Showing posts with label growth. Show all posts
Showing posts with label growth. Show all posts

06 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part II: There's Value in Failure)

Business Intelligence
Business Intelligence Series

"Results are nothing; the energies which produce them
and which again spring from them are everything."
(Wilhelm von Humboldt,  "On Language", 1836)

When the data is not available and is needed on a continuous basis then usually the solution is to redesign the processes and make sure the data becomes available at the needed quality level. Redesign involves additional costs for the business; therefore, it might be tempting to cancel or postpone data projects, at least until they become feasible, though they’re seldom feasible. 

Just because there’s a set of data, this doesn’t mean that there is important knowledge to be extracted from it, respectively that the investment is feasible. There’s however value in building experience in the internal resources, in identifying the challenges and the opportunities, in identifying what needs to be changed for harnessing the data. Unfortunately, organizations expect that somebody else will do the work for them instead of doing the jump by themselves, and this approach more likely will fail. It’s like expecting to get enlightened after a few theoretical sessions with a guru than walking the path by oneself. 

This is reflected also in organizations’ readiness to do the required endeavors for making the jump on the maturity scale. If organizations can’t approach such topics systematically and address the assumptions, opportunities, and risks adequately, respectively to manage the various aspects, it’s hard to believe that their data journey will be positive. 

A data journey shouldn’t be about politics even if some minds need to be changed in the process, at management as well as at lower level. If the leadership doesn’t recognize the importance of becoming an enabler for such initiatives, then the organization probably deserves to keep the status quo. The drive for change should come from the leadership even if we talk about data culture, data strategy, decision-making, or any critical aspect.

An organization will always need to find the balance between time, scope, cost, and quality, and this applies to operations, tactics, and strategies as well as to projects.  There are hard limits and lot of uncertainty associated with data projects and the tasks involved, limits reflected in cost and time estimations (which frankly are just expert’s rough guesses that can change for the worst in the light of new information). Therefore, especially in data projects one needs to be able to compromise, to change scope and timelines as seems fit, and why not, to cancel the projects if the objectives aren’t feasible anymore, respectively if compromises can’t be reached.

An organization must be able to take the risks and invest in failure, otherwise the opportunities for growth don’t change. Being able to split a roadmap into small iterative steps that allow besides breaking down the complexity and making progress to evaluate the progress and the knowledge resulted, respectively incorporate the feedback and knowledge in the next steps, can prove to be what organizations lack in coping with the high uncertainty. Instead, organizations seem to be fascinated by the big bang, thinking that technology can automatically fill the organizational gaps.

Doing the same thing repeatedly and expecting different results is called insanity. Unfortunately, this is what organizations and service providers do in what concerns Project Management in general and data projects in particular. Building something without a foundation, without making sure that the employees have the skillset, maturity and culture to manage the data-related tasks, challenges and opportunities is pure insanity!

Bottom line, harnessing the data requires a certain maturity and it starts with recognizing and pursuing opportunities, setting goals, following roadmaps, learning to fail and getting value from failure, respectively controlling the failure. Growth or instant enlightenment without a fair amount of sweat is possible, though that’s an exception for few in sight!

Previous Post <<||>> Next Post

06 March 2024

🧭Business Intelligence: Data Culture (Part II: Leadership, Necessary but not Sufficient)

Business Intelligence
Business Intelligence Series

Continuing the idea from the previous post on Brent Dykes’ article on data culture and Generative AI [1], it’s worth discussing about the relationship between data culture and leadership. Leadership belongs to a list of select words everybody knows about but fails to define them precisely, especially when many traits are associated with leadership, respectively when most of the issues existing in organizations ca be associated with it directly or indirectly.

Take for example McKinsey’s definition: "Leadership is a set of behaviors used to help people align their collective direction, to execute strategic plans, and to continually renew an organization." [2] It gives an idea of what leadership is about, though it lacks precision, which frankly is difficult to accomplish. Using modifiers like strong or weak with the word leadership doesn’t increase the precision of its usage. Several words stand out though: direction, strategy, behavior, alignment, renewal.

Leadership is about identifying and challenging the status quo, defining how the future will or could look like for the organization in terms of a vision, a mission and a destination, translating them into a set of goals and objectives. Then, it’s about defining a set of strategies, focusing on transformation and what it takes to execute it, adjusting the strategic bridge between goals and objectives, or, reading between the lines, identifying and doing the right things, being able to introduce a new order of things, reinventing the organization, adapting the organization to circumstances.

Aligning resumes in aligning the various strategies, aligning people with the vision and mission, while renewal is about changing course in response to new information or business context, identifying and transforming weaknesses into strengths, risks into opportunities, respectively opportunities into certitudes, seeing possibilities and multiplying them.

Leadership is also about working on the system, addressing the systemic failure, addressing structural and organizational issues, making sure that the preconditions and enablers for organizational change are in place, that no barriers exist or other factors impact negatively the change, that the positive aspects of complex systems like emergence or exponential growth do happen in time.

And leadership is about much more - interpersonal influence, inspiring people, Inspiring change, changing mindsets, assisting, motivating, mobilizing, connecting, knocking people out of their comfort zones, conviction, consistency, authority, competence, wisdom, etc. Leadership seems to be an idealistic concept where too many traits are considered, traits that ideally should apply to the average knowledge worker as well.

An organization’s culture is created, managed, nourished, and destroyed through leadership, and that’s a strong statement and constraint. By extension this statement applies to the data culture as well. It’s about leading by example and not by words or preaching, and many love to preach, even when no quire is around. It’s about demanding the same from the managers as managers demand from their subalterns, it’s about pushing the edges of culture. As Dykes mentions, it should be about participating in the data culture initiatives, making expectations explicit, and sharing mental models.

Leadership is a condition necessary but not sufficient for an organizations culture to mature. Financial and other type of resources are needed, though once a set of behaviors is seeded, they have the potential to grow and multiply when the proper conditions are met. Growth occurs also by being aware of what needs to be done and doing it day by day consciously, through self-mastery. Nowadays there are so many ways to learn and search for support, one just needs a bit of curiosity and drive to learn anything. Blaming in general the lack of leadership is just a way of passing the blame one level above on the command chain.

Resources:
[1] Forbes (2024) Why AI Isn’t Going To Solve All Your Data Culture Problems, by Brent Dykes (link)
[2] McKinsey (2022) What is leadership? (link)

Previous Post <<||>> Next Post

14 December 2014

🕸Systems Engineering: Exponential Growth (Just the Quotes)

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972) 

"Taking no action to solve these problems is equivalent of taking strong action. Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth. A decision to do nothing is a decision to increase the risk of collapse." (Donella Meadows et al, "The Limits to Growth", 1972) 

"Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth." (Mihajlo D Mesarovic, "Mankind at the Turning Point", 1974)

"It has long been appreciated by science that large numbers behave differently than small numbers. Mobs breed a requisite measure of complexity for emergent entities. The total number of possible interactions between two or more members accumulates exponentially as the number of members increases. At a high level of connectivity, and a high number of members, the dynamics of mobs takes hold. " (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant). Linear versus exponential: Linear growth is steady; exponential growth becomes explosive." (Ray Kurzweil, "The Singularity is Near", 2005)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, "Chaos: A Program Collection for the PC", 2008)

"A quantity growing exponentially toward a limit reaches that limit in a surprisingly short time." (Donella Meadows, "Thinking in systems: A Primer", 2008)

"In physical, exponentially growing systems, there must be at least one reinforcing loop driving growth and at least one balancing feedback loop constraining growth, because no system can grow forever in a finite environment." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"In chaotic deterministic systems, the probabilistic description is not linked to the number of degrees of freedom (which can be just one as for the logistic map) but stems from the intrinsic erraticism of chaotic trajectories and the exponential amplification of small uncertainties, reducing the control on the system behavior." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Standard economists don't seem to understand exponential growth. Ecological economics recognizes that the economy, like any other subsystem on the planet, cannot grow forever. And if you think of an organism as an analogy, organisms grow for a period and then they stop growing. They can still continue to improve and develop, but without physically growing, because if organisms did that you’d end up with nine-billion-ton hamsters." (Robert Costanza, "What is Ecological economics", 2010)

"Cyberneticists argue that positive feedback may be useful, but it is inherently unstable, capable of causing loss of control and runaway. A higher level of control must therefore be imposed upon any positive feedback mechanism: self-stabilising properties of a negative feedback loop constrain the explosive tendencies of positive feedback. This is the starting point of our journey to explore the role of cybernetics in the control of biological growth. That is the assumption that the evolution of self-limitation has been an absolute necessity for life forms with exponential growth." (Tony Stebbing, "A Cybernetic View of Biological Growth: The Maia Hypothesis", 2011)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020) 

More quotes on "Exponential Growth" at the-web-of-knowledge.blogspot.com.

12 December 2014

🕸Systems Engineering: Nonlinearity (Just the Quotes)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay Wright Forrester, "Urban dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium. " (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"When one combines the new insights gained from studying far-from-equilibrium states and nonlinear processes, along with these complicated feedback systems, a whole new approach is opened that makes it possible to relate the so-called hard sciences to the softer sciences of life - and perhaps even to social processes as well. […] It is these panoramic vistas that are opened to us by Order Out of Chaos." (Ilya Prigogine, "Order Out of Chaos: Man's New Dialogue with Nature", 1984)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: 1. Information processing occurs at many simple elements called neurons. 2. Signals are passed between neurons over connection links. 3. Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. 4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"It remains an unhappy fact that there is no best method for finding the solution to general nonlinear optimization problems. About the best general procedure yet devised is one that relies upon imbedding the original problem within a family of problems, and then developing relations linking one member of the family to another. If this can be done adroitly so that one family member is easily solvable, then these relations can be used to step forward from the solution of the easy problem to that of the original problem. This is the key idea underlying dynamic programming, the most flexible and powerful of all optimization methods." (John L Casti, "Five Golden Rules", 1995)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"Most physical processes in the real world are nonlinear. It is our abstraction of the real world that leads us to the use of linear systems in modeling these processes. These linear systems are simple, understandable, and, in many situations, provide acceptable simulations of the actual processes. Unfortunately, only the simplest of linear processes and only a very small fraction of the nonlinear having verifiable solutions can be modeled with linear systems theory. The bulk of the physical processes that we must address are, unfortunately, too complex to reduce to algorithmic form - linear or nonlinear. Most observable processes have only a small amount of information available with which to develop an algorithmic understanding. The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007) 

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Let's face it, the universe is messy. It is nonlinear, turbulent, and chaotic. It is dynamic. It spends its time in transient behavior on its way to somewhere else, not in mathematically neat equilibria. It self-organizes and evolves. It creates diversity, not uniformity. That's what makes the world interesting, that's what makes it beautiful, and that's what makes it work." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Linearity is a reductionist’s dream, and nonlinearity can sometimes be a reductionist’s nightmare. Understanding the distinction between linearity and nonlinearity is very important and worthwhile." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complexity is a relative term. It depends on the number and the nature of interactions among the variables involved. Open loop systems with linear, independent variables are considered simpler than interdependent variables forming nonlinear closed loops with a delayed response." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Complex systems are full of interdependencies - hard to detect - and nonlinear responses." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity."(Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

14 July 2014

🌡️Performance Management: Training (Definitions)

"Formal and informal learning options, which may include in-class training, informal mentoring, Web-based training, guided self-study, and formalized on-the-job training programs. The learning options selected for each situation are based on an assessment of the need for training and the performance gap to be addressed." (Sandy Shrum et al, "CMMI®: Guidelines for Process Integration and Product Improvement", 2003)

[cross-training:] "When an employee in one primary job task is trained in another or other tasks." (Robert McCrie, "Security Operations Management" 2nd Ed., 2006)

"An umbrella term to include training, development, and education, where training is learning that pertains to the job, development is learning for the growth of the individual that is not related to a specific job, and education is learning to prepare the individual but not related to a specific job." (Richard Caladine, "Taxonomies for Technology", 2008)

"Learning is a personal construction of knowledge. In order to learn a particular concept or skill, the learner needs to consider how new information relates to the existing understandings that the learner has. The process of sifting through available information in order to select the most appropriate information to use in knowledge construction requires the skills of information literacy. Good information literacy skills are a prerequisite for effective learning." (Carmel McNaught, "Information Literacy in the 21st Century", 2008)

"Activities undertaken to ensure that all individuals have the knowledge and skills required to perform their assignments." (Sally A Miller et al, "People CMM: A Framework for Human Capital Management" 2nd Ed., 2009)

"It is the process of fixing meaning to stimulus. It is the process of constructing new knowledge. Learning should proceed from learner’s sense of vocation, occur in settings or activity systems where the function and purposes of the learning are clear and explicit, focus primarily on developing the capacity to do and where learners seek to accomplish goals. In addition, learning should involve sharing meaning and building connection among meanings and different renditions of the meaning." (Kisilu M Kitainge, "Challenges of Training Motor Vehicle Mechanics for Changing World Contexts and Emergent Working Conditions: Cases of Kenya and Australia", 2009)

"Learning occurs through a cognitive process that occurs in the mind of the individual or, in contrast, learning occurs through a process of socialization and increasing participation rather than formal inquiry." (Mary F Ziegler, "Three Theoretical Perspectives on Informal Learning at Work", 2009)

"The process to obtain or transfer knowledge, skills, and abilities needed to carry out a specific activity or task" (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[business training: "Training on concepts that teach skills to understand and work effectively within a company." (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[IT training:] "Training on content involving the development, maintenance, and use of computer systems, software, and networks." (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[non-technical training:] "Training that is not technical training, for example, personal effectiveness or business training." (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[cross-training:] "Enables personnel to learn tasks associated with more than one job." (Barry Berman & Joel R Evans, "Retail Management: A Strategic Approach" 12th Ed., 2013)

"Programs used to teach new (and existing) personnel how best to perform their jobs or how to improve themselves." (Barry Berman & Joel R Evans, "Retail Management: A Strategic Approach" 12th Ed., 2013)

"Is a multidimensional process that results in a relatively enduring change in a person or persons, and consequently how that person or persons will perceive the world and reciprocally respond to its affordances physically, psychologically, and socially. The process of learning has as its foundation the systemic, dynamic, and interactive relation between the nature of the leaner and the objective of the learning as ecologically situated in a given time and place as well as over time." (Francisco Cua, "Authentic Education: Affording, Engaging, and Reflecting", 2014)

[on-the-job training:] "Training from an experienced employee to a new employee while working on the job. This is a form of one-on-one training." (Darril Gibson, "Effective Help Desk Specialist Skills", 2014)

"It can be defined as a mental activities by means of which knowledge, skill attitude are acquired, retained and utilized. It is defined it as changes in the particular form, change in behaviour tendency, resulting in relatively permanent practice. It involves that the changes, which occurs as a result of reinforced practice that gives new meaning and orientation. This leads to acquisition of new skills, behaviour tendency that is permanent." (Monsuru B Muraina, "Relevance of the Use of Instructional Materials in Teaching and Pedagogical Delivery: An Overview", 2015)

"Learning is a dynamic concept; it refers to the various processes by which skills and knowledge are acquired by individuals and, through them by organizations. Learning encompasses processes and outcomes as well as both, individual and organizational levels; it´s use in theory emphasizes the continually changing nature of organizations, and that goes beyond the view of organizations as bundles of resources. Learning includes the capacity to create new capabilities both internally and by acquiring knowledge from sources external to the firm. It also includes the methods for the diffusion of the new knowledge throughout the firm organization." (Arturo T Vargas & Javier J Villazul, "Learning and Innovation in Multinational Companies from Emerging Economies: The Case of CEMEX", 2016)

"The process of improving performance in one or more aspects of an employee’s work output through additional knowledge and or skill." (Fred MacKenzie, "7 Paths to Managerial Leadership", 2016)

"Learning is the act of gaining new knowledge, behaviors, skills, or ability. It may be regarded as a process, rather than a collection of factual and procedural knowledge. Human learning may occur as part of education, professional development, or training." (Chunfang Zhou, "Developing Creativity and Learning Design by Information and Communication Technology (ICT) in Developing Contexts", 2018)

[technical training:] "covers the acquisition of knowledge, skills and competencies leading to overall individual or company performance in the use and application of technology." (BCS Learning & Development Limited, "CEdMA Europe", 2019)

"Learning involves any process that in living organisms leads to permanent capacity change. Learning develops knowledge, abilities, understandings, emotions, attitudes, and sociality, which are important elements of the conditions and raw material of society." (Chunfang Zhou & Zhiliang Zhu, "Fostering Problem-Based Learning (PBL) in Chinese Universities for a Creative Society", 2019)

"The capacity of an individual and an organization to explore new challenges and contexts. It is an opportunity to unlearn which is a dynamic way of learning. It is through unlearning that people shape their brain, to readjust and continue learning. It is essential condition for transformation, creativity and innovation." (Ana Martins et al, "Unravelling Hurdles to Organizational Sustainability by Virtue of Sharing and Creating Knowledge", 2019)

"A shift of mind and what goes on inside learners as they undertake to gain or acquire new knowledge, understanding, skill, attitudes, values, and interests. The ‘what goes on’ could be described as perceiving - sensing and feeling concrete reality, thinking or reasoning abstractly; and internalizing or processing - making it a part of ourselves by actively jumping in and trying it, or reflecting on and watching what is happening; thus, the learner - anywhere along his/her life path, at any age - would have going on inside of him/her the perceiving and internalizing of new knowledges, understandings, skills, attitudes, values, and interests." (John A Henschke,"Leadership Ethics in Higher Education Administration: An Andragogical Perspective", 2020)

26 June 2006

✒️Donella H Meadows - Collected Quotes

"Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head - my mental models. None of these is or ever will be the real world. […] Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us." (Donella H Meadows, "Limits to Growth", 1972)

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows, "The Limits to Growth", 1972)

"Models can easily become so complex that they are impenetrable, unexaminable, and virtually unalterable." (Donella H Meadows, "The unavoidable a priori", 1980)

"The world is a complex, interconnected, finite, ecological–social–psychological–economic system. We treat it as if it were not, as if it were divisible, separable, simple, and infinite. Our persistent, intractable global problems arise directly from this mismatch." (Donella H Meadows, "Whole Earth Models and System", 1982)

"A quantity growing exponentially toward a limit reaches that limit in a surprisingly short time." (Donella Meadows, "Thinking in systems: A Primer", 2008)

"A system is a set of things – people, cells, molecules, or whatever – interconnected in such a way that they produce their own pattern of behavior over time. […] The system, to a large extent, causes its own behavior." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008) 

"In fact, one of the most frustrating aspects of systems is that the purposes of subunits may add up to an overall behavior that no one wants." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)"

"In physical, exponentially growing systems, there must be at least one reinforcing loop driving growth and at least one balancing feedback loop constraining growth, because no system can grow forever in a finite environment." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"Like resilience, self-organizazion is often sacrificed for purposes of short-term productivity and stability." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"Our culture, obsessed with numbers, has given us the idea that what we can measure is more important than what we can't measure. Think about that for a minute. It means that we make quantity more important than quality." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"The bounded rationality of each actor in a system may not lead to decisions that further the welfare of the system as a whole." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"The world is nonlinear. Trying to make it linear for our mathematical or administrative convenience is not usually a good idea even when feasible, and it is rarely feasible." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"When there are long delays in feedback loops, some sort of foresight is essential." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.