Showing posts with label ContosoSales. Show all posts
Showing posts with label ContosoSales. Show all posts

07 February 2025

🌌🏭KQL Reloaded: First Steps (Part VII: Basic Data Visualizations)

One of the greatest aspects of KQL and its environment is that creating a chart is just one instruction away from the dataset generated in the process. Of course, the data still need to be in an appropriate form to be used as source for a visual, though the effort is minimal. Let's consider the example used in the previous post based ln the ContosoSales data, where the visualization part is everything that comes after "| render":

// visualizations by Country: various charts
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize count_customers = count_distinct(CustomerKey) by RegionCountryName
| order by count_customers desc
//| render table
//| render linechart
//| render areachart 
//| render stackedchart
//| render columnchart | render piechart with (xtitle="Country", ytitle="# Customers", title="# Customers by Country (pie chart)", legend=hidden)
Output:
# Customers by Country (various charts)

It's enough to use "render" with the chart type without specifying the additional information provided under "with", though the legend can facilitate data's understanding. Unfortunately, the available properties are relatively limited, at least for now. 

Adding one more dimension is quite simple, even if the display may be sometimes confusing as there's no clear delimitation between the entities represented while the legend grows linearly with the number of points. It might be a good idea to use additional charts for the further dimensions in scope. 

// visualizations by Region & Country: various charts
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize count_customers = count_distinct(CustomerKey) by ContinentName, RegionCountryName
| order by count_customers desc   
//| render stackedareachart 
//| render linechart 
//| render table 
//| render areachart 
//| render piechart
| render columnchart 
    with (xtitle="Region/Country", ytitle="# Customers",
    title="#Customers by Continent & Country", legend=hidden)
Output:
# Customers by Continent & Country (column chart)

Sometimes, it makes sense to reduce the number of values, recommendation that applies mainly to pie charts:

// visualizations by Zone: pie chart
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize count_customers = count_distinct(CustomerKey) by iif(RegionCountryName in ('United States', 'Canada'), RegionCountryName, 'Others')
| render piechart
    with (xtitle="Country", ytitle="Sales volume",
    title="Sales volume by Zone")
Output:
# Customers by Zone (pie chart)

Adding a second set of values (e.g. Total cost) allows to easily create a scatter chart:

// visualization by Occupation: scatter chart
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize count_customers = count_distinct(CustomerKey) 
    , TotalCost = sum(TotalCost) by Occupation
| order by count_customers desc
| render scatterchart 
    with (xtitle="# Customers", ytitle="Sales volume",
    title="# Customers vs Sales volume by Occupation", legend=visible )
Output:
# Customers vs Sales volume by Occupation (scatter chart)

The visualizations are pretty simple to build, though one shouldn't expect that one can build a visualization on top of any dataset, at least not without further formatting and eventually code changes. For example, considering the query from the previous post, with a small change one can use the data with a column chart, though this approach might have some limitation (e.g. it doesn't work pie charts):

// calculating percentages from totals: column chart
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
//| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize count_customers = count_distinct(CustomerKey)
    , count_customers_US = count_distinctif(CustomerKey, RegionCountryName == 'United States')
    , count_customers_CA = count_distinctif(CustomerKey, RegionCountryName == 'Canada')
    , count_customers_other = count_distinctif(CustomerKey, not(RegionCountryName in ('United States', 'Canada')))
| project Charting = "Country"
    , US = count_customers_US
    , CA = count_customers_CA
    , other = count_customers_other
| render columnchart
    with (xtitle="Region", ytitle="# Customers",
    title="# Customers by Region")
Output:
# Customers by Region (column chart)

There are a few more visuals that will be considered in a next post. Despite the relatively limited set of visuals and properties, the visualizations are useful to get a sense of data's shape, and this with a minimum of changes. Ad-hoc visualizations can help also in data modeling, validating the logic and/or identifying issues in the data when creating the queries, which makes it a great feature. 

Happy coding!

Previous Post <<||>> Next Post

06 February 2025

🌌🏭KQL Reloaded: First Steps (Part VI: Actual vs. Estimated Count)

More examples are available nowadays for developers, at least compared with 10-20 years ago when besides the scarce documentation, the blogs and source code from books were the only ways to find how a function or a piece of standard functionality works. Copying code without understanding it may lead to unexpected results, with all the consequences resulting from this. 

A recent example in this direction in KQL are the dcount and dcountif functions, which according to the documentation calculates an estimate of the number of distinct values that are taken by a scalar expression in the summary group. An estimate is not the actual number of records, trading performance for accuracy. The best example are the following pieces of code:

// counting records 
NewSales
| summarize record_count = count() // values availanle 
    , aprox_distinct_count = dcount(CustomerKey) // estimated disting values
    , distinct_count = count_distinct(CustomerKey) // actual number of records
    , aprox_distict_count_by_value  = dcountif(CustomerKey, SalesAmount <> 0) //estimated count of records with not null amounts
    , distict_count_by_value  = count_distinctif(CustomerKey, SalesAmount <> 0) // count of records with not null amounts
    , aprox_distict_count_by_value2  = dcountif(CustomerKey, SalesAmount == 0) //estimated count of records with null amounts
    , distict_count_by_value2  = count_distinctif(CustomerKey, SalesAmount == 0) // count of records with not amounts
| extend error_aprox_distinct_count = distinct_count - aprox_distinct_count
    , error_aprox_distict_count_by_value = distict_count_by_value - aprox_distict_count_by_value
Output:
record_count aprox_distinct_count distinct_count aprox_distict_count_by_value distict_count_by_value aprox_distict_count_by_value2 distict_count_by_value2
2832193 18497 18484 18497 18484 10251 10219
error_aprox_distinct_count error_aprox_distict_count_by_value
-13 -13
It's interesting that the same difference is observable also when a narrower time interval is chosen (e.g. 1 month). When using estimate it's important to understand also how big is the error between the actual value and the estimate, and that's the purpose of the last two lines added to the query. In many scenarios the difference might be neglectable until is not. 

One can wonder whether the two functions are deterministic, in other words whether they return the same results if given the same input values. It would be also useful to understand what's the performance of the two estimative functions especially when further constraints are applied.

Moreover, the functions accept a third parameter which allows control over the trade between speed and accuracy (see provided table).

// counting records 
NewSales
| summarize record_count = count() // values availanle 
    , distinct_count = count_distinct(CustomerKey) // actual number of records
    , aprox_distinct_count = dcount(CustomerKey) // estimated disting values (default)
    , aprox_distinct_count0 = dcount(CustomerKey, 0) // 0-based accuracy
    , aprox_distinct_count1 = dcount(CustomerKey, 1) // 1-based accuracy (default)
    , aprox_distinct_count2 = dcount(CustomerKey, 2) // 2-based accuracy
    , aprox_distinct_count3 = dcount(CustomerKey, 3) // 3-based accuracy
    , aprox_distinct_count4 = dcount(CustomerKey, 4) // 4-based accuracy
Output:
record_count distinct_count aprox_distinct_count aprox_distinct_count0 aprox_distinct_count1 aprox_distinct_count2 aprox_distinct_count3 aprox_distinct_count4
2832193 18484 18497 18793 18497 18500 18470 18487

It will be interesting to see which one of these parameters are used in practice. The problems usually start when different approximation parameters are used alternatively with no previous agreement. How could one argument in the favor of one parameter over the others? 

A natural question: how big will be the error introduced by each parameter? Usually, when approximating values, one needs to specify also the expected error somehow. The documentation provide some guiding value, though are these values enough? Do similar estimate functions make sense also for the other aggregate functions?

In exchange, the count_distinct and count_distinctif seem to be still in preview, with all the consequences derived from this. They are supposed to be more resource-intensive than the estimative counterparts. Conversely, the values returned can be still rounded in dashboards up to the meaningful unit (e.g. thousands), and this usually depends on the context. The question whether the values can be rounded can be put also in the context and the estimative counterparts. It would be interesting to check how far away are the rounded values from each other in the context of the two sets of functions.

In practice, counting is useful for calculating percentages (e.g. how many customers come from a certain zone compared to the total), which are more useful and easier to grasp than big numbers: 

// calculating percentages from totals
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize count_customers = count_distinct(CustomerKey)
    , count_customers_US = count_distinctif(CustomerKey, RegionCountryName == 'United States')
    , count_customers_CA = count_distinctif(CustomerKey, RegionCountryName == 'Canada')
    , count_customers_other = count_distinctif(CustomerKey, not(RegionCountryName in ('United States', 'Canada')))
| extend percent_customers_US = iif(count_customers<>0, round(100.00 * count_customers_US/count_customers, 2), 0.00)
    , percent_customers_CA = iif(count_customers<>0, round(100.00 * count_customers_CA/count_customers, 2), 0.00)
    , percent_customers_other = iif(count_customers<>0, round(100.00 * count_customers_other/count_customers,2), 0.00)
Output:
count_customers count_customers_US count_customers_CA count_customers_other percent_customers_US percent_customers_CA percent_customers_other
10317 3912 789 5616 37.92 7.65 54.43

Note:
When showing percentages it's important to provide also the "context", the actual count or amount. This allows to understand the scale associated with the percentages. 

Happy coding!

Previous Post <<||>> Next Post

Resources:
[R1] Arcane Code (2022) Fun With KQL – DCount, by R C Cain [link]
[R2] M Morowczynsk et al (2024) "The Definitive Guide to KQL" [sample]
[R3] M Zorich (2022) Too much noise in your data? Summarize it! [link]

🌌🏭KQL Reloaded: First Steps (Part V: Database Metadata)

When working with a new data repository, one of the first things to do is to look at database's metadata, when available, and try to get a birds eye view of what's available, how big is the databases in terms of size, tables and user-defined objects, how the schema was defined, how the data are stored, eventually how often backup are taken, what users have access and to what, etc. 

So, after creating some queries in KQL and figuring out how things work, I tried to check what metadata are available, how it can be accessed, etc. The target is not to provide a full list of the available metadata, but to understand what information is available, in what format, how easy is to extract the important metadata, etc. 

So, the first set of metadata is related to database:

// get database metadata metadata
.show databases (ContosoSales)

// get database metadata metadata (multiple databases)
.show databases (ContosoSales, Samples)

// get database schema metadata
.show databases (ContosoSales) schema

// get database schema metadata (multiple databases) 
.show databases (ContosoSales, Samples) schema

// get database schema violations metadata
.show database ContosoSales schema violations

// get database entities metadata
.show databases entities with (showObfuscatedStrings=true)
| where DatabaseName == "ContosoSales"

// get database metadata 
.show databases entities with (resolveFunctionsSchema=true)
| where DatabaseName == "ContosoSales" and EntityType == "Table"
//| summarize count () //get the number of tables

// get a function's details
.show databases entities with (resolveFunctionsSchema=true)
| where DatabaseName == "ContosoSales" 
    and EntityType == "Function" 
    and EntityName == "SalesWithParams"

// get external tables metadata
.show external tables

// get materialized views metadata
.show materialized-views

// get query results metadata
.show stored_query_results

// get entities groups metadata
.show entity_groups

Then, it's useful to look at the database objects. 

// get all tables 
.show tables 
//| count

// get tables metadata
.show tables (Customers, NewSales)

// get tables schema
.show table Customers cslschema

// get schema as json
.show table Customers schema as json

// get table size: Customers
Customers
| extend sizeEstimateOfColumn = estimate_data_size(*)
| summarize totalSize_MB=round(sum(sizeEstimateOfColumn)/1024.00/1024.00,2)

Unfortunately, the public environment has restrictions in what concerns the creation of objects, while for the features available one needs to create some objects to query the corresponding metadata.

Furthermore, it would be interesting to understand who has access to the various repositories, what policies were defined, and so on. 

// get principal roles
.show database ContosoSales principal roles

// get principal roles for table
.show table Customers principal roles

// get principal roles for function:
.show function SalesWithParams principal roles

// get retention policies
.show table Customers policy retention

// get sharding policies
.show table Customers policy sharding

There are many more objects one can explore. It makes sense to document the features, respectively the objects used for the various purposes.

In addition, one should check also the best practices available for the data repository (see [2]).

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) Management commands overview [link]
[2] Microsoft Learn (2024) Kusto: Best practices for schema management [link]

05 February 2025

🌌🏭KQL Reloaded: First Steps (Part IV: Left, Right, Anti-Joins and Unions)

In a standard scenario there is a fact table and multiple dimension table (see previous post), though one can look at the same data from multiple perspectives. In KQL it's recommended to start with the fact table, however in some reports one needs records from the dimension table independently whether there are any records in the fact tale.  

For example, it would be useful to show all the products, independently whether they were sold or not. It's what the below query does via a RIGHT JOIN between the fact table and the Customer dimension:

// totals by customer via right join
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost) by CustomerKey
| join kind=rightouter (
    Customers
    | where RegionCountryName in ('Canada', 'Australia')
    | project CustomerKey, RegionCountryName, CustomerName = strcat(FirstName, ' ', LastName)
    )
    on CustomerKey
| project RegionCountryName, CustomerName, TotalCost
//| summarize record_count = count() 
| order by CustomerName asc

The Product details can be added then via a LEFT JOIN between the fact table and the Product dimension:

// total by customer via right join with product information
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost)
    , FirstPurchaseDate = min(DateKey)
    , LastPurchaseDate = max(DateKey) by CustomerKey, ProductKey
| join kind=rightouter (
    Customers
    | where RegionCountryName in ('Canada', 'Australia')
    | project CustomerKey, RegionCountryName, CustomerName = strcat(FirstName, ' ', LastName)
    )
    on CustomerKey
| join kind=leftouter (
    Products 
    | where  ProductCategoryName == 'TV and Video'
    | project ProductKey, ProductName 
    )
    on ProductKey
| project RegionCountryName, CustomerName, ProductName, TotalCost, FirstPurchaseDate, LastPurchaseDate, record_count
//| where record_count>1 // multiple purchases
| order by CustomerName asc, ProductName asc

These kind of queries need adequate validation and for this it might be needed to restructure the queries. 

// validating the multiple records (defailed)
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| lookup Products on ProductKey
| lookup Customers on CustomerKey 
| where  FirstName == 'Alexandra' and LastName == 'Sanders'
| project CustomerName = strcat(FirstName, ' ', LastName), ProductName, TotalCost, DateKey, ProductKey, CustomerKey 

// validating the multiple records against the fact table (detailed)
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| where CustomerKey == 14912

Mixing RIGHT and  LEFT joins in this way increases the complexity of the queries and sometimes comes with a burden for validating the logic. In SQL one could prefer to start with the Customer table, add the summary data and the other dimensions. In this way one can do a total count individually starting with the Customer table and adding each join which reviewing the record count for each change. 

In special scenario instead of a RIGHT JOIN one could use a FULL JOIN and add the Customers without any orders via a UNION. In some scenarios this approach can offer even a better performance. For this approach, one needs to get the Customers without Orders via an anti-join, more exactly a   rightanti:

// customers without orders
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost)
    , FirstPurchaseDate = min(DateKey)
, LastPurchaseDate = max(DateKey) by CustomerKey, ProductKey
| join kind=rightanti (
    Customers
    | project CustomerKey, RegionCountryName, CustomerName = strcat(FirstName, ' ', LastName)
    )
    on CustomerKey
| project RegionCountryName, CustomerName, ProductName = '', TotalCost = 0
//| summarize count()
| order by CustomerName asc, ProductName asc

And now, joining the Customers with orders with the ones without orders gives an overview of all the customers:

// total by product via lookup with table alias
NewSales
| where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
| where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
| summarize record_count = count()
    , TotalCost = sum(TotalCost) by CustomerKey //, ProductKey 
//| lookup Products on ProductKey 
| lookup Customers on CustomerKey
| project RegionCountryName
    , CustomerName = strcat(FirstName, ' ', LastName)
    //, ProductName
    , TotalCost
//| summarize count()
| union withsource=SourceTable kind=outer (
    // customers without orders
    NewSales
    | where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
    | where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
    | summarize record_count = count()
        , TotalCost = sum(TotalCost)
        , FirstPurchaseDate = min(DateKey)
        , LastPurchaseDate = max(DateKey) by CustomerKey
        //, ProductKey
    | join kind=rightanti (
        Customers
        | project CustomerKey
            , RegionCountryName
            , CustomerName = strcat(FirstName, ' ', LastName)
        )
        on CustomerKey
    | project RegionCountryName
        , CustomerName
        //, ProductName = ''
        , TotalCost = 0
    //| summarize count()
)
//| summarize count()
| order by CustomerName asc
//, ProductName asc

And, of course, the number of records returned by the three queries must match. The information related to the Product were left out for this version, though it can be added as needed. Unfortunately, there are queries more complex than this, which makes the queries more difficult to read, understand and troubleshoot. Inline views could be useful to structure the logic as needed. 

let T_customers_with_orders = view () { 
    NewSales
    | where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
    | where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
    | summarize record_count = count()
        , TotalCost = sum(TotalCost) 
        by CustomerKey
         //, ProductKey 
         //, DateKey
    //| lookup Products on ProductKey 
    | lookup Customers on CustomerKey
    | project RegionCountryName
        , CustomerName = strcat(FirstName, ' ', LastName)
        //, ProductName
        //, ProductCategoryName
        , TotalCost
        //, DateKey
};
let T_customers_without_orders = view () { 
   // customers without orders
    NewSales
    | where SalesAmount <> 0 and ProductCategoryName == 'TV and Video'
    | where DateKey >=date(2023-02-01) and DateKey < datetime(2023-03-01)
    | summarize record_count = count()
        , TotalCost = sum(TotalCost)
        , FirstPurchaseDate = min(DateKey)
        , LastPurchaseDate = max(DateKey) by CustomerKey
        //, ProductKey
    | join kind=rightanti (
        Customers
        | project CustomerKey
            , RegionCountryName
            , CustomerName = strcat(FirstName, ' ', LastName)
        )
        on CustomerKey
    | project RegionCountryName
        , CustomerName
        //, ProductName = ''
        , TotalCost = 0
    //| summarize count()
};
T_customers_with_orders
| union withsource=SourceTable kind=outer T_customers_without_orders
| summarize count()

In this way the queries should be easier to troubleshoot and restructure the logic in more manageable pieces. 

It would be useful to save the definition of the view (aka stored view), however it's not possible to create views on the machine on which the tests are run:

"Principal 'aaduser=...' is not authorized to write database 'ContosoSales'."

Happy coding!

Previous Post <<||>> Next Post

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.