistence of a theory in the face of apparently falsifying evidence, the fact that a theory arises from a particular context is not sufficient to condemn it. Theories and paradigms must be accepted, modified or rejected on the basis of evidence." (Richard P Bentall,  "Madness Explained: Psychosis and Human Nature", 2003)

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"In science, for a theory to be believed, it must make a prediction - different from those made by previous theories - for an experiment not yet done. For the experiment to be meaningful, we must be able to get an answer that disagrees with that prediction. When this is the case, we say that a theory is falsifiable - vulnerable to being shown false. The theory also has to be confirmable, it must be possible to verify a new prediction that only this theory makes. Only when a theory has been tested and the results agree with the theory do we advance the statement to the rank of a true scientific theory." (Lee Smolin, "The Trouble with Physics", 2006)

"A theory appears to be beautiful or elegant (or simple, if you prefer) when it can be expressed concisely in terms of mathematics we already have." (Murray Gell-Mann, "Beauty and Truth in Physics", 2007)

"In science we try to explain reality by using models (theories). This is necessary because reality itself is too complex. So we need to come up with a model for that aspect of reality we want to understand – usually with the help of mathematics. Of course, these models or theories can only be simplifications of that part of reality we are looking at. A model can never be a perfect description of reality, and there can never be a part of reality perfectly mirroring a model." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"It is also inevitable for any model or theory to have an uncertainty (a difference between model and reality). Such uncertainties apply both to the numerical parameters of the model and to the inadequacy of the model as well. Because it is much harder to get a grip on these types of uncertainties, they are disregarded, usually." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"A theory is a speculative explanation of a particular phenomenon which derives it legitimacy from conforming to the primary assumptions of the worldview of the culture in which it appears. There can be more than one theory for a particular phenomenon that conforms to a given worldview. […]  A new theory may seem to trigger a change in worldview, as in this case, but logically a change in worldview must precede a change in theory, otherwise the theory will not be viable. A change in worldview will necessitate a change in all theories in all branches of study." (M G Jackson, "Transformative Learning for a New Worldview: Learning to Think Differently", 2008)

"All scientific theories, even those in the physical sciences, are developed in a particular cultural context. Although the context may help to explain the persistence of a theory in the face of apparently falsifying evidence, the fact that a theory arises from a particular context is not sufficient to condemn it. Theories and paradigms must be accepted, modified or rejected on the basis of evidence."  (Richard P Bentall,  "Madness Explained: Psychosis and Human Nature", 2003) 

"With each theory or model, our concepts of reality and of the fundamental constituents of the universe have changed." (Stephen Hawking & Leonard Mlodinow, "The Grand Design", 2010)

"A theory is a set of deductively closed propositions that explain and predict empirical phenomena, and a model is a theory that is idealized." (Jay Odenbaugh, "True Lies: Realism, Robustness, and Models", Philosophy of Science, Vol. 78, No. 5, 2011)

"Science would be better understood if we called theories ‘misconceptions’ from the outset, instead of only after we have discovered their successors." (David Deutsch, "Beginning of Infinity", 2011)

"Complexity has the propensity to overload systems, making the relevance of a particular piece of information not statistically significant. And when an array of mind-numbing factors is added into the equation, theory and models rarely conform to reality." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"[…] if one has a theory, one needs to be willing to try to prove it wrong as much as one tries to provide that it is right […]" (Lawrence M Krauss et al, A Universe from Nothing, 2013)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh,"Mathematics as an Empirical Phenomenon, Subject to Modeling", 2017)

"Scientists generally agree that no theory is 100 percent correct. Thus, the real test of knowledge is not truth, but utility." (Yuval N Harari, "Sapiens: A brief history of humankind", 2017) 

"A theory is nothing but a tool to know the reality. If a theory contradicts reality, it must be discarded at the earliest." (Awdhesh Singh, "Myths are Real, Reality is a Myth", 2018)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.