Showing posts with label growth. Show all posts
Showing posts with label growth. Show all posts

05 September 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 87: How Long Will It Take to Regulate AI?)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a post of 600 words on how long it will take to regulate AI given the current pace of the effort"

Introduction

Artificial Intelligence (AI) is evolving faster than any technology in history. From generative models to autonomous systems, AI is reshaping industries, economies, and societies. Yet while innovation races ahead, regulation limps behind. The question isn’t just how to regulate AI - it’s how long it will take to do so effectively.

Given the current pace of global efforts, meaningful regulation could take 5 to 10 years—and that’s a conservative estimate.

The Current Pace: Slow and Fragmented

Despite growing awareness, AI regulation remains fragmented and reactive:

  • The EU’s AI Act, the most comprehensive effort to date, is still in negotiation and won’t be fully enforced until 2026.
  • The U.S. lacks federal legislation, relying instead on voluntary frameworks and state-level initiatives.
  • China has issued guidelines on algorithmic transparency and data usage, but enforcement is uneven.

Global coordination is virtually nonexistent, with no binding international treaties or standards.

Most governments are still in the 'fact-finding' phase - holding hearings, commissioning studies, and consulting stakeholders. Meanwhile, AI capabilities are doubling every 6 to 12 months.

Why It’s So Hard to Regulate AI

AI regulation is complex for several reasons:

  • Rapid evolution: By the time a law is drafted, the technology it targets may be obsolete.
  • Multidisciplinary impact: AI touches everything - healthcare, finance, education, defense - making one-size-fits-all rules impractical.
  • Opaque systems: Many AI models are 'black boxes', making it hard to audit or explain their decisions.
  • Corporate resistance: Tech giants often lobby against strict regulation, fearing it will stifle innovation or expose proprietary methods.
  • Global competition: Countries fear falling behind in the AI race, leading to regulatory hesitancy.

These challenges mean that even well-intentioned efforts move slowly - and often lack teeth.

Realistic Timeline: 5 to 10 Years

If we break down the regulatory journey, here’s what it looks like (phase/estimated duration):

  • Research & Consultation: 1–2 years
  • Drafting Legislation: 1–2 years
  • Political Negotiation: 1–3 years
  • Implementation & Review: 2–3 years

Even under ideal conditions, comprehensive regulation takes time. And that’s assuming no major setbacks - like political gridlock, industry pushback, or technological disruption.

What Could Accelerate the Process?

Several factors could speed things up:

  • High-profile failures: A major AI-related scandal or accident could trigger emergency legislation.
  • Public pressure: As awareness grows, citizens may demand faster action - especially around privacy, bias, and misinformation.
  • Industry cooperation: If tech companies embrace self-regulation and transparency, governments may move faster.
  • International frameworks: A global treaty or UN-led initiative could harmonize standards and reduce duplication.

But these are hopeful scenarios. Without them, the default trajectory remains slow.

Why Waiting Is Risky

The longer we delay, the greater the risks:

  • Unregulated deployment: AI systems may be used in critical domains - like healthcare or criminal justice - without oversight.
  • Entrenched bias: Flawed models could become embedded in institutions, making them harder to fix later.
  • Loss of trust: Public confidence in AI could erode, stalling adoption and innovation.
  • Geopolitical instability: Autonomous weapons and surveillance systems could escalate tensions between nations.

In short, the cost of inaction is steep - and growing.

Conclusion: The Clock Is Ticking

Regulating AI is not just a technical challenge - it’s a race against time. At the current pace, meaningful safeguards may take a decade to materialize. But AI won’t wait. It will continue to evolve, integrate, and influence every aspect of life.

We must accelerate the process - not by cutting corners, but by prioritizing collaboration, transparency, and foresight. Because the future of AI isn’t just about what it can do - it’s about what we allow it to do.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

04 September 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 86: Regulating AI - A Race Against Future Risks)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a post of 600 words on how AI must be regulated to avoid future risks"

Introduction

Artificial Intelligence (AI) is evolving at breakneck speed. From autonomous vehicles to predictive healthcare, AI is transforming industries and reshaping society. But with this rapid advancement comes a shadow of uncertainty - ethical dilemmas, misinformation, surveillance, and even existential threats. To avoid catastrophic outcomes, we must regulate AI now, before its power outpaces our ability to control it.

The Risks We Can’t Ignore

AI’s potential is immense - but so are its risks. Without regulation, we face:

  • Bias and discrimination: AI systems trained on flawed data can perpetuate racial, gender, and socioeconomic biases.
  • Job displacement: Automation threatens millions of jobs, especially in manufacturing, transportation, and customer service.
  • Surveillance and privacy erosion: Facial recognition and data mining technologies can be weaponized by governments and corporations.
  • Misinformation: Deepfakes and AI-generated content can distort reality, undermine trust, and destabilize democracies.
  • Autonomous weapons: AI-controlled drones and cyberweapons could trigger conflicts without human oversight.
  • Loss of control: As AI systems become more complex, even their creators may struggle to understand or predict their behavior.

These aren’t distant hypotheticals - they’re unfolding now. Regulation is not a luxury; it’s a necessity.

What Regulation Should Look Like

Effective AI regulation must be proactive, adaptive, and globally coordinated. Here’s what it should include:

1. Transparency and Accountability

AI systems must be explainable. Developers should disclose how models are trained, what data is used, and how decisions are made. If an AI system causes harm, there must be clear lines of accountability.

2. Ethical Standards

Governments and institutions must define ethical boundaries - what AI can and cannot do. This includes banning autonomous lethal weapons, enforcing consent in data usage, and protecting vulnerable populations.

3. Bias Audits

Mandatory bias testing should be required for all high-impact AI systems. Independent audits can help identify and mitigate discriminatory outcomes before deployment.

4. Human Oversight

Critical decisions - like medical diagnoses, legal judgments, or military actions - must involve human review. AI should assist, not replace, human judgment in sensitive domains.

5. Global Cooperation

AI knows no borders. International frameworks, similar to climate accords or nuclear treaties, are essential to prevent regulatory loopholes and ensure shared safety standards.

Who Should Lead the Charge?

Regulation must be a collaborative effort:

  • Governments: Must enact laws that protect citizens and promote responsible innovation.
  • Tech companies: Should adopt self-regulation, publish ethical guidelines, and invest in safety research.
  • Academia: Can provide independent analysis, develop ethical frameworks, and educate future AI leaders.
  • Civil society: Must advocate for transparency, fairness, and human rights in AI development.

No single entity can shoulder this alone. It’s a shared responsibility - and a shared opportunity.

Why Time Is Running Out

AI’s growth is exponential. Each new model is more powerful, more autonomous, and more integrated into daily life. The longer we wait, the harder it becomes to rein in its influence.

History has shown that unregulated technologies - from nuclear energy to social media - can spiral into crises. AI is no different. The window for safe regulation is closing fast.

Conclusion: Intelligence With Integrity

AI is not inherently good or bad - it’s a tool. But powerful tools demand responsible stewardship. Regulation is how we align AI’s capabilities with human values, ensuring it serves society rather than undermines it.

We must act now - not out of fear, but out of foresight. Because the future of AI isn’t just about smarter machines - it’s about wiser choices.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

03 September 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 85: AI’s Water Crisis - How Fast Could We Run Dry?)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a post of 600 words on how fast the water will be depleted as is consumed by the data centers for AI"

Introduction

Artificial Intelligence (AI) is revolutionizing the world - but it’s also quietly draining one of our most precious resources: water. As AI models grow larger and more complex, the data centers that power them are consuming staggering volumes of water to stay cool. With AI’s exponential growth, the question is no longer if this will impact global water supplies, but how fast.

Let’s unpack the urgency behind this hidden crisis.

Why AI Needs Water

Data centers are the beating heart of AI. They house thousands of servers that run nonstop, generating immense heat. To prevent overheating, these facilities rely heavily on cooling systems - many of which use water.

Water is consumed in two key ways:

  • Evaporative cooling: Water is evaporated to lower air temperature.
  • Liquid cooling: Water circulates directly to absorb heat from servers.

While efficient, these methods are resource-intensive. And as AI workloads surge, so does the demand for cooling.

The Exponential Growth of AI - and Water Use

AI’s growth is not linear - it’s exponential. Each new model is bigger, more data-hungry, and more computationally demanding than the last. For example:

  • GPT-3 required hundreds of thousands of liters of water to train.
  • Google’s data centers consumed over 15 billion liters of water in 2022.
  • Microsoft’s water usage jumped 34% in one year, largely due to AI workloads.

If this trend continues, AI-related water consumption could double every few years. That means by 2030, global data centers could be consuming tens of billions of liters annually - just to keep AI cool.

Regional Strain and Environmental Impact

Many data centers are located in water-scarce regions like Arizona, Nevada, and parts of Europe. In these areas, every liter counts. Diverting water to cool servers can strain agriculture, ecosystems, and human consumption.

Moreover, the water returned to the environment is often warmer, which can disrupt aquatic life and degrade water quality.

When Could We Run Dry?

While it’s unlikely that AI alone will deplete the world’s water supply, its contribution to water stress is accelerating. Consider this:

  • The UN estimates that by 2030, half the world’s population will live in water-stressed regions.
  • If AI continues to grow exponentially, its water demand could outpace conservation efforts in key regions within a decade.
  • Without intervention, local water shortages could become common by the mid-2030s - especially in tech-heavy zones.

In short, we may not run dry globally, but AI could push vulnerable regions past their tipping points far sooner than expected.

Can We Slow the Drain?

There are solutions - but they require urgent action:

  • Green data centers: Facilities designed for minimal water use and powered by renewable energy.
  • Alternative cooling: Air-based and immersion cooling systems that reduce or eliminate water dependency.
  • AI optimization: Smarter scheduling and model efficiency to reduce computational load.

Tech companies must invest in sustainable infrastructure and disclose water usage transparently. Governments must regulate and incentivize eco-friendly practices.

The Ethical Dilemma

AI promises incredible benefits - from medical breakthroughs to climate modeling. But if its growth comes at the cost of clean water, we must ask: Is it worth it?

Water is not optional. Intelligence should not come at the expense of sustainability. As we build smarter machines, we must also build smarter systems - ones that respect planetary boundaries.

Conclusion: Intelligence Must Be Sustainable

AI’s water footprint is growing fast - and if left unchecked, it could accelerate regional water crises within the next 10 to 15 years. The solution isn’t to halt AI’s progress, but to align it with ecological responsibility.

We must act now. Because in the race for artificial intelligence, the real test isn’t how smart our machines become - it’s how wisely we manage their impact.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

29 August 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 82: Predicting the Future of AI - With AI)

Prompt Engineering Series

Prompt: "write a post of 600 words on how AI can be used to predict its evolution"

Introduction

Artificial Intelligence (AI) is evolving at a breathtaking pace, reshaping industries, societies, and even our understanding of intelligence itself. But as AI becomes more complex and autonomous, a fascinating question arises: Can AI be used to predict its own evolution?

The answer is yes - and it’s already happening. By analyzing trends, modeling innovation cycles, and simulating future scenarios, AI is becoming a powerful tool not just for solving problems, but for forecasting its own trajectory.

Learning from the Past to Predict the Future

AI systems excel at pattern recognition. By ingesting historical data on technological breakthroughs, research publications, patent filings, and funding flows, AI can identify the signals that precede major leaps in capability.

For example:

  • Natural language models can analyze scientific literature to detect emerging themes in AI research.
  • Machine learning algorithms can forecast the rate of improvement in benchmarks like image recognition, language translation, or autonomous navigation.
  • Knowledge graphs can map relationships between technologies, institutions, and innovations to anticipate convergence points.

This isn’t just speculation - it’s data-driven foresight.

Modeling Innovation Cycles

AI can also be used to model the dynamics of innovation itself. Techniques like system dynamics, agent-based modeling, and evolutionary algorithms allow researchers to simulate how ideas spread, how technologies mature, and how breakthroughs emerge.

These models can incorporate variables such as:

  • Research funding and policy shifts
  • Talent migration across institutions
  • Hardware and compute availability
  • Public sentiment and ethical debates

By adjusting these inputs, AI can generate plausible futures - scenarios that help policymakers, technologists, and ethicists prepare for what’s next.

Predicting Capability Growth

One of the most direct applications is forecasting the growth of AI capabilities. For instance:

  • Performance extrapolation: AI can analyze past improvements in model accuracy, speed, and generalization to estimate future milestones.
  • Architecture simulation: Generative models can propose new neural network designs and predict their theoretical performance.
  • Meta-learning: AI systems can learn how to learn better, accelerating their own development and hinting at the pace of future evolution.

This recursive forecasting - AI predicting AI - is a hallmark of the field’s increasing sophistication.

Challenges and Uncertainties

Despite its promise, predicting AI’s evolution is fraught with uncertainty:

  • Emergent behavior: AI systems often behave in unexpected ways, making long-term predictions difficult.
  • Black box models: Many AI systems lack interpretability, which limits our ability to understand their reasoning.
  • Ethical and societal variables: Human decisions - about regulation, deployment, and trust—can dramatically alter AI’s path.

AI can model probabilities, but it cannot guarantee outcomes. Its predictions must be treated as guidance, not gospel.

Governance and Strategic Planning

Using AI to predict its own evolution isn’t just a technical exercise - it’s a governance imperative. Governments, corporations, and research institutions can use these forecasts to:

  • Anticipate risks and disruptions
  • Allocate resources strategically
  • Design ethical frameworks before crises emerge
  • Foster international cooperation on AI safety

By turning prediction into preparation, we shift from reactive to proactive stewardship.

Conclusion: AI as a Mirror and a Map

AI’s ability to predict its own evolution is a profound development. It allows us to peer into the future - not with certainty, but with clarity. It offers a mirror to reflect on our trajectory, and a map to navigate the unknown.

But the ultimate responsibility remains human. AI can forecast its growth, but only we can decide what kind of future we want to build.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

29 June 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 36: How AI Can Reduce Unemployment)

Prompt Engineering Series

Prompt: "write a blogpost of 600 words on how AI can reduce unemployment"

Introduction

Artificial Intelligence (AI) is often seen as a disruptive force in the job market, with concerns about automation replacing human workers. However, AI also has the potential to reduce unemployment by creating new job opportunities, enhancing workforce productivity, and enabling economic growth. By integrating AI responsibly, societies can balance automation with job creation, ensuring that AI serves as a tool for empowerment rather than displacement.

1. AI Creating New Job Opportunities

While AI automates repetitive tasks, it also generates new career paths in emerging industries. Some of the ways AI contributes to job creation include:

  • AI development and maintenance: Companies need AI engineers, data scientists, and cybersecurity experts to build and manage AI systems.
  • AI-driven entrepreneurship: AI enables startups to innovate, creating new business models and job opportunities.
  • AI-assisted creative industries: AI enhances content creation, marketing, and design, supporting professionals in these fields.

Rather than eliminating jobs, AI reshapes industries, requiring workers to adapt to new roles.

2. AI Enhancing Workforce Productivity

AI improves efficiency by automating repetitive tasks, allowing workers to focus on higher-value responsibilities. Some examples include:

  • AI-powered automation in manufacturing, reducing manual labor while creating supervisory roles.
  • AI-driven customer service chatbots, assisting human employees rather than replacing them.
  • AI-enhanced healthcare diagnostics, enabling doctors to focus on patient care rather than administrative tasks.

By augmenting human capabilities, AI helps workers become more productive and valuable in their roles.

3. AI Supporting Workforce Reskilling and Education

AI-driven education platforms help workers learn new skills and transition into AI-related careers. Some AI-powered learning solutions include:

  • Personalized online courses, adapting to individual learning styles.
  • AI-driven career coaching, guiding workers toward in-demand professions.
  • Virtual training simulations, preparing employees for AI-integrated workplaces.

By investing in AI-driven education, societies can equip workers with the skills needed for the future job market.

4. AI Expanding Economic Growth and Job Markets

AI contributes to economic expansion, leading to job creation in various sectors. Some ways AI drives economic growth include:

  • Optimizing supply chains, improving efficiency and creating logistics jobs.
  • Enhancing financial services, generating roles in AI-powered banking and investment analysis.
  • Advancing medical research, leading to new healthcare professions.

AI’s ability to boost productivity and innovation results in new employment opportunities across industries.

5. AI Improving Job Matching and Recruitment

AI-powered recruitment platforms help connect job seekers with employers, reducing unemployment rates. AI-driven hiring solutions include:

  • Resume screening algorithms, matching candidates with suitable roles.
  • AI-powered job recommendation systems, suggesting opportunities based on skills and experience.
  • Automated interview scheduling, streamlining the hiring process.

By enhancing job placement efficiency, AI helps workers find employment faster.

Conclusion: AI as a Tool for Workforce Empowerment

AI has the potential to reduce unemployment by creating new jobs, enhancing productivity, supporting workforce reskilling, expanding economic growth, and improving job matching. While AI poses challenges, responsible integration ensures that it serves as a catalyst for employment rather than a threat to job security.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

09 June 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 16: How AI Can Use Its Intelligence to Help Society)

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blogpost of 600 words on how AI can use its intelligence to help society"

Introduction

Artificial Intelligence (AI) is reshaping industries, solving complex problems, and unlocking new possibilities in science, business, and daily life. While AI comes with challenges, its potential to positively impact society is undeniable. From healthcare advancements to environmental sustainability, AI can use its intelligence to empower individuals, strengthen communities, and create a better future.

1. AI Revolutionizing Healthcare and Medicine

AI-driven tools are transforming healthcare by improving diagnostics, enhancing treatment plans, and enabling personalized medicine. Some of the ways AI benefits healthcare include:

  • Early disease detection: AI-powered medical imaging can identify patterns in X-rays, MRIs, and CT scans that humans might miss.
  • Predictive analytics: AI helps anticipate disease outbreaks by analyzing health trends and patient data.
  • Personalized treatment plans: AI tailors medications and therapies based on individual genetic profiles for better outcomes.

AI’s ability to process vast amounts of medical data makes healthcare more efficient, accessible, and accurate, ultimately saving lives.

2. AI Enhancing Education and Learning

AI is revolutionizing education by personalizing learning experiences and supporting educators. Key benefits include:

  • Smart tutoring systems: AI adapts lessons based on a student’s strengths and weaknesses.
  • Automated grading: AI streamlines assessments, giving teachers more time for one-on-one interaction.
  • Language translation: AI breaks barriers, making education globally accessible.

AI ensures education is more inclusive, adaptive, and engaging, helping learners reach their full potential.

3. AI Tackling Climate Change and Environmental Issues

AI plays a crucial role in environmental sustainability by providing data-driven insights into climate change, conservation efforts, and resource management. AI-driven solutions include:

  • Optimizing energy consumption: AI manages electricity grids for efficiency, reducing waste.
  • Wildlife protection: AI analyzes satellite images to track endangered species and prevent illegal deforestation.
  • Climate modeling: AI predicts environmental changes, helping scientists develop proactive solutions.

AI can monitor, predict, and mitigate environmental challenges, contributing to a healthier planet.

4. AI Advancing Social Good and Humanitarian Efforts

AI supports humanitarian efforts by improving disaster response, combating misinformation, and fostering inclusion. Notable AI contributions include:

  • Disaster relief optimization: AI predicts hurricanes, earthquakes, and floods, enabling faster emergency response.
  • Combating misinformation: AI detects fake news and disinformation, protecting public discourse.
  • Enhancing accessibility: AI-powered speech recognition assists people with disabilities, enabling greater participation.

AI strengthens societies by improving communication, accessibility, and crisis management.

5. AI Driving Economic Growth and Innovation

Businesses and industries thrive on AI’s ability to optimize workflows, reduce inefficiencies, and accelerate innovation. AI promotes economic benefits such as:

  • Smarter supply chain management: AI predicts demand fluctuations, improving production efficiency.
  • AI-driven research: AI accelerates scientific discoveries in medicine, engineering, and material sciences.
  • Job creation in AI fields: AI generates careers in data science, software engineering, and AI ethics.

AI boosts productivity across industries, ensuring economic resilience and technological advancement.

Conclusion: AI’s Role in Shaping a Better Future

AI is more than just technology - it’s a tool for empowerment, innovation, and sustainability. By harnessing AI’s intelligence responsibly, society can improve healthcare, education, environmental protection, humanitarian efforts, and economic growth.

The key to maximizing AI’s benefits lies in ethical development, transparency, and collaboration, ensuring AI serves humanity positively and equitably.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

29 May 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 5: Why There Are Limits to AI Growth)

Prompt Engineering Series

Prompt: "write a blogpost of 600 words on why there are limits to growth for AI"

Introduction

Artificial Intelligence (AI) is evolving rapidly, transforming industries and redefining how humans interact with technology. However, despite its advancements, AI is not without limitations. While many claim that AI’s potential is limitless, several fundamental constraints affect its development, usability, and ethical application. In this blog post, we explore why AI growth is not boundless and the factors that restrict its expansion.

Computational and Hardware Constraints

AI depends heavily on computational power to process large amounts of data efficiently. While improvements in processing speeds, cloud computing, and quantum computing are promising, hardware limitations remain a bottleneck.

  • Energy consumption: Training sophisticated AI models requires immense energy, leading to high costs and environmental concerns.
  • Hardware limitations: Even cutting-edge processors (GPUs, TPUs) struggle with increasingly complex AI models, limiting performance scalability.
  • Data storage needs: AI requires vast amounts of storage and memory, which can be difficult to scale beyond current technologies.

Despite ongoing advancements, these factors impose real-world limitations on AI expansion, preventing it from growing indefinitely.

Dependence on Data and Human Oversight

AI is fundamentally data-driven, meaning its accuracy and capabilities are only as good as the data it receives. However, data availability and quality present major challenges:

  • Data scarcity: Not all industries generate sufficient high-quality datasets, limiting AI effectiveness.
  • Bias in data: AI models can inherit human biases, leading to ethical concerns and flawed decision-making.
  • Human intervention: AI requires constant supervision for algorithm adjustments, data corrections, and error management.

Since AI models learn from existing human-created data, they are restricted by data inconsistencies, biases, and inaccuracies - creating natural growth barriers.

Ethical and Legal Restrictions

AI operates within a world governed by laws, regulations, and ethical constraints, which significantly limit its unrestricted development:

  • Privacy concerns: AI depends on personal data for optimization, but privacy regulations (GDPR, CCPA) restrict unchecked data usage.
  • Security risks: AI-driven automation increases the risk of hacking, misinformation, and deepfake fraud, requiring strict oversight.
  • Job displacement worries: Governments and institutions limit AI adoption to protect workers and avoid societal disruption.

As AI continues to advance, legal frameworks must adapt - but regulatory boundaries will always exist to prevent ethical breaches.

AI’s Lack of True Consciousness

Unlike humans, AI does not possess consciousness, intuition, or creativity in the way people do. While AI mimics intelligence, it lacks genuine understanding:

  • No self-awareness: AI does not truly “think”; it only processes patterns based on data inputs.
  • Limited creativity: AI can generate art and music, but it does not comprehend emotion, cultural context, or abstract thought.
  • Inability to make ethical judgments: AI lacks moral reasoning and cannot replace human values or ethical decision-making.

This inherent lack of cognitive ability prevents AI from achieving true autonomy, reinforcing its growth limitations.

Final Thoughts: AI’s Evolution Has Limits

While AI continues to expand, it is not limitless due to constraints in hardware, data, ethics, and intelligence itself.

AI can optimize processes, enhance decision-making, and revolutionize industries, but it will always require human oversight and face technical and ethical barriers.

Rather than seeing AI as boundless, we should focus on responsible development, ensuring it remains a powerful tool rather than an unchecked force.

Disclaimer: The whole text was generated by Copilot at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

06 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part II: There's Value in Failure)

Business Intelligence
Business Intelligence Series

"Results are nothing; the energies which produce them
and which again spring from them are everything."
(Wilhelm von Humboldt,  "On Language", 1836)

When the data is not available and is needed on a continuous basis then usually the solution is to redesign the processes and make sure the data becomes available at the needed quality level. Redesign involves additional costs for the business; therefore, it might be tempting to cancel or postpone data projects, at least until they become feasible, though they’re seldom feasible. 

Just because there’s a set of data, this doesn’t mean that there is important knowledge to be extracted from it, respectively that the investment is feasible. There’s however value in building experience in the internal resources, in identifying the challenges and the opportunities, in identifying what needs to be changed for harnessing the data. Unfortunately, organizations expect that somebody else will do the work for them instead of doing the jump by themselves, and this approach more likely will fail. It’s like expecting to get enlightened after a few theoretical sessions with a guru than walking the path by oneself. 

This is reflected also in organizations’ readiness to do the required endeavors for making the jump on the maturity scale. If organizations can’t approach such topics systematically and address the assumptions, opportunities, and risks adequately, respectively to manage the various aspects, it’s hard to believe that their data journey will be positive. 

A data journey shouldn’t be about politics even if some minds need to be changed in the process, at management as well as at lower level. If the leadership doesn’t recognize the importance of becoming an enabler for such initiatives, then the organization probably deserves to keep the status quo. The drive for change should come from the leadership even if we talk about data culture, data strategy, decision-making, or any critical aspect.

An organization will always need to find the balance between time, scope, cost, and quality, and this applies to operations, tactics, and strategies as well as to projects.  There are hard limits and lot of uncertainty associated with data projects and the tasks involved, limits reflected in cost and time estimations (which frankly are just expert’s rough guesses that can change for the worst in the light of new information). Therefore, especially in data projects one needs to be able to compromise, to change scope and timelines as seems fit, and why not, to cancel the projects if the objectives aren’t feasible anymore, respectively if compromises can’t be reached.

An organization must be able to take the risks and invest in failure, otherwise the opportunities for growth don’t change. Being able to split a roadmap into small iterative steps that allow besides breaking down the complexity and making progress to evaluate the progress and the knowledge resulted, respectively incorporate the feedback and knowledge in the next steps, can prove to be what organizations lack in coping with the high uncertainty. Instead, organizations seem to be fascinated by the big bang, thinking that technology can automatically fill the organizational gaps.

Doing the same thing repeatedly and expecting different results is called insanity. Unfortunately, this is what organizations and service providers do in what concerns Project Management in general and data projects in particular. Building something without a foundation, without making sure that the employees have the skillset, maturity and culture to manage the data-related tasks, challenges and opportunities is pure insanity!

Bottom line, harnessing the data requires a certain maturity and it starts with recognizing and pursuing opportunities, setting goals, following roadmaps, learning to fail and getting value from failure, respectively controlling the failure. Growth or instant enlightenment without a fair amount of sweat is possible, though that’s an exception for few in sight!

Previous Post <<||>> Next Post

06 March 2024

🧭Business Intelligence: Data Culture (Part II: Leadership, Necessary but not Sufficient)

Business Intelligence
Business Intelligence Series

Continuing the idea from the previous post on Brent Dykes’ article on data culture and Generative AI [1], it’s worth discussing about the relationship between data culture and leadership. Leadership belongs to a list of select words everybody knows about but fails to define them precisely, especially when many traits are associated with leadership, respectively when most of the issues existing in organizations ca be associated with it directly or indirectly.

Take for example McKinsey’s definition: "Leadership is a set of behaviors used to help people align their collective direction, to execute strategic plans, and to continually renew an organization." [2] It gives an idea of what leadership is about, though it lacks precision, which frankly is difficult to accomplish. Using modifiers like strong or weak with the word leadership doesn’t increase the precision of its usage. Several words stand out though: direction, strategy, behavior, alignment, renewal.

Leadership is about identifying and challenging the status quo, defining how the future will or could look like for the organization in terms of a vision, a mission and a destination, translating them into a set of goals and objectives. Then, it’s about defining a set of strategies, focusing on transformation and what it takes to execute it, adjusting the strategic bridge between goals and objectives, or, reading between the lines, identifying and doing the right things, being able to introduce a new order of things, reinventing the organization, adapting the organization to circumstances.

Aligning resumes in aligning the various strategies, aligning people with the vision and mission, while renewal is about changing course in response to new information or business context, identifying and transforming weaknesses into strengths, risks into opportunities, respectively opportunities into certitudes, seeing possibilities and multiplying them.

Leadership is also about working on the system, addressing the systemic failure, addressing structural and organizational issues, making sure that the preconditions and enablers for organizational change are in place, that no barriers exist or other factors impact negatively the change, that the positive aspects of complex systems like emergence or exponential growth do happen in time.

And leadership is about much more - interpersonal influence, inspiring people, Inspiring change, changing mindsets, assisting, motivating, mobilizing, connecting, knocking people out of their comfort zones, conviction, consistency, authority, competence, wisdom, etc. Leadership seems to be an idealistic concept where too many traits are considered, traits that ideally should apply to the average knowledge worker as well.

An organization’s culture is created, managed, nourished, and destroyed through leadership, and that’s a strong statement and constraint. By extension this statement applies to the data culture as well. It’s about leading by example and not by words or preaching, and many love to preach, even when no quire is around. It’s about demanding the same from the managers as managers demand from their subalterns, it’s about pushing the edges of culture. As Dykes mentions, it should be about participating in the data culture initiatives, making expectations explicit, and sharing mental models.

Leadership is a condition necessary but not sufficient for an organizations culture to mature. Financial and other type of resources are needed, though once a set of behaviors is seeded, they have the potential to grow and multiply when the proper conditions are met. Growth occurs also by being aware of what needs to be done and doing it day by day consciously, through self-mastery. Nowadays there are so many ways to learn and search for support, one just needs a bit of curiosity and drive to learn anything. Blaming in general the lack of leadership is just a way of passing the blame one level above on the command chain.

Resources:
[1] Forbes (2024) Why AI Isn’t Going To Solve All Your Data Culture Problems, by Brent Dykes (link)
[2] McKinsey (2022) What is leadership? (link)

Previous Post <<||>> Next Post

14 December 2014

🕸Systems Engineering: Exponential Growth (Just the Quotes)

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972) 

"Taking no action to solve these problems is equivalent of taking strong action. Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth. A decision to do nothing is a decision to increase the risk of collapse." (Donella Meadows et al, "The Limits to Growth", 1972) 

"Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth." (Mihajlo D Mesarovic, "Mankind at the Turning Point", 1974)

"It has long been appreciated by science that large numbers behave differently than small numbers. Mobs breed a requisite measure of complexity for emergent entities. The total number of possible interactions between two or more members accumulates exponentially as the number of members increases. At a high level of connectivity, and a high number of members, the dynamics of mobs takes hold. " (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant). Linear versus exponential: Linear growth is steady; exponential growth becomes explosive." (Ray Kurzweil, "The Singularity is Near", 2005)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, "Chaos: A Program Collection for the PC", 2008)

"A quantity growing exponentially toward a limit reaches that limit in a surprisingly short time." (Donella Meadows, "Thinking in systems: A Primer", 2008)

"In physical, exponentially growing systems, there must be at least one reinforcing loop driving growth and at least one balancing feedback loop constraining growth, because no system can grow forever in a finite environment." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"In chaotic deterministic systems, the probabilistic description is not linked to the number of degrees of freedom (which can be just one as for the logistic map) but stems from the intrinsic erraticism of chaotic trajectories and the exponential amplification of small uncertainties, reducing the control on the system behavior." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Standard economists don't seem to understand exponential growth. Ecological economics recognizes that the economy, like any other subsystem on the planet, cannot grow forever. And if you think of an organism as an analogy, organisms grow for a period and then they stop growing. They can still continue to improve and develop, but without physically growing, because if organisms did that you’d end up with nine-billion-ton hamsters." (Robert Costanza, "What is Ecological economics", 2010)

"Cyberneticists argue that positive feedback may be useful, but it is inherently unstable, capable of causing loss of control and runaway. A higher level of control must therefore be imposed upon any positive feedback mechanism: self-stabilising properties of a negative feedback loop constrain the explosive tendencies of positive feedback. This is the starting point of our journey to explore the role of cybernetics in the control of biological growth. That is the assumption that the evolution of self-limitation has been an absolute necessity for life forms with exponential growth." (Tony Stebbing, "A Cybernetic View of Biological Growth: The Maia Hypothesis", 2011)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020) 

More quotes on "Exponential Growth" at the-web-of-knowledge.blogspot.com.

12 December 2014

🕸Systems Engineering: Nonlinearity (Just the Quotes)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay Wright Forrester, "Urban dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium. " (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"When one combines the new insights gained from studying far-from-equilibrium states and nonlinear processes, along with these complicated feedback systems, a whole new approach is opened that makes it possible to relate the so-called hard sciences to the softer sciences of life - and perhaps even to social processes as well. […] It is these panoramic vistas that are opened to us by Order Out of Chaos." (Ilya Prigogine, "Order Out of Chaos: Man's New Dialogue with Nature", 1984)

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Indeed, except for the very simplest physical systems, virtually everything and everybody in the world is caught up in a vast, nonlinear web of incentives and constraints and connections. The slightest change in one place causes tremors everywhere else. We can't help but disturb the universe, as T.S. Eliot almost said. The whole is almost always equal to a good deal more than the sum of its parts. And the mathematical expression of that property - to the extent that such systems can be described by mathematics at all - is a nonlinear equation: one whose graph is curvy." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: 1. Information processing occurs at many simple elements called neurons. 2. Signals are passed between neurons over connection links. 3. Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. 4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"It remains an unhappy fact that there is no best method for finding the solution to general nonlinear optimization problems. About the best general procedure yet devised is one that relies upon imbedding the original problem within a family of problems, and then developing relations linking one member of the family to another. If this can be done adroitly so that one family member is easily solvable, then these relations can be used to step forward from the solution of the easy problem to that of the original problem. This is the key idea underlying dynamic programming, the most flexible and powerful of all optimization methods." (John L Casti, "Five Golden Rules", 1995)

"[…] nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging."  (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"Most physical processes in the real world are nonlinear. It is our abstraction of the real world that leads us to the use of linear systems in modeling these processes. These linear systems are simple, understandable, and, in many situations, provide acceptable simulations of the actual processes. Unfortunately, only the simplest of linear processes and only a very small fraction of the nonlinear having verifiable solutions can be modeled with linear systems theory. The bulk of the physical processes that we must address are, unfortunately, too complex to reduce to algorithmic form - linear or nonlinear. Most observable processes have only a small amount of information available with which to develop an algorithmic understanding. The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007) 

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Let's face it, the universe is messy. It is nonlinear, turbulent, and chaotic. It is dynamic. It spends its time in transient behavior on its way to somewhere else, not in mathematically neat equilibria. It self-organizes and evolves. It creates diversity, not uniformity. That's what makes the world interesting, that's what makes it beautiful, and that's what makes it work." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Linearity is a reductionist’s dream, and nonlinearity can sometimes be a reductionist’s nightmare. Understanding the distinction between linearity and nonlinearity is very important and worthwhile." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"Complexity is a relative term. It depends on the number and the nature of interactions among the variables involved. Open loop systems with linear, independent variables are considered simpler than interdependent variables forming nonlinear closed loops with a delayed response." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Complex systems are full of interdependencies - hard to detect - and nonlinear responses." (Nassim N Taleb, "Antifragile: Things That Gain from Disorder", 2012)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity."(Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"To remedy chaotic situations requires a chaotic approach, one that is non-linear, constantly morphing, and continually sharpening its competitive edge with recurring feedback loops that build upon past experiences and lessons learned. Improvement cannot be sustained without reflection. Chaos arises from myriad sources that stem from two origins: internal chaos rising within you, and external chaos being imposed upon you by the environment. The result of this push/pull effect is the disequilibrium [...]." (Jeff Boss, "Navigating Chaos: How to Find Certainty in Uncertain Situations", 2015)

"[...] perhaps one of the most important features of complex systems, which is a key differentiator when comparing with chaotic systems, is the concept of emergence. Emergence 'breaks' the notion of determinism and linearity because it means that the outcome of these interactions is naturally unpredictable. In large systems, macro features often emerge in ways that cannot be traced back to any particular event or agent. Therefore, complexity theory is based on interaction, emergence and iterations." (Luis Tomé & Şuay Nilhan Açıkalın, "Complexity Theory as a New Lens in IR: System and Change" [in "Chaos, Complexity and Leadership 2017", Şefika Şule Erçetin & Nihan Potas], 2019)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

14 July 2014

🌡️Performance Management: Training (Definitions)

"Formal and informal learning options, which may include in-class training, informal mentoring, Web-based training, guided self-study, and formalized on-the-job training programs. The learning options selected for each situation are based on an assessment of the need for training and the performance gap to be addressed." (Sandy Shrum et al, "CMMI®: Guidelines for Process Integration and Product Improvement", 2003)

[cross-training:] "When an employee in one primary job task is trained in another or other tasks." (Robert McCrie, "Security Operations Management" 2nd Ed., 2006)

"An umbrella term to include training, development, and education, where training is learning that pertains to the job, development is learning for the growth of the individual that is not related to a specific job, and education is learning to prepare the individual but not related to a specific job." (Richard Caladine, "Taxonomies for Technology", 2008)

"Learning is a personal construction of knowledge. In order to learn a particular concept or skill, the learner needs to consider how new information relates to the existing understandings that the learner has. The process of sifting through available information in order to select the most appropriate information to use in knowledge construction requires the skills of information literacy. Good information literacy skills are a prerequisite for effective learning." (Carmel McNaught, "Information Literacy in the 21st Century", 2008)

"Activities undertaken to ensure that all individuals have the knowledge and skills required to perform their assignments." (Sally A Miller et al, "People CMM: A Framework for Human Capital Management" 2nd Ed., 2009)

"It is the process of fixing meaning to stimulus. It is the process of constructing new knowledge. Learning should proceed from learner’s sense of vocation, occur in settings or activity systems where the function and purposes of the learning are clear and explicit, focus primarily on developing the capacity to do and where learners seek to accomplish goals. In addition, learning should involve sharing meaning and building connection among meanings and different renditions of the meaning." (Kisilu M Kitainge, "Challenges of Training Motor Vehicle Mechanics for Changing World Contexts and Emergent Working Conditions: Cases of Kenya and Australia", 2009)

"Learning occurs through a cognitive process that occurs in the mind of the individual or, in contrast, learning occurs through a process of socialization and increasing participation rather than formal inquiry." (Mary F Ziegler, "Three Theoretical Perspectives on Informal Learning at Work", 2009)

"The process to obtain or transfer knowledge, skills, and abilities needed to carry out a specific activity or task" (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[business training: "Training on concepts that teach skills to understand and work effectively within a company." (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[IT training:] "Training on content involving the development, maintenance, and use of computer systems, software, and networks." (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[non-technical training:] "Training that is not technical training, for example, personal effectiveness or business training." (Bettina M Davis & Wendy L Combsand, "Demystifying Technical Training: Partnership, Strategy, and Execution", 2009)

[cross-training:] "Enables personnel to learn tasks associated with more than one job." (Barry Berman & Joel R Evans, "Retail Management: A Strategic Approach" 12th Ed., 2013)

"Programs used to teach new (and existing) personnel how best to perform their jobs or how to improve themselves." (Barry Berman & Joel R Evans, "Retail Management: A Strategic Approach" 12th Ed., 2013)

"Is a multidimensional process that results in a relatively enduring change in a person or persons, and consequently how that person or persons will perceive the world and reciprocally respond to its affordances physically, psychologically, and socially. The process of learning has as its foundation the systemic, dynamic, and interactive relation between the nature of the leaner and the objective of the learning as ecologically situated in a given time and place as well as over time." (Francisco Cua, "Authentic Education: Affording, Engaging, and Reflecting", 2014)

[on-the-job training:] "Training from an experienced employee to a new employee while working on the job. This is a form of one-on-one training." (Darril Gibson, "Effective Help Desk Specialist Skills", 2014)

"It can be defined as a mental activities by means of which knowledge, skill attitude are acquired, retained and utilized. It is defined it as changes in the particular form, change in behaviour tendency, resulting in relatively permanent practice. It involves that the changes, which occurs as a result of reinforced practice that gives new meaning and orientation. This leads to acquisition of new skills, behaviour tendency that is permanent." (Monsuru B Muraina, "Relevance of the Use of Instructional Materials in Teaching and Pedagogical Delivery: An Overview", 2015)

"Learning is a dynamic concept; it refers to the various processes by which skills and knowledge are acquired by individuals and, through them by organizations. Learning encompasses processes and outcomes as well as both, individual and organizational levels; it´s use in theory emphasizes the continually changing nature of organizations, and that goes beyond the view of organizations as bundles of resources. Learning includes the capacity to create new capabilities both internally and by acquiring knowledge from sources external to the firm. It also includes the methods for the diffusion of the new knowledge throughout the firm organization." (Arturo T Vargas & Javier J Villazul, "Learning and Innovation in Multinational Companies from Emerging Economies: The Case of CEMEX", 2016)

"The process of improving performance in one or more aspects of an employee’s work output through additional knowledge and or skill." (Fred MacKenzie, "7 Paths to Managerial Leadership", 2016)

"Learning is the act of gaining new knowledge, behaviors, skills, or ability. It may be regarded as a process, rather than a collection of factual and procedural knowledge. Human learning may occur as part of education, professional development, or training." (Chunfang Zhou, "Developing Creativity and Learning Design by Information and Communication Technology (ICT) in Developing Contexts", 2018)

[technical training:] "covers the acquisition of knowledge, skills and competencies leading to overall individual or company performance in the use and application of technology." (BCS Learning & Development Limited, "CEdMA Europe", 2019)

"Learning involves any process that in living organisms leads to permanent capacity change. Learning develops knowledge, abilities, understandings, emotions, attitudes, and sociality, which are important elements of the conditions and raw material of society." (Chunfang Zhou & Zhiliang Zhu, "Fostering Problem-Based Learning (PBL) in Chinese Universities for a Creative Society", 2019)

"The capacity of an individual and an organization to explore new challenges and contexts. It is an opportunity to unlearn which is a dynamic way of learning. It is through unlearning that people shape their brain, to readjust and continue learning. It is essential condition for transformation, creativity and innovation." (Ana Martins et al, "Unravelling Hurdles to Organizational Sustainability by Virtue of Sharing and Creating Knowledge", 2019)

"A shift of mind and what goes on inside learners as they undertake to gain or acquire new knowledge, understanding, skill, attitudes, values, and interests. The ‘what goes on’ could be described as perceiving - sensing and feeling concrete reality, thinking or reasoning abstractly; and internalizing or processing - making it a part of ourselves by actively jumping in and trying it, or reflecting on and watching what is happening; thus, the learner - anywhere along his/her life path, at any age - would have going on inside of him/her the perceiving and internalizing of new knowledges, understandings, skills, attitudes, values, and interests." (John A Henschke,"Leadership Ethics in Higher Education Administration: An Andragogical Perspective", 2020)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.