Following the news on Copilot and its adoption in the various areas, probably you asked yourself when it will become available in SQL Server. The good news is that the Copilot in Azure SQL Database is already in Private Preview (see [1], [2]). The bad news is that for the early adoption program, Microsoft looks only for customers that can provide feedback based on real-world use cases, and one will need a valid Tenant ID for signing up for the PP.
The new feature comes with two Azure portal experiences:
- Natural language to SQL: within the Azure portal query editor the natural language prompts are translated into SQL;
- Azure Copilot integration: provides customers with self-guided assistance for managing databases and troubleshooting.
"Show me a pivot summary table that displays the total number of properties sold in each year from 2020 to 2023".
-- output from Copilot SELECT * FROM ( SELECT YEAR(SaleDate) AS Year, COUNT(*) AS TotalPropertiesSold FROM [PropertySearch].[dbo].[PropertyHistory] WHERE YEAR(SaleDate) BETWEEN 2020 AND 2023 GROUP BY YEAR(SalesDate) ) AS PivotDate PIVOT ( SUM(TotalPropertiesSold) FOR Year IN ([2020], [2021], [2022], [2023] ) AS PivotTable;
Even if this is a modest example, the great thing is that it generates the skeleton on which the logic can be built, which can really help beginners, though it can be also useful for more seasoned data professionals as it saves time. Probably, in a first phase this will be the main benefit of Copilot - to generate skeletons or templates on which further logic can be built. Hopefully in time it will do much more than that.
I wonder how complex the prompts can become and how can the logic be structured to create a multistep scenario. The Copilot versions from other areas showed that complex prompts give results, the question is whether Copilot can devise the steps in an optimum manner, much like a seasoned data professional does.
The feature utilizes for the moment the table and view names, column names, primary key, and foreign key metadata to generate T-SQL code. Probably, it makes sense to also use index and statistics information, query hints and all the arsenal usually needed by data professionals to optimize a query. Conversely, maybe the second experience could be used for optimizing and troubleshooting the query.
I'd really love to test this feature, though probably I'll need to wait until it becomes publicly available. In the meanwhile, one can play with the GitHub Copilot [3] or install Copilot in Azure Data Studio [4].
References:
[1] Data Exposed (2024) Introducing Copilot in Azure SQL Database (Private Preview) (link)
[2] Azure SQL Blog (2024) Microsoft Copilot in Azure extends capabilities to Azure SQL Database (Private Preview) by Joe Sack (link)
[3] Azure SQL Blog (2023) GitHub Copilot for SQL Developers: Turbocharge your SQL Development, by Subhojit Basak (link)
[4] Microsoft Developer (2023) Copilot is now in Azure Data Studio and this is how it can help you! (link)