Showing posts with label representation. Show all posts
Showing posts with label representation. Show all posts

18 December 2018

🔭Data Science: Context (Just the Quotes)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"When evaluating the reliability and generality of data, it is often important to know the aims of the experimenter. When evaluating the importance of experimental results, however, science has a trick of disregarding the experimenter's rationale and finding a more appropriate context for the data than the one he proposed." (Murray Sidman, "Tactics of Scientific Research", 1960)

"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]" (George Greenstein, "Frozen Star" , 1983)

"Graphics must not quote data out of context." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The problem solver needs to stand back and examine problem contexts in the light of different 'Ws' (Weltanschauungen). Perhaps he can then decide which 'W' seems to capture the essence of the particular problem context he is faced with. This whole process needs formalizing if it is to be carried out successfully. The problem solver needs to be aware of different paradigms in the social sciences, and he must be prepared to view the problem context through each of these paradigms." (Michael C Jackson, "Towards a System of Systems Methodologies", 1984)

"It is commonly said that a pattern, however it is written, has four essential parts: a statement of the context where the pattern is useful, the problem that the pattern addresses, the forces that play in forming a solution, and the solution that resolves those forces. [...] it supports the definition of a pattern as 'a solution to a problem in a context', a definition that [unfortunately] fixes the bounds of the pattern to a single problem-solution pair." (Martin Fowler, "Analysis Patterns: Reusable Object Models", 1997)

"We do not learn much from looking at a model - we learn more from building the model and manipulating it. Just as one needs to use or observe the use of a hammer in order to really understand its function, similarly, models have to be used before they will give up their secrets. In this sense, they have the quality of a technology - the power of the model only becomes apparent in the context of its use." (Margaret Morrison & Mary S Morgan, "Models as mediating instruments", 1999)

"Data are collected as a basis for action. Yet before anyone can use data as a basis for action the data have to be interpreted. The proper interpretation of data will require that the data be presented in context, and that the analysis technique used will filter out the noise."  (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"[…] you simply cannot make sense of any number without a contextual basis. Yet the traditional attempts to provide this contextual basis are often flawed in their execution. [...] Data have no meaning apart from their context. Data presented without a context are effectively rendered meaningless." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"All scientific theories, even those in the physical sciences, are developed in a particular cultural context. Although the context may help to explain the persistence of a theory in the face of apparently falsifying evidence, the fact that a theory arises from a particular context is not sufficient to condemn it. Theories and paradigms must be accepted, modified or rejected on the basis of evidence." (Richard P Bentall,  "Madness Explained: Psychosis and Human Nature", 2003)

"Mathematical modeling is as much ‘art’ as ‘science’: it requires the practitioner to (i) identify a so-called ‘real world’ problem (whatever the context may be); (ii) formulate it in mathematical terms (the ‘word problem’ so beloved of undergraduates); (iii) solve the problem thus formulated (if possible; perhaps approximate solutions will suffice, especially if the complete problem is intractable); and (iv) interpret the solution in the context of the original problem." (John A Adam, "Mathematics in Nature", 2003)

"Context is not as simple as being in a different space [...] context includes elements like our emotions, recent experiences, beliefs, and the surrounding environment - each element possesses attributes, that when considered in a certain light, informs what is possible in the discussion." (George Siemens, "Knowing Knowledge", 2006)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"A valid digit is not necessarily a significant digit. The significance of numbers is a result of its scientific context." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"[… ] statistics is about understanding the role that variability plays in drawing conclusions based on data. […] Statistics is not about numbers; it is about data - numbers in context. It is the context that makes a problem meaningful and something worth considering." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Context (information that lends to better understanding the who, what, when, where, and why of your data) can make the data clearer for readers and point them in the right direction. At the least, it can remind you what a graph is about when you come back to it a few months later. […] Context helps readers relate to and understand the data in a visualization better. It provides a sense of scale and strengthens the connection between abstract geometry and colors to the real world." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Readability in visualization helps people interpret data and make conclusions about what the data has to say. Embed charts in reports or surround them with text, and you can explain results in detail. However, take a visualization out of a report or disconnect it from text that provides context (as is common when people share graphics online), and the data might lose its meaning; or worse, others might misinterpret what you tried to show." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The data is a simplification - an abstraction - of the real world. So when you visualize data, you visualize an abstraction of the world, or at least some tiny facet of it. Visualization is an abstraction of data, so in the end, you end up with an abstraction of an abstraction, which creates an interesting challenge. […] Just like what it represents, data can be complex with variability and uncertainty, but consider it all in the right context, and it starts to make sense." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Without context, data is useless, and any visualization you create with it will also be useless. Using data without knowing anything about it, other than the values themselves, is like hearing an abridged quote secondhand and then citing it as a main discussion point in an essay. It might be okay, but you risk finding out later that the speaker meant the opposite of what you thought." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Statistics are meaningless unless they exist in some context. One reason why the indicators have become more central and potent over time is that the longer they have been kept, the easier it is to find useful patterns and points of reference." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"The term data, unlike the related terms facts and evidence, does not connote truth. Data is descriptive, but data can be erroneous. We tend to distinguish data from information. Data is a primitive or atomic state (as in ‘raw data’). It becomes information only when it is presented in context, in a way that informs. This progression from data to information is not the only direction in which the relationship flows, however; information can also be broken down into pieces, stripped of context, and stored as data. This is the case with most of the data that’s stored in computer systems. Data that’s collected and stored directly by machines, such as sensors, becomes information only when it’s reconnected to its context." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Infographics combine art and science to produce something that is not unlike a dashboard. The main difference from a dashboard is the subjective data and the narrative or story, which enhances the data-driven visual and engages the audience quickly through highlighting the required context." (Travis Murphy, "Infographics Powered by SAS®: Data Visualization Techniques for Business Reporting", 2018)

"For numbers to be transparent, they must be placed in an appropriate context. Numbers must presented in a way that allows for fair comparisons." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Without knowing the source and context, a particular statistic is worth little. Yet numbers and statistics appear rigorous and reliable simply by virtue of being quantitative, and have a tendency to spread." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

More quotes on "Context" at the-web-of-knowledge.blogspot.com


13 December 2018

🔭Data Science: Bayesian Networks (Just the Quotes)

"The best way to convey to the experimenter what the data tell him about theta is to show him a picture of the posterior distribution." (George E P Box & George C Tiao, "Bayesian Inference in Statistical Analysis", 1973)

"In the design of experiments, one has to use some informal prior knowledge. How does one construct blocks in a block design problem for instance? It is stupid to think that use is not made of a prior. But knowing that this prior is utterly casual, it seems ludicrous to go through a lot of integration, etc., to obtain 'exact' posterior probabilities resulting from this prior. So, I believe the situation with respect to Bayesian inference and with respect to inference, in general, has not made progress. Well, Bayesian statistics has led to a great deal of theoretical research. But I don't see any real utilizations in applications, you know. Now no one, as far as I know, has examined the question of whether the inferences that are obtained are, in fact, realized in the predictions that they are used to make." (Oscar Kempthorne, "A conversation with Oscar Kempthorne", Statistical Science, 1995)

"Bayesian methods are complicated enough, that giving researchers user-friendly software could be like handing a loaded gun to a toddler; if the data is crap, you won't get anything out of it regardless of your political bent." (Brad Carlin, "Bayes offers a new way to make sense of numbers", Science, 1999)

"Bayesian inference is a controversial approach because it inherently embraces a subjective notion of probability. In general, Bayesian methods provide no guarantees on long run performance." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Bayesian inference is appealing when prior information is available since Bayes’ theorem is a natural way to combine prior information with data. Some people find Bayesian inference psychologically appealing because it allows us to make probability statements about parameters. […] In parametric models, with large samples, Bayesian and frequentist methods give approximately the same inferences. In general, they need not agree." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"The Bayesian approach is based on the following postulates: (B1) Probability describes degree of belief, not limiting frequency. As such, we can make probability statements about lots of things, not just data which are subject to random variation. […] (B2) We can make probability statements about parameters, even though they are fixed constants. (B3) We make inferences about a parameter θ by producing a probability distribution for θ. Inferences, such as point estimates and interval estimates, may then be extracted from this distribution." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"The important thing is to understand that frequentist and Bayesian methods are answering different questions. To combine prior beliefs with data in a principled way, use Bayesian inference. To construct procedures with guaranteed long run performance, such as confidence intervals, use frequentist methods. Generally, Bayesian methods run into problems when the parameter space is high dimensional." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004) 

"Bayesian networks can be constructed by hand or learned from data. Learning both the topology of a Bayesian network and the parameters in the CPTs in the network is a difficult computational task. One of the things that makes learning the structure of a Bayesian network so difficult is that it is possible to define several different Bayesian networks as representations for the same full joint probability distribution." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015) 

"Bayesian networks provide a more flexible representation for encoding the conditional independence assumptions between the features in a domain. Ideally, the topology of a network should reflect the causal relationships between the entities in a domain. Properly constructed Bayesian networks are relatively powerful models that can capture the interactions between descriptive features in determining a prediction." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015) 

"Bayesian networks use a graph-based representation to encode the structural relationships - such as direct influence and conditional independence - between subsets of features in a domain. Consequently, a Bayesian network representation is generally more compact than a full joint distribution (because it can encode conditional independence relationships), yet it is not forced to assert a global conditional independence between all descriptive features. As such, Bayesian network models are an intermediary between full joint distributions and naive Bayes models and offer a useful compromise between model compactness and predictive accuracy." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"Bayesian networks inhabit a world where all questions are reducible to probabilities, or (in the terminology of this chapter) degrees of association between variables; they could not ascend to the second or third rungs of the Ladder of Causation. Fortunately, they required only two slight twists to climb to the top." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"The main differences between Bayesian networks and causal diagrams lie in how they are constructed and the uses to which they are put. A Bayesian network is literally nothing more than a compact representation of a huge probability table. The arrows mean only that the probabilities of child nodes are related to the values of parent nodes by a certain formula (the conditional probability tables) and that this relation is sufficient. That is, knowing additional ancestors of the child will not change the formula. Likewise, a missing arrow between any two nodes means that they are independent, once we know the values of their parents. [...] If, however, the same diagram has been constructed as a causal diagram, then both the thinking that goes into the construction and the interpretation of the final diagram change." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"The transparency of Bayesian networks distinguishes them from most other approaches to machine learning, which tend to produce inscrutable 'black boxes'. In a Bayesian network you can follow every step and understand how and why each piece of evidence changed the network’s beliefs." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"With Bayesian networks, we had taught machines to think in shades of gray, and this was an important step toward humanlike thinking. But we still couldn’t teach machines to understand causes and effects. [...] By design, in a Bayesian network, information flows in both directions, causal and diagnostic: smoke increases the likelihood of fire, and fire increases the likelihood of smoke. In fact, a Bayesian network can’t even tell what the 'causal direction' is." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

12 December 2018

🔭Data Science: Data Models (Just the Quotes)

"For the theory-practice iteration to work, the scientist must be, as it were, mentally ambidextrous; fascinated equally on the one hand by possible meanings, theories, and tentative models to be induced from data and the practical reality of the real world, and on the other with the factual implications deducible from tentative theories, models and hypotheses." (George E P Box, "Science and Statistics", Journal of the American Statistical Association 71, 1976)

“The purpose of models is not to fit the data but to sharpen the questions.” (Samuel Karlin, 1983)

"There are those who try to generalize, synthesize, and build models, and there are those who believe nothing and constantly call for more data. The tension between these two groups is a healthy one; science develops mainly because of the model builders, yet they need the second group to keep them honest." (Andrew Miall, "Principles of Sedimentary Basin Analysis", 1984)

"Models are often used to decide issues in situations marked by uncertainty. However statistical differences from data depend on assumptions about the process which generated these data. If the assumptions do not hold, the inferences may not be reliable either. This limitation is often ignored by applied workers who fail to identify crucial assumptions or subject them to any kind of empirical testing. In such circumstances, using statistical procedures may only compound the uncertainty." (David A Greedman & William C Navidi, "Regression Models for Adjusting the 1980 Census", Statistical Science Vol. 1 (1), 1986)

"Competent scientists do not believe their own models or theories, but rather treat them as convenient fictions. […] The issue to a scientist is not whether a model is true, but rather whether there is another whose predictive power is enough better to justify movement from today's fiction to a new one." (Steve Vardeman," Comment", Journal of the American Statistical Association 82, 1987)

"[…] no good model ever accounted for all the facts, since some data was bound to be misleading if not plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do this and would thus be open to suspicion." (Francis H C Crick, "What Mad Pursuit: A Personal View of Scientific Discovery", 1988)

"Information engineering has been defined with the reference to automated techniques as follows: An interlocking set of automated techniques in which enterprise models, data models and process models are built up in a comprehensive knowledge-base and are used to create and maintain data-processing systems." (James Martin, "Information Engineering, 1989)

"When evaluating a model, at least two broad standards are relevant. One is whether the model is consistent with the data. The other is whether the model is consistent with the ‘real world’." (Kenneth A Bollen, "Structural Equations with Latent Variables", 1989)

"Consider any of the heuristics that people have come up with for supervised learning: avoid overfitting, prefer simpler to more complex models, boost your algorithm, bag it, etc. The no free lunch theorems say that all such heuristics fail as often (appropriately weighted) as they succeed. This is true despite formal arguments some have offered trying to prove the validity of some of these heuristics." (David H Wolpert, "The lack of a priori distinctions between learning algorithms", Neural Computation Vol. 8(7), 1996)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Building statistical models is just like this. You take a real situation with real data, messy as this is, and build a model that works to explain the behavior of real data." (Martha Stocking, New York Times, 2000)

"Because No Free Lunch theorems dictate that no optimization algorithm can be considered more efficient than any other when considering all possible functions, the desired function class plays a prominent role in the model. In particular, this provides a tractable way to answer the traditionally difficult question of what algorithm is best matched to a particular class of functions. Among the benefits of the model are the ability to specify the function class in a straightforward manner, a natural way to specify noisy or dynamic functions, and a new source of insight into No Free Lunch theorems for optimization." (Christopher K Monson, "No Free Lunch, Bayesian Inference, and Utility: A Decision-Theoretic Approach to Optimization", [thesis] 2006)

"[...] construction of a data model is precisely the selective relevant depiction of the phenomena by the user of the theory required for the possibility of representation of the phenomenon."  (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)

"Each learning algorithm dictates a certain model that comes with a set of assumptions. This inductive bias leads to error if the assumptions do not hold for the data. Learning is an ill-posed problem and with finite data, each algorithm converges to a different solution and fails under different circumstances. The performance of a learner may be fine-tuned to get the highest possible accuracy on a validation set, but this finetuning is a complex task and still there are instances on which even the best learner is not accurate enough. The idea is that there may be another base-learner learner that is accurate on these. By suitably combining multiple base learners then, accuracy can be improved." (Ethem Alpaydin, "Introduction to Machine Learning" 2nd Ed, 2010)

"There are three possible reasons for [the] absence of predictive power. First, it is possible that the models are misspecified. Second, it is possible that the model’s explanatory factors are measured at too high a level of aggregation [...] Third, [...] the search for statistically significant relationships may not be the strategy best suited for evaluating our model’s ability to explain real world events [...] the lack of predictive power is the result of too much emphasis having been placed on finding statistically significant variables, which may be overdetermined. Statistical significance is generally a flawed way to prune variables in regression models [...] Statistically significant variables may actually degrade the predictive accuracy of a model [...] [By using] models that are constructed on the basis of pruning undertaken with the shears of statistical significance, it is quite possible that we are winnowing our models away from predictive accuracy." (Michael D Ward et al, "The perils of policy by p-value: predicting civil conflicts" Journal of Peace Research 47, 2010)

"As a consequence of the no free lunch theorem, we need to develop many different types of models, to cover the wide variety of data that occurs in the real world. And for each model, there may be many different algorithms we can use to train the model, which make different speed-accuracy-complexity tradeoffs." (Kevin P Murphy, "Machine Learning: A Probabilistic Perspective", 2012)

"In the predictive modeling disciplines an ensemble is a group of algorithms that is used to solve a common problem [...] Each modeling algorithm has specific strengths and weaknesses and each provides a different mathematical perspective on the relationships modeled, just like each instrument in a musical ensemble provides a different voice in the composition. Predictive modeling ensembles use several algorithms to contribute their perspectives on the prediction problem and then combine them together in some way. Usually ensembles will provide more accurate models than individual algorithms which are also more general in their ability to work well on different data sets [...] the approach has proven to yield the best results in many situations." (Gary Miner et al, "Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications", 2012)

"Much of machine learning is concerned with devising different models, and different algorithms to fit them. We can use methods such as cross validation to empirically choose the best method for our particular problem. However, there is no universally best model - this is sometimes called the no free lunch theorem. The reason for this is that a set of assumptions that works well in one domain may work poorly in another." (Kevin P Murphy, "Machine Learning: A Probabilistic Perspective", 2012)

"A major advantage of probabilistic models is that they can be easily applied to virtually any data type (or mixed data type), as long as an appropriate generative model is available for each mixture component. [...] A downside of probabilistic models is that they try to fit the data to a particular kind of distribution, which may often not be appropriate for the underlying data. Furthermore, as the number of model parameters increases, over-fitting becomes more common. In such cases, the outliers may fit the underlying model of normal data. Many parametric models are also harder to interpret in terms of intensional knowledge, especially when the parameters of the model cannot be intuitively presented to an analyst in terms of underlying attributes. This can defeat one of the important purposes of anomaly detection, which is to provide diagnostic understanding of the abnormal data generative process." (Charu C Aggarwal, "Outlier Analysis", 2013)

"An attempt to use the wrong model for a given data set is likely to provide poor results. Therefore, the core principle of discovering outliers is based on assumptions about the structure of the normal patterns in a given data set. Clearly, the choice of the 'normal' model depends highly upon the analyst’s understanding of the natural data patterns in that particular domain." (Charu C Aggarwal, "Outlier Analysis", 2013)

"Big Data processes codify the past. They do not invent the future. Doing that requires moral imagination, and that’s something only humans can provide. We have to explicitly embed better values into our algorithms, creating Big Data models that follow our ethical lead. Sometimes that will mean putting fairness ahead of profit." (Cathy O'Neil, "Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy", 2016)

"The greatest plus of data modeling is that it produces a simple and understandable picture of the relationship between the input variables and responses [...] different models, all of them equally good, may give different pictures of the relation between the predictor and response variables [...] One reason for this multiplicity is that goodness-of-fit tests and other methods for checking fit give a yes–no answer. With the lack of power of these tests with data having more than a small number of dimensions, there will be a large number of models whose fit is acceptable. There is no way, among the yes–no methods for gauging fit, of determining which is the better model." (Leo Breiman, "Statistical Modeling: The two cultures" Statistical Science 16(3), 2001)

"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] fiding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"There may be no significant difference between the point of view of inferring the true structure and that of making a prediction if an infinitely large quantity of data is available or if the data are noiseless. However, in modeling based on a finite quantity of real data, there is a significant gap between these two points of view, because an optimal model for prediction purposes may be different from one obtained by estimating the 'true model'." (Genshiro Kitagawa & Sadanori Konis, "Information Criteria and Statistical Modeling", 2007)

"Choosing an appropriate classification algorithm for a particular problem task requires practice: each algorithm has its own quirks and is based on certain assumptions. To restate the 'No Free Lunch' theorem: no single classifier works best across all possible scenarios. In practice, it is always recommended that you compare the performance of at least a handful of different learning algorithms to select the best model for the particular problem; these may differ in the number of features or samples, the amount of noise in a dataset, and whether the classes are linearly separable or not." (Sebastian Raschka, "Python Machine Learning", 2015)

"It is important to remember that predictive data analytics models built using machine learning techniques are tools that we can use to help make better decisions within an organization and are not an end in themselves. It is paramount that, when tasked with creating a predictive model, we fully understand the business problem that this model is being constructed to address and ensure that it does address it." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"A popular misconception holds that the era of Big Data means the end of a need for sampling. In fact, the proliferation of data of varying quality and relevance reinforces the need for sampling as a tool to work efficiently with a variety of data, and minimize bias. Even in a Big Data project, predictive models are typically developed and piloted with samples." (Peter C Bruce & Andrew G Bruce, "Statistics for Data Scientists: 50 Essential Concepts", 2016)

"Optimization is more than finding the best simulation results. It is itself a complex and evolving field that, subject to certain information constraints, allows data scientists, statisticians, engineers, and traders alike to perform reality checks on modeling results." (Chris Conlan, "Automated Trading with R: Quantitative Research and Platform Development", 2016)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

"Any fool can fit a statistical model, given the data and some software. The real challenge is to decide whether it actually fits the data adequately. It might be the best that can be obtained, but still not good enough to use." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Cross-validation is a useful tool for finding optimal predictive models, and it also works well in visualization. The concept is simple: split the data at random into a 'training' and a 'test' set, fit the model to the training data, then see how well it predicts the test data. As the model gets more complex, it will always fit the training data better and better. It will also start off getting better results on the test data, but there comes a point where the test data predictions start going wrong." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Bad data makes bad models. Bad models instruct people to make ineffective or harmful interventions. Those bad interventions produce more bad data, which is fed into more bad models." (Cory Doctorow, "Machine Learning’s Crumbling Foundations", 2021)

"Data architects often turn to graphs because they are flexible enough to accommodate multiple heterogeneous representations of the same entities as described by each of the source systems. With a graph, it is possible to associate underlying records incrementally as data is discovered. There is no need for big, up-front design, which serves only to hamper business agility. This is important because data fabric integration is not a one-off effort and a graph model remains flexible over the lifetime of the data domains." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"Ensure you build into your data literacy strategy learning on data quality. If the individuals who are using and working with data do not understand the purpose and need for data quality, we are not sitting in a strong position for great and powerful insight. What good will the insight be, if the data has no quality within the model?" (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Graph data models are uniquely able to represent complex, indirect relationships in a way that is both human readable, and machine friendly. Data structures like graphs might seem computerish and off-putting, but in reality they are created from very simple primitives and patterns. The combination of a humane data model and ease of algorithmic processing to discover otherwise hidden patterns and characteristics is what has made graphs so popular." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"Knowledge graphs use an organizing principle so that a user (or a computer system) can reason about the underlying data. The organizing principle gives us an additional layer of organizing data (metadata) that adds connected context to support reasoning and knowledge discovery. […] Importantly, some processing can be done without knowledge of the domain, just by leveraging the features of the property graph model (the organizing principle)." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"Pure data science is the use of data to test, hypothesize, utilize statistics and more, to predict, model, build algorithms, and so forth. This is the technical part of the puzzle. We need this within each organization. By having it, we can utilize the power that these technical aspects bring to data and analytics. Then, with the power to communicate effectively, the analysis can flow throughout the needed parts of an organization." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

More on "Data Models" at the-web-of-knowledge.blogspot.com

13 May 2018

🔬Data Science: Self-Organizing Map (Definitions)

"A clustering neural net, with topological structure among cluster units." (Laurene V Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications", 1994)

"A self organizing map is a form of Kohonen network that arranges its clusters in a (usually) two-dimensional grid so that the codebook vectors (the cluster centers) that are close to each other on the grid are also close in the k-dimensional feature space. The converse is not necessarily true, as codebook vectors that are close in feature-space might not be close on the grid. The map is similar in concept to the maps produced by descriptive techniques such as multi-dimensional scaling (MDS)." (William J Raynor Jr., "The International Dictionary of Artificial Intelligence", 1999)

"result of a nonparametric regression process that is mainly used to represent high-dimensional, nonlinearly related data items in an illustrative, often two-dimensional display, and to perform unsupervised classification and clustering." (Teuvo Kohonen, "Self-Organizing Maps" 3rd Ed., 2001)

"a method of organizing and displaying textual information according to the frequency of occurrence of text and the relationship of text from one document to another." (William H Inmon, "Building the Data Warehouse", 2005)

"A type of unsupervised neural network used to group similar cases in a sample. SOMs are unsupervised (see supervised network) in that they do not require a known dependent variable. They are typically used for exploratory analysis and to reduce dimensionality as an aid to interpretation of complex data. SOMs are similar in purpose to Ic-means clustering and factor analysis." (David Scarborough & Mark J Somers, "Neural Networks in Organizational Research: Applying Pattern Recognition to the Analysis of Organizational Behavior", 2006)

"A method to learn to cluster input vectors according to how they are naturally grouped in the input space. In its simplest form, the map consists of a regular grid of units and the units learn to represent statistical data described by model vectors. Each map unit contains a vector used to represent the data. During the training process, the model vectors are changed gradually and then the map forms an ordered non-linear regression of the model vectors into the data space." (Atiq Islam et al, "CNS Tumor Prediction Using Gene Expression Data Part II", Encyclopedia of Artificial Intelligence, 2009)

"A neural-network method that reduces the dimensions of data while preserving the topological properties of the input data. SOM is suitable for visualizing high-dimensional data such as microarray data." (Emmanuel Udoh & Salim Bhuiyan, "C-MICRA: A Tool for Clustering Microarray Data", 2009)

"A neural network unsupervised method of vector quantization widely used in classification. Self-Organizing Maps are a much appreciated for their topology preservation property and their associated data representation system. These two additive properties come from a pre-defined organization of the network that is at the same time a support for the topology learning and its representation. (Patrick Rousset & Jean-Francois Giret, "A Longitudinal Analysis of Labour Market Data with SOM" Encyclopedia of Artificial Intelligence, 2009)

"A simulated neural network based on a grid of artificial neurons by means of prototype vectors. In an unsupervised training the prototype vectors are adapted to match input vectors in a training set. After completing this training the SOM provides a generalized K-means clustering as well as topological order of neurons." (Laurence Mukankusi et al, "Relationships between Wireless Technology Investment and Organizational Performance", 2009)

"A subtype of artificial neural network. It is trained using unsupervised learning to produce low dimensional representation of the training samples while preserving the topological properties of the input space." (Soledad Delgado et al, "Growing Self-Organizing Maps for Data Analysis", 2009)

"An unsupervised neural network providing a topology-preserving mapping from a high-dimensional input space onto a two-dimensional output space." (Thomas Lidy & Andreas Rauber, "Music Information Retrieval", 2009)

"Category of algorithms based on artificial neural networks that searches, by means of self-organization, to create a map of characteristics that represents the involved samples in a determined problem." (Paulo E Ambrósio, "Artificial Intelligence in Computer-Aided Diagnosis", 2009)

"Self-organizing maps (SOMs) are a data visualization technique which reduce the dimensions of data through the use of self-organizing neural networks." (Lluís Formiga & Francesc Alías, "GTM User Modeling for aIGA Weight Tuning in TTS Synthesis", Encyclopedia of Artificial Intelligence, 2009)

"SOFM [self-organizing feature map] is a data mining method used for unsupervised learning. The architecture consists of an input layer and an output layer. By adjusting the weights of the connections between input and output layer nodes, this method identifies clusters in the data." (Indranil Bose, "Data Mining in Tourism", 2009)

"The self-organizing map is a subtype of artificial neural networks. It is trained using unsupervised learning to produce low dimensional representation of the training samples while preserving the topological properties of the input space. The self-organizing map is a single layer feed-forward network where the output syntaxes are arranged in low dimensional (usually 2D or 3D) grid. Each input is connected to all output neurons. Attached to every neuron there is a weight vector with the same dimensionality as the input vectors. The number of input dimensions is usually a lot higher than the output grid dimension. SOMs are mainly used for dimensionality reduction rather than expansion." (Larbi Esmahi et al, "Adaptive Neuro-Fuzzy Systems", Encyclopedia of Artificial Intelligence, 2009)

"A type of neural network that uses unsupervised learning to produce two-dimensional representations of an input space." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The Self-organizing map is a non-parametric and non-linear neural network that explores data using unsupervised learning. The SOM can produce output that maps multidimensional data onto a two-dimensional topological map. Moreover, since the SOM requires little a priori knowledge of the data, it is an extremely useful tool for exploratory analyses. Thus, the SOM is an ideal visualization tool for analyzing complex time-series data." (Peter Sarlin, "Visualizing Indicators of Debt Crises in a Lower Dimension: A Self-Organizing Maps Approach", 2012)

"SOMs or Kohonen networks have a grid topology, with unequal grid weights. The topology of the grid provides a low dimensional visualization of the data distribution." (Siddhartha Bhattacharjee et al, "Quantum Backpropagation Neural Network Approach for Modeling of Phenol Adsorption from Aqueous Solution by Orange Peel Ash", 2013)

"An unsupervised neural network widely used in exploratory data analysis and to visualize multivariate object relationships." (Manuel Martín-Merino, "Semi-Supervised Dimension Reduction Techniques to Discover Term Relationships", 2015)

"ANN used for visualizing low-dimensional views of high-dimensional data." (Pablo Escandell-Montero et al, "Artificial Neural Networks in Physical Therapy", 2015)

"Is a unsupervised learning ANN, which means that no human intervention is needed during the learning and that little needs to be known about the characteristics of the input data." (Nuno Pombo et al, "Machine Learning Approaches to Automated Medical Decision Support Systems", 2015)

"A kind of artificial neural network which attempts to mimic brain functions to provide learning and pattern recognition techniques. SOM have the ability to extract patterns from large datasets without explicitly understanding the underlying relationships. They transform nonlinear relations among high dimensional data into simple geometric connections among their image points on a low-dimensional display." (Felix Lopez-Iturriaga & Iván Pastor-Sanz, "Using Self Organizing Maps for Banking Oversight: The Case of Spanish Savings Banks", 2016)

"Neural network which simulated some cerebral functions in elaborating visual information. It is usually used to classify a large amount of data." (Gaetano B Ronsivalle & Arianna Boldi, "Artificial Intelligence Applied: Six Actual Projects in Big Organizations", 2019)

"Classification technique based on unsupervised-learning artificial neural networks allowing to group data into clusters." Julián Sierra-Pérez & Joham Alvarez-Montoya, "Strain Field Pattern Recognition for Structural Health Monitoring Applications", 2020)

"It is a type of artificial neural network (ANN) trained using unsupervised learning for dimensionality reduction by discretized representation of the input space of the training samples called as map." (Dinesh Bhatia et al, "A Novel Artificial Intelligence Technique for Analysis of Real-Time Electro-Cardiogram Signal for the Prediction of Early Cardiac Ailment Onset", 2020)

"Being a particular type of ANNs, the Self Organizing Map is a simple mapping from inputs: attributes directly to outputs: clusters by the algorithm of unsupervised learning. SOM is a clustering and visualization technique in exploratory data analysis." (Yuh-Wen Chen, "Social Network Analysis: Self-Organizing Map and WINGS by Multiple-Criteria Decision Making", 2021)

08 March 2018

🔬Data Science: Mathematical Model (Definitions)

"A mathematical model is any complete and consistent set of mathematical equations which are designed to correspond to some other entity, its prototype. The prototype may be a physical, biological, social, psychological or conceptual entity, perhaps even another mathematical model."  (Rutherford Aris, "Mathematical Modelling", 1978)

"The identification and selection of important descriptor variables to be used within an equation or process that can generate useful predictions." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2006)

"Mathematical model is an abstract model that describes a problem, environment, or system using a mathematical language." (Giusseppi Forgionne & Stephen Russell, "Unambiguous Goal Seeking Through Mathematical Modeling", 2008)

"A set of equations, usually ordinary differential equations, the solution of which gives the time course behaviour of a dynamical system." (Peter Wellstead et al, "Systems and Control Theory for Medical Systems Biology", 2009)

"An abstract model that uses mathematical language to describe the behaviour of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines (such as physics, biology, and electrical engineering) but also in the social sciences (such as economics, sociology and political science). It can be defined as the representation of the essential aspects of an existing system (or a system to be constructed) which presents knowledge of that system in usable form." (Roberta Alfieri & Luciano Milanesi, "Multi-Level Data Integration and Data Mining in Systems Biology", Handbook of Research on Systems Biology Applications in Medicine, 2009)

"Mathematical description of a physical system. In the framework of this work mathematical models pursue the descriptions of mechanisms underlying stuttering, putting emphasis in the dynamics of neuronal regions involved in the disorder." (Manuel Prado-Velasco & Carlos Fernández-Peruchena "An Advanced Concept of Altered Auditory Feedback as a Prosthesis-Therapy for Stuttering Founded on a Non-Speech Etiologic Paradigm", 2011)

"Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures." (Benedetto Piccoli, Andrea Tosin, "Vehicular Traffic: A Review of Continuum Mathematical Models" [Mathematics of Complexity and Dynamical Systems, 2012])

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"The standard view among most theoretical physicists, engineers and economists is that mathematical models are syntactic (linguistic) items, identified with particular systems of equations or relational statements. From this perspective, the process of solving a designated system of (algebraic, difference, differential, stochastic, etc.) equations of the target system, and interpreting the particular solutions directly in the context of predictions and explanations are primary, while the mathematical structures of associated state and orbit spaces, and quantity algebras – although conceptually important, are secondary." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

"They are a set of mathematical equations that explain the behaviour of the system under various operating conditions, and determine the dominant factors that govern the rules of the process. Mathematical modeling is also associated with data collection, data interpretation, parameter estimation, optimization, and provide tools for identifying possible approaches to control and for assessing the potential impact of different intervention measures." (Eldon R Rene et al, "ANNs for Identifying Shock Loads in Continuously Operated Biofilters", 2012)

"An abstract representation of the real-world system using mathematical concepts." (R Sridharan & Vinay V Panicker, "Ant Colony Algorithm for Two Stage Supply Chain", 2014)

"Is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modelling. Mathematical models can take many forms, including but not limited to dynamical systems, statistical models, differential equations, or game theoretic models. A model may help to explain a system and to study the effects of different components, and to make predictions about behaviour." (M T Benmessaoud et al, "Modeling and Simulation of a Stand-Alone Hydrogen Photovoltaic Fuel Cell Hybrid System", 2014)

"A mathematical model is a model built using the language and tools of mathematics. A mathematical model is often constructed with the aim to provide predictions on the future ‘state’ of a phenomenon or a system." (Crescenzio Gallo, "Artificial Neural Networks Tutorial", 2015)

"A mathematical model consists of an equation or a set of equations belonging to a certain class of mathematical models to describe the dynamic behavior of the corresponding system. The parameters involved in this mathematical model are related to a certain mathematical structure. This mathematical model is characterized by its class, its structure and its parameters." (Houda Salhi & Samira Kamoun, "State and Parametric Estimation of Nonlinear Systems Described by Wiener Sate-Space Mathematical Models", 2015)

"Description of a system using mathematical concepts and language." (Tomaž Kramberger, "A Contribution to Better Organized Winter Road Maintenance by Integrating the Model in a Geographic Information System", 2015)

"A description of a system using mathematical concepts and language." (Corrado Falcolini, "Algorithms for Geometrical Models in Borromini's San Carlino alle Quattro Fontane", 2016)

"A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, "Calculus: Early Transcedentals" 8th Ed., 2016)

"Mathematical representation of a system to describe the behavior of certain variables for an indeterminate time." (Sergio S Juárez-Gutiérrez et al, "Temperature Modeling of a Greenhouse Environment", 2016)

"A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used not only in the natural sciences (such as physics, biology, earth science, meteorology) and engineering disciplines (e.g., computer science, artificial intelligence), but also in the social sciences (such as economics, psychology, sociology, and political science); physicists, engineers, statisticians, operations research analysts, and economists use mathematical models most extensively. A model may help to explain a system and to study the effects of different components, and to make predictions about behavior." (Addepalli V N Krishna & M Balamurugan, "Security Mechanisms in Cloud Computing-Based Big Data", 2019)

"A description of a system using mathematical symbols." (José I Gomar-Madriz et al, "An Analysis of the Traveling Speed in the Traveling Hoist Scheduling Problem for Electroplating Processes", 2020)

"An abstract mathematical representation of a process, device, or concept; it uses a number of variables to represent inputs, outputs and internal states, and sets of equations and inequalities to describe their interaction." (Alisher F Narynbaev, "Selection of an Information Source and Methodology for Calculating Solar Resources of the Kyrgyz Republic", 2020)

03 January 2018

🔬Data Science: Models (Definitions)

"A model is essentially a calculating engine designed to produce some output for a given input." (Richard C Lewontin, "Models, Mathematics and Metaphors", Synthese, Vol. 15, No. 2, 1963)

"A model is an abstract description of the real world. It is a simple representation of more complex forms, processes and functions of physical phenomena and ideas." (Moshe F Rubinstein & Iris R Firstenberg, "Patterns of Problem Solving", 1975)

"A model is an attempt to represent some segment of reality and explain, in a simplified manner, the way the segment operates." (E Frank Harrison, "The managerial decision-making process" , 1975)

"A model is a representation containing the essential structure of some object or event in the real world." (David W Stockburger, "Introductory Statistics", 1996)

"A model is a deliberately simplified representation of a much more complicated situation." (Robert M Solow, "How Did Economics Get That Way and What Way Did It Get?", Daedalus Vol. 126 (1), 1997)

"Models are synthetic sets of rules, pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"A model is an imitation of reality" (Ian T Cameron & Katalin M Hangos, "Process Modelling and Model Analysis", 2001)

"Models are replicas or representations of particular aspects and segments of the real world" (Paulraj Ponniah, "Data Modeling Fundamentals", 2007)

"A model is a simplification of reality." (Alexey Voinov, "Systems Science and Modeling for Ecological Economics", 2008)

"a model is a representation of reality intended for some definite purpose." (Michael Pidd, "Tools for Thinking" 3rd Ed., 2009)
"A model is a representation of some subject matter." (Alec Sharp & Patrick McDermott, "Workflow Modeling" 2nd Ed, 2009)

"An abstract representation of how something is built (or is to be built), or how something works (or is observed as working)." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A model is a simplified representation of a system. It can be conceptual, verbal, diagrammatic, physical, or formal (mathematical)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"A formal set of relationships that can be manipulated to test assumptions. A simulation that tests the number of units that can be processed each hour under a set of conditions is an example of a model. Models do not need to be graphical." (Appian)

"Model is simply a representation or simulation of some real-world phenomenon." (Accenture)

02 January 2018

🔬Data Science: Data (Definitions)

"Facts and figures used in computer programs." (Greg Perry, "Sams Teach Yourself Beginning Programming in 24 Hours" 2nd Ed., 2001)

"A representation of facts, concepts, or instructions suitable to permit communication, interpretation, or processing by humans or by automatic means. (2) Used as a synonym for documentation in U.S. government procurement regulations." (Richard D Stutzke, "Estimating Software-Intensive Systems: Projects, Products, and Processes", 2005)

"A recording of facts, concepts, or instructions on a storage medium for communication, retrieval, and processing by automatic means and presentation as information that is understandable by human beings." (William H Inmon, "Building the Data Warehouse", 2005)

"An atomic element of information. Represented as bits within mass storage devices, memory, and pprocessors." (Tom Petrocelli, "Data Protection and Information Lifecycle Management", 2005)

"Information documented by a language system representing facts, text, graphics, bitmapped images, sound, and analog or digital live-video segments. Data is the raw material of a system supplied by data producers and is used by information consumers to create information." (Sharon Allen & Evan Terry, "Beginning Relational Data Modeling" 2nd Ed., 2005)

"A term applied to organized information." (Gavin Powell, "Beginning Database Design", 2006)

"Numeric information or facts collected through surveys or polls, measurements or observations that need to be effectively organized for decision making." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2006)

"Raw, unrelated numbers or entries, e.g., in a database; raw forms of transactional representations." (Martin J Eppler, "Managing Information Quality" 2nd Ed., 2006)

"Data is a representation of facts, concepts or instructions in a formalized manner suitable for communication, interpretation or processing by humans or automatic means." (S. Sumathi & S. Esakkirajan, "Fundamentals of Relational Database Management Systems", 2007)

"Numeric information or facts collected through surveys or polls, measurements or observations that need to be effectively organized for decision making." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2007)

"Hub A common approach for a technical implementation of a service-oriented MDM solution. Data Hubs store and manage some data attributes and the metadata containing the location of data attributes in external systems in order to create a single physical or federated trusted source of information about customers, products, and so on." (Alex Berson & Lawrence Dubov, "Master Data Management and Data Governance", 2010)

"Raw facts, that is, facts that have not yet been processed to reveal their meaning to the end user." (Carlos Coronel et al, "Database Systems: Design, Implementation, and Management" 9th Ed., 2011)

"Facts represented as text, numbers, graphics, images, sound, or video (with no additional defining context); the raw material used to create information." (Craig S Mullins, "Database Administration: The Complete Guide to DBA Practices and Procedures 2nd Ed", 2012)

"Data are abstract representations of selected characteristics of real-world objects, events, and concepts, expressed and understood through explicitly definable conventions related to their meaning, collection, and storage. We also use the term data to refer to pieces of information, electronically captured, stored (usually in databases), and capable of being shared and used for a range of organizational purposes."(Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"Data are abstract representations of selected characteristics of real-world objects, events, and concepts, expressed and understood through explicitly definable conventions related to their meaning, collection, and storage. We also use the term data to refer to pieces of information, electronically captured, stored (usually in databases), and capable of being shared and used for a range of organizational purposes." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement", 2013)

"A collection of values assigned to base measures, derived measures and/or indicators." (David Sutton, "Information Risk Management: A practitioner’s guide", 2014)

"Raw facts, that is, facts that have not yet been processed to reveal their meaning to the end user." (Carlos Coronel & Steven Morris, "Database Systems: Design, Implementation, & Management"  11th Ed., 2014)

"A formalized (meaning suitable for further processing, interpretation and communication) representation of business objects or transactions." (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"Data is a collection of one or more pieces if information." (Robert J Glushko, "The Discipline of Organizing: Professional Edition, 4th Ed", 2016)

"Facts about events, objects, and associations. Example: data about a sale would include date, amount, and method of payment." (Gregory Lampshire, "The Data and Analytics Playbook", 2016)

"Discrete, unorganized, unprocessed measurements or raw observations." (Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK® Guide )", 2017)

"Any values from an application that can be transformed into facts and eventually information.." (Piethein Strengholt, "Data Management at Scale", 2020)

"A set of collected facts. There are two basic kinds of numerical data: measured or variable data … and counted or attribute data." (ASQ)
"A representation of information as stored or transmitted." (NISTIR 4734)

"A representation of information, including digital and non-digital formats." (NIST Privacy Framework Version 1.0)

"A variable-length string of zero or more (eight-bit) bytes." (NIST SP 800-56B Rev. 2)

"Any piece of information suitable for use in a computer." (NISTIR 7693)

"(1) Anything observed in the documentation or operation of software that deviates from expectations based on previously verified software products or reference documents.(2) A representation of facts, concepts, or instructions in a manner suitable for communication, interpretation, or processing by humans or by automatic means." (IEEE 610.5-1990)

"Data may be thought of as unprocessed atomic statements of fact. It very often refers to systematic collections of numerical information in tables of numbers such as spreadsheets or databases. When data is structured and presented so as to be useful and relevant for a particular purpose, it becomes information available for human apprehension. See also knowledge." (Open Data Handbook)

"Distinct pieces of digital information that have been formatted in a specific way." (NIST SP 800-86)

"Information in a specific representation, usually as a sequence of symbols that have meaning." (CNSSI 4009-2015 IETF RFC 4949 Ver 2)

"Pieces of information from which “understandable information” is derived." (NIST SP 800-88 Rev. 1)

“re-interpretable representation of information in a formalized manner suitable for communication, interpretation, or processing” (ISO 11179)

20 March 2017

⛏️Data Management: Data Structure (Definitions)

"A logical relationship among data elements that is designed to support specific data manipulation functions (trees, lists, and tables)." (William H Inmon, "Building the Data Warehouse", 2005)

"Data stored in a computer in a way that (usually) allows efficient retrieval of the data. Arrays and hashes are examples of data structures." (Michael Fitzgerald, "Learning Ruby", 2007)

"A data structure in computer science is a way of storing data to be used efficiently." (Sahar Shabanah, "Computer Games for Algorithm Learning", 2011)

"Data structure is a general term referring to how data is organized. In modeling, it refers more specifically to the model itself. Tables are referred to as 'structures'." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

[probabilistic *] "A data structure which exploits randomness to boost its efficiency, for example skip lists and Bloom filters. In the case of Bloom filters, the results of certain operations may be incorrect with a small probability." (Wei-Chih Huang & William J Knottenbelt, "Low-Overhead Development of Scalable Resource-Efficient Software Systems", 2014)

"A collection of methods for storing and organizing sets of data in order to facilitate access to them. More formally data structures are concise implementations of abstract data types, where an abstract data type is a set of objects together with a collection of operations on the elements of the set." (Ioannis Kouris et al, "Indexing and Compressing Text", 2015)

"A representation of the logical relationship between elements of data." (Adam Gordon, "Official (ISC)2 Guide to the CISSP CBK" 4th Ed., 2015)

"Is a schematic organization of data and relationship to express a reality of interest, usually represented in a diagrammatic form." (Maria T Artese  Isabella Gagliardi, "UNESCO Intangible Cultural Heritage Management on the Web", 2015)

"The implementation of a composite data field in an abstract data type" (Nell Dale & John Lewis, "Computer Science Illuminated" 6th Ed., 2015)

"A way of organizing data so that it can be efficiently accessed and updated." (Vasileios Zois et al, "Querying of Time Series for Big Data Analytics", 2016)

"A particular way of storing information, allowing to a high level approach on the software implementation." (Katia Tannous & Fillipe de Souza Silva, "Particle Shape Analysis Using Digital Image Processing", 2018)

"It is a particular way of organizing data in a computer so that they can be used efficiently." (Edgar C Franco et al, "Implementation of an Intelligent Model Based on Machine Learning in the Application of Macro-Ergonomic Methods...", 2019)

"Way information is represented and stored." (Shalin Hai-Jew, "Methods for Analyzing and Leveraging Online Learning Data", 2019)

"A physical or logical relationship among a collection of data elements." (IEEE 610.5-1990)

24 December 2013

🎓Knowledge Management: Knowledge (Just the Quotes)

"There are two modes of acquiring knowledge, namely, by reasoning and experience. Reasoning draws a conclusion and makes us grant the conclusion, but does not make the conclusion certain, nor does it remove doubt so that the mind may rest on the intuition of truth unless the mind discovers it by the path of experience." (Roger Bacon, "Opus Majus", 1267)

"Knowledge being to be had only of visible and certain truth, error is not a fault of our knowledge, but a mistake of our judgment, giving assent to that which is not true." (John Locke, "An Essay Concerning Human Understanding", 1689)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

"It is your opinion, the ideas we perceive by our senses are not real things, but images, or copies of them. Our knowledge therefore is no farther real, than as our ideas are the true representations of those originals. But as these supposed originals are in themselves unknown, it is impossible to know how far our ideas resemble them; or whether they resemble them at all. We cannot therefore be sure we have any real knowledge." (George Berkeley, "Three Dialogues", 1713)

"Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (receptivity for impressions), the second is the power of knowing an object through these representations (spontaneity [in the production] of concepts)." (Immanuel Kant, "Critique of Pure Reason", 1781)

"Knowledge is only real and can only be set forth fully in the form of science, in the form of system." (G W Friedrich Hegel, "The Phenomenology of Mind", 1807)

"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814) 

"We [...] are profiting not only by the knowledge, but also by the ignorance, not only by the discoveries, but also by the errors of our forefathers; for the march of science, like that of time, has been progressing in the darkness, no less than in the light." (Charles C Colton, "Lacon", 1820)

"Our knowledge of circumstances has increased, but our uncertainty, instead of having diminished, has only increased. The reason of this is, that we do not gain all our experience at once, but by degrees; so our determinations continue to be assailed incessantly by fresh experience; and the mind, if we may use the expression, must always be under arms." (Carl von Clausewitz, "On War", 1832)

"All knowledge is profitable; profitable in its ennobling effect on the character, in the pleasure it imparts in its acquisition, as well as in the power it gives over the operations of mind and of matter. All knowledge is useful; every part of this complex system of nature is connected with every other. Nothing is isolated. The discovery of to-day, which appears unconnected with any useful process, may, in the course of a few years, become the fruitful source of a thousand inventions." (Joseph Henry, "Report of the Secretary" [Sixth Annual Report of the Board of Regents of the Smithsonian Institution for 1851], 1852)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"Simplification of modes of proof is not merely an indication of advance in our knowledge of a subject, but is also the surest guarantee of readiness for farther progress." (William T Kelvin, "Elements of Natural Philosophy", 1873)

"The whole value of science consists in the power which it confers upon us of applying to one object the knowledge acquired from like objects; and it is only so far, therefore, as we can discover and register resemblances that we can turn our observations to account." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"[…] when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science." (William T Kelvin, "Electrical Units of Measurement", 1883)

"The smallest group of facts, if properly classified and logically dealt with, will form a stone which has its proper place in the great building of knowledge, wholly independent of the individual workman who has shaped it." (Karl Pearson, "The Grammar of Science", 1892)

"Without a theory all our knowledge of nature would be reduced to a mere inventory of the results of observation. Every scientific theory must be regarded as an effort of the human mind to grasp the truth, and as long as it is consistent with the facts, it forms a chain by which they are linked together and woven into harmony." (Thomas Preston, "The Theory of Heat", 1894)

"Knowledge is the distilled essence of our intuitions, corroborated by experience." (Elbert Hubbard, "A Thousand & One Epigrams, 1911)

"It is experience which has given us our first real knowledge of Nature and her laws. It is experience, in the shape of observation and experiment, which has given us the raw material out of which hypothesis and inference have slowly elaborated that richer conception of the material world which constitutes perhaps the chief, and certainly the most characteristic, glory of the modern mind." (Arthur J Balfour, "The Foundations of Belief", 1912)

"We have discovered that it is actually an aid in the search for knowledge to understand the nature of the knowledge we seek." (Arthur S Eddington, "The Philosophy of Physical Science", 1938)

"Science usually advances by a succession of small steps, through a fog in which even the most keen-sighted explorer can seldom see more than a few paces ahead. Occasionally the fog lifts, an eminence is gained, and a wider stretch of territory can be surveyed - sometimes with startling results. A whole science may then seem to undergo a kaleidoscopic ‘rearrangement’, fragments of knowledge being found to fit together in a hitherto unsuspected manner. Sometimes the shock of readjustment may spread to other sciences; sometimes it may divert the whole current of human thought." (James H Jeans, "Physics and Philosophy" 3rd Ed., 1943)

"Every bit of knowledge we gain and every conclusion we draw about the universe or about any part or feature of it depends finally upon some observation or measurement. Mankind has had again and again the humiliating experience of trusting to intuitive, apparently logical conclusions without observations, and has seen Nature sail by in her radiant chariot of gold in an entirely different direction." (Oliver J Lee, "Measuring Our Universe: From the Inner Atom to Outer Space", 1950)

"The essence of knowledge is generalization. That fire can be produced by rubbing wood in a certain way is a knowledge derived by generalization from individual experiences; the statement means that rubbing wood in this way will always produce fire. The art of discovery is therefore the art of correct generalization." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"Knowledge rests on knowledge; what is new is meaningful because it departs slightly from what was known before; this is a world of frontiers, where even the liveliest of actors or observers will be absent most of the time from most of them." (J Robert Oppenheimer, "Science and the Common Understanding", 1954)

"Knowledge is not something which exists and grows in the abstract. It is a function of human organisms and of social organization. Knowledge, that is to say, is always what somebody knows: the most perfect transcript of knowledge in writing is not knowledge if nobody knows it. Knowledge however grows by the receipt of meaningful information - that is, by the intake of messages by a knower which are capable of reorganising his knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"Incomplete knowledge must be considered as perfectly normal in probability theory; we might even say that, if we knew all the circumstances of a phenomenon, there would be no place for probability, and we would know the outcome with certainty." (Félix E Borel, Probability and Certainty", 1963)

"Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality. They are more or less isomorphic to transformations of reality. The transformational structures of which knowledge consists are not copies of the transformations in reality; they are simply possible isomorphic models among which experience can enable us to choose. Knowledge, then, is a system of transformations that become progressively adequate." (Jean Piaget, "Genetic Epistemology", 1968)

"Scientific knowledge is not created solely by the piecemeal mining of discrete facts by uniformly accurate and reliable individual scientific investigations. The process of criticism and evaluation, of analysis and synthesis, are essential to the whole system. It is impossible for each one of us to be continually aware of all that is going on around us, so that we can immediately decide the significance of every new paper that is published. The job of making such judgments must therefore be delegated to the best and wisest among us, who speak, not with their own personal voices, but on behalf of the whole community of Science. […] It is impossible for the consensus - public knowledge - to be voiced at all, unless it is channeled through the minds of selected persons, and restated in their words for all to hear." (John M Ziman, "Public Knowledge: An Essay Concerning the Social Dimension of Science", 1968)

"Models constitute a framework or a skeleton and the flesh and blood will have to be added by a lot of common sense and knowledge of details."(Jan Tinbergen, "The Use of Models: Experience," 1969)

"Human knowledge is personal and responsible, an unending adventure at the edge of uncertainty." (Jacob Bronowski, "The Ascent of Man", 1973)

"Knowledge is not a series of self-consistent theories that converges toward an ideal view; it is rather an ever increasing ocean of mutually incompatible (and perhaps even incommensurable) alternatives, each single theory, each fairy tale, each myth that is part of the collection forcing the others into greater articulation and all of them contributing, via this process of competition, to the development of our consciousness." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"Knowledge is the appropriate collection of information, such that it's intent is to be useful. Knowledge is a deterministic process. When someone 'memorizes' information (as less-aspiring test-bound students often do), then they have amassed knowledge. This knowledge has useful meaning to them, but it does not provide for, in and of itself, an integration such as would infer further knowledge." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"There is no coherent knowledge, i.e. no uniform comprehensive account of the world and the events in it. There is no comprehensive truth that goes beyond an enumeration of details, but there are many pieces of information, obtained in different ways from different sources and collected for the benefit of the curious. The best way of presenting such knowledge is the list - and the oldest scientific works were indeed lists of facts, parts, coincidences, problems in several specialized domains." (Paul K Feyerabend, "Farewell to Reason", 1987)

"We admit knowledge whenever we observe an effective (or adequate) behavior in a given context, i.e., in a realm or domain which we define by a question (explicit or implicit)." (Humberto Maturana & Francisco J Varela, "The Tree of Knowledge", 1987)

"We live on an island surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance." (John A Wheeler, Scientific American Vol. 267, 1992)

"Knowledge is theory. We should be thankful if action of management is based on theory. Knowledge has temporal spread. Information is not knowledge. The world is drowning in information but is slow in acquisition of knowledge. There is no substitute for knowledge." (William E Deming, "The New Economics for Industry, Government, Education", 1993) 

"Discourses are ways of referring to or constructing knowledge about a particular topic of practice: a cluster (or formation) of ideas, images and practices, which provide ways of talking about, forms of knowledge and conduct associated with, a particular topic, social activity or institutional site in society. These discursive formations, as they are known, define what is and is not appropriate in our formulation of, and our practices in relation to, a particular subject or site of social activity." (Stuart Hall, "Representation: Cultural Representations and Signifying Practices", 1997)

"An individual understands a concept, skill, theory, or domain of knowledge to the extent that he or she can apply it appropriately in a new situation." (Howard Gardner, "The Disciplined Mind", 1999)

"Knowledge is factual when evidence supports it and we have great confidence in its accuracy. What we call 'hard fact' is information supported by  strong, convincing evidence; this means evidence that, so far as we know, we cannot deny, however we examine or test it. Facts always can be questioned, but they hold up under questioning. How did people come by this information? How did they interpret it? Are other interpretations possible? The more satisfactory the answers to such questions, the 'harder' the facts." (Joel Best, Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists, 2001)

"Knowledge is in some ways the most important (though intangible) capital of a software engineering organization, and sharing of that knowledge is crucial for making an organization resilient and redundant in the face of change. A culture that promotes open and honest knowledge sharing distributes that knowledge efficiently across the organization and allows that organization to scale over time. In most cases, investments into easier knowledge sharing reap manyfold dividends over the life of a company." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

More quotes on "Knowledge" at the-web-of-knowledge.blogspot.com.

09 July 2013

🎓Knowledge Management: Mental Model (Definitions)

"A mental model is a cognitive construct that describes a person's understanding of a particular content domain in the world." (John Sown, "Conceptual Structures: Information Processing in Mind and Machine", 1984)

"A mental model is a data structure, in a computational system, that represents a part of the real world or of a fictitious world." (Alan Granham, "Mental Models as Representations of Discourse and Text", 1987)

"[…] a mental model is a mapping from a domain into a mental representation which contains the main characteristics of the domain; a model can be ‘run’ to generate explanations and expectations with respect to potential states. Mental models have been proposed in particular as the kind of knowledge structures that people use to understand a specific domain […]" (Helmut Jungermann, Holger Schütz & Manfred Thuering, "Mental models in risk assessment: Informing people about drugs", Risk Analysis 8 (1), 1988)

 "A mental model is a knowledge structure that incorporates both declarative knowledge (e.g., device models) and procedural knowledge (e.g., procedures for determining distributions of voltages within a circuit), and a control structure that determines how the procedural and declarative knowledge are used in solving problems (e.g., mentally simulating the behavior of a circuit)." (Barbara Y White & John R Frederiksen, "Causal Model Progressions as a Foundation for Intelligent Learning Environments", Artificial Intelligence 42, 1990)

"’Mental models’ are deeply ingrained assumptions, generalizations, or even pictures or images that influence how we understand the world and how we take action. [...] Mental models are deeply held internal images of how the world works, images that limit us to familiar ways of thinking and acting." (Peter Senge, "The Fifth Discipline”, 1990)

"[A mental model] is a relatively enduring and accessible, but limited, internal conceptual representation of an external system (historical, existing, or projected) [italics in original] whose structure is analogous to the perceived structure of that system." (James K Doyle & David N Ford, "Mental models concepts revisited: Some clarifications and a reply to Lane", System Dynamics Review 15 (4), 1999)

"In broad terms, a mental model is to be understood as a dynamic symbolic representation of external objects or events on the part of some natural or artificial cognitive system. Mental models are thought to have certain properties which make them stand out against other forms of symbolic representations." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"A mental model is conceived […] as a knowledge structure possessing slots that can be filled not only with empirically gained information but also with ‘default assumptions’ resulting from prior experience. These default assumptions can be substituted by updated information so that inferences based on the model can be corrected without abandoning the model as a whole. Information is assimilated to the slots of a mental model in the form of ‘frames’ which are understood here as ‘chunks’ of knowledge with a well-defined meaning anchored in a given body of shared knowledge." (Jürgen Renn, “Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", 2005)

"A mental model is a mental representation that captures what is common to all the different ways in which the premises can be interpreted. It represents in 'small scale' how 'reality' could be - according to what is stated in the premises of a reasoning problem. Mental models, though, must not be confused with images." (Carsten Held et al, "Mental Models and the Mind", 2006)

"’Mental models’ are deeply ingrained assumptions, generalizations, or even pictures or images that influence how we understand the world and how we take action." (Jossey-Bass Publishers, "The Jossey-Bass Reader on Educational Leadership”, 2nd Ed. 2007)

"A mental model is an internal representation with analogical relations to its referential object, so that local and temporal aspects of the object are preserved." (Gert Rickheit et al, "The concept of communicative competence" [in "Handbook of Communication Competence"], 2008)

"Internal representations constructed on the spot when required by demands of an external task or by a self-generated stimulus. It enables activation of relevant schemata, and allows new knowledge to be integrated. It specifies causal actions among concepts that take place within it, and it can be interacted with in the mind." (Daniel Churchill, "Mental Models" [in "Encyclopedia of Information Technology Curriculum Integration"] , 2008)

"Mental models are representations of reality built in people’s minds. These models are based on arrangements of assumptions, judgments, and values. A main weakness of mental models is that people’s assumptions and judgments change over time and are applied in inconsistent ways when building explanations of the world." (Luis F Luna-Reyes, "System Dynamics to Understand Public Information Technology", 2008)

"A mental model is the collection of concepts and relationships about the image of real world things we carry in our heads" (Hassan Qudrat-Ullah, "System Dynamics Based Technology for Decision Support", 2009)

"A mental recreation of the states of the world reproduced cognitively in order to offer itself as a basis for reasoning." (Eshaa M Alkhalifa, "Open Student Models", 2009)

[Shared Mental Model:] "A mental model that is shared among team members, and may include: 1) task-specific knowledge, 2) task-related knowledge, 3) knowledge of teammates and 4) attitudes/beliefs." (Rosemarie Reynolds et al, "Measuring Shared Mental Models in Unmanned Aircraft Systems", 2015) 

"A network of knowledge content, as well as the relationships among the content."(Rosemarie Reynolds et al, "Measuring Shared Mental Models in Unmanned Aircraft Systems", 2015)

"A mental model (aka mental representation/image/picture) is a mental structure that attempts to model (depict, imagine) how real or imaginary things look like, work or fit together." (The Web of Knowledge) [source]

Resources:
Quotes on "Mental Models" at the-web-of-knowledge.blogspot.com.

07 July 2013

🎓Knowledge Management: Concept Map (Definitions)

"Concept maps are built of nodes connected by connectors, which have written descriptions called linking phrases instead of polarity of strength. Concept maps can be used to describe conceptual structures and relations in them and the concept maps suit also aggregation and preservation of knowledge" (Hannu Kivijärvi et al, "A Support System for the Strategic Scenario Process", 2008) 

"A hierarchal picture of a mental map of knowledge." (Gregory MacKinnon, "Concept Mapping as a Mediator of Constructivist Learning", 2009)

"A tool that assists learners in the understanding of the relationships of the main idea and its attributes, also used in brainstorming and planning." (Diane L Judd, "Constructing Technology Integrated Activities that Engage Elementary Students in Learning", 2009)

"Concept maps are graphical knowledge representations that are composed to two components: (1) Nodes: represent the concepts, and (2) Links: connect concepts using a relationship." (Faisal Ahmad et al, "New Roles of Digital Libraries", 2009)

"A concept map is a diagram that depicts concepts and their hierarchical relationships." (Wan Ng & Ria Hanewald, "Concept Maps as a Tool for Promoting Online Collaborative Learning in Virtual Teams with Pre-Service Teachers", 2010)

"A diagram that facilitates organization, presentation, processing and acquisition of knowledge by showing relationships among concepts as node-link networks. Ideas in a concept map are represented as nodes and connected to other ideas/nodes through link labels." (Olusola O Adesope & John C Nesbit, "A Systematic Review of Research on Collaborative Learning with Concept Maps", 2010)

"A visual construct composed of encircled concepts (nodes) that are meaningfully inter-connected by descriptive concept links either directly, by branch-points (hierarchies), or indirectly by cross-links (comparisons). The construction of a concept map can serve as a tool for enhancing communication, either between an author and a student for a reading task, or between two or more students engaged in problem solving. (Dawndra Meers-Scott, "Teaching Critical Thinking and Team Based Concept Mapping", 2010)

"Are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. The visual representation of information through word webs or diagrams enables learners to see how the ideas are connected and understand how to group or organize information effectively." (Robert Z Zheng & Laura B Dahl, "Using Concept Maps to Enhance Students' Prior Knowledge in Complex Learning", 2010)

"Concept maps are hierarchical trees, in which concepts are connected with labelled, graphical links, most general at the top." (Alexandra Okada, "Eliciting Thinking Skills with Inquiry Maps in CLE", 2010)

"One powerful knowledge presentation format, devised by Novak, to visualize conceptual knowledge as graphs in which the nodes represent the concepts, and the links between the nodes are the relationships between these concepts." (Diana Pérez-Marín et al, "Adaptive Computer Assisted Assessment", 2010)

"A form of visualization showing relationships among concepts as arrows between labeled boxes, usually in a downward branching hierarchy." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A graphical depiction of relationships ideas, principals, and activities leading to one major theme." (Carol A Brown, "Using Logic Models for Program Planning in K20 Education", 2013)

"A diagram that presents the relationships between concepts." (Gwo-Jen Hwang, "Mobile Technology-Enhanced Learning", 2015)

"A graphical two-dimensional display of knowledge. Concepts, usually presented within boxes or circles, are connected by directed arcs that encode, as linking phrases, the relationships between the pairs of concepts." (Anna Ursyn, "Visualization as Communication with Graphic Representation", 2015)

"A graphical tool for representing knowledge structure in a form of a graph whose nodes represent concepts, while arcs between nodes correspond to interrelations between them." (Yigal Rosen & Maryam Mosharraf, "Evidence-Centered Concept Map in Computer-Based Assessment of Critical Thinking", 2016) 

"Is a directed graph that shows the relationship between the concepts. It is used to organize and structure knowledge." (Anal Acharya & Devadatta Sinha, "A Web-Based Collaborative Learning System Using Concept Maps: Architecture and Evaluation", 2016)

"A graphic depiction of brainstorming, which starts with a central concept and then includes all related ideas." (Carolyn W Hitchens et al, "Studying Abroad to Inform Teaching in a Diverse Society", 2017)

"A graphic visualization of the connections between ideas in which concepts (drawn as nodes or boxes) are linked by explanatory phrases (on arrows) to form a network of propositions that depict the quality of the mapper’s understanding" (Ian M Kinchin, "Pedagogic Frailty and the Ecology of Teaching at University: A Case of Conceptual Exaptation", 2019)

"A diagram in which related concepts are linked to each other." (Steven Courchesne &Stacy M Cohen, "Using Technology to Promote Student Ownership of Retrieval Practice", 2020)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.