Showing posts with label DIKW. Show all posts
Showing posts with label DIKW. Show all posts

16 August 2024

🧭Business Intelligence: Perspectives (Part XIII: From Data to Storytelling I)

Business Intelligence Series
Business Intelligence Series

Data is an amalgam of signs, words, numbers and other visual or auditory elements used together to memorize, interpret, communicate and do whatever operation may seem appropriate with them. However, the data we use is usually part of one or multiple stories - how something came into being, what it represents, how is used in the various mental and non-mental processes - respectively, the facts, concepts, ideas, contexts places or other physical and nonphysical elements that are brought in connection with.

When we are the active creators of a story, we can in theory easily look at how the story came into being, the data used and its role in the bigger picture, respective the transformative elements considered or left out, etc. However, as soon we deal with a set of data, facts, or any other elements of a story we are not familiar with, we need to extrapolate the hypothetical elements that seem to be connected to the story. We need to make sense of these elements and consider all that seems meaningful, what we considered or left out shaping the story differently. 

As children and maybe even later, all of us dealt with stories in one way or another, we all got fascinated by metaphors' wisdom and felt the energy that kept us awake, focused and even transformed by the words coming from narrator's voice, probably without thinking too much at the whole picture, but letting the words do their magic. Growing up, the stories grew in complexity, probably became richer in meaning and contexts, as we were able to decipher the metaphors and other elements, as we included more knowledge about the world around, about stories and storytelling.

In the professional context, storytelling became associated with our profession - data, information, knowledge and wisdom being created, assimilated and exchanged in more complex processes. From, this perspective, data storytelling is about putting data into a (business) context to seed cultural ground, to promote decision making and better understanding by building a narrative around the data, problems, challenges, opportunities, and further organizational context.

Further on, from a BI's perspective, all these cognitive processes impact on how data, information and knowledge are created, (pre)processed, used and communicated in organizations especially when considering data visualizations and their constituent elements (e.g. data, text, labels, metaphors, visual cues), the narratives that seem compelling and resonate with the auditorium. 

There's no wonder that data storytelling has become something not to neglect in many business contexts. Storytelling has proved that words, images and metaphors can transmit ideas and knowledge, be transformative, make people think, or even act without much thinking. Stories have the power to seed memes, ideas, or more complex constructs into our minds, they can be used (for noble purposes) or misused. 

A story's author usually takes compelling images, metaphors, and further elements, manipulates them to the degree they become interesting to himself/herself, to the auditorium, to the degree they are transformative and become an element of the business vocabulary, respectively culture, without the need to reiterate them when needed to bring more complex concepts, ideas or metaphors into being.  

A story can be seen as a replication of the constituting elements, while storytelling is a set of functions that operate on them and change the initial structure and content into something that might look or not like the initial story. Through retelling and reprocessing in any form, the story changes independently of its initial form and content. Sometimes, the auditorium makes connections not recognized or intended by the storyteller. Other times, the use and manipulation of language makes the story change as seems fit. 

Previous Post <<||>>  Next Post

21 March 2021

𖣯Strategic Management: The Impact of New Technologies (Part II - The Technology-oriented Patient)

Strategic Management

Looking at the way data, information and knowledge flow through an organization, with a little imagination one can see the resemblance between an organization and the human body, in which the networks created by the respective flows spread through organization as nervous, circulatory or lymphatic braids do, each with its own role in the good functioning of the organization. Each technology adopted by an organization taps into these flows creating a structure that can be compared with the nerve plexus, as the various flows intersect in such points creating an agglomeration of nerves and braids.

The size of each plexus can be considered as proportional to the importance of the technology in respect to the overall structure. Strategic technologies like ERP, BI or planning systems, given their importance (gravity), resemble with the organs from the human body, with complex networks of braids in their vicinity. Maybe the metaphor is too far-off, though it allows stressing the importance of each technology in respect to its role and the good functioning of the organization. Moreover, each such structure functions as pressure points that can in extremis block any of the flows considered, a long-term block having important effects.

The human organism is a marvelous piece of work reflecting the grand design, however in time, especially when neglected or driven by external agents, diseases can clutch around any of the parts of the human body, with all the consequences deriving from this. On the other side, an organization is a hand-made structure found in continuous expansion as new technologies or resources are added. Even if the technologies are at peripheral side of the system, their good or bad functioning can have a ripple effect trough the various networks.

Replacing any of the above-mentioned strategic systems can be compared with the replacement of an organ in the human body, having a high degree of failure compared with other operations, being complex in nature, the organism needing long periods to recover, while in extreme situations the convalescence prolongs till the end. Fortunately, organizations seem to be more resilient to such operations, though that’s not necessarily a rule. Sometimes all it takes is just a small mistake for making the operation fail.

The general feeling is that ERP and BI implementations are taken too lightly by management, employees and implementers. During the replacement operation one must make sure not only that the organ fits and functions as expected, but also that the vital networks regained their vitality and function as expected, and the latter is a process that spans over the years to come. One needs to check the important (health) signs regularly and take the appropriate countermeasures. There must be an entity having the role of the doctor, who/which has the skills to address adequately the issues.

Moreover, when the physical structure of an organization is affected, a series of micro-operations might be needed to address the deformities. Unfortunately, these areas are seldom seen in time, and can require a sustained effort for fixing, while a total reconstruction might apply. One works also with an amorphous and ever-changing structure that require many attempts until a remedy is found, if a remedy is possible after all.

Even if such operations are pretty well documented, often what organizations lack are the skilled resources needed during and post-implementation, resources that must know as well the patient, and ideally its historical and further health preconditions. Each patient is different and quite often needs its own treatment/medication. With such changes, the organization lands itself on a discovery journey in which the appropriate path can easily deviate from the well-trodden paths.

Previous Post <<||>> Next Post

22 February 2021

𖣯Strategic Management: The Impact of New Technologies (Part I: A Nail Keeps the Shoe)

Strategic Management

Probably one of the most misunderstood aspects for businesses is the implications the adoption of a new technology have in terms of effort, resources, infrastructure and changes, these considered before, during and post-implementation. Unfortunately, getting a new BI tool or ERP system is not like buying a new car, even if customers’ desires might revolve around such expectations. After all, the customer has been using a BI tool or ERP system for ages, the employees should be able to do the same job as before, right?

In theory adopting a new system is supposed to bring organizations a competitive advantage or other advantages - allow them reduce costs, improve their agility and decision-making, etc. However, the advantages brought by new technologies remain only as potentials unless their capabilities aren’t harnessed adequately. Keeping the car metaphor, besides looking good in the car, having a better mileage or having x years of service, buying a highly technologically-advanced car more likely will bring little benefit for the customer unless he needs, is able to use, and uses the additional features.

Both types of systems mentioned above can be quite expensive when considering the benefits associated with them. Therefore, looking at the features and the further requirements is critical for better understanding the fit. In the end one doesn’t need to buy a luxurious or sport car when one just needs to move from point A to B on small distances. In some occasions a bike or a rental car might do as well. Moreover, besides the acquisition costs, the additional features might involve considerable investments as long the warranty is broken and something needs to be fixed. In extremis, after a few years it might be even cheaper to 'replace' the whole car. Unfortunately, one can’t change systems yet, as if they were cars.

Implementing a new BI tool can take a few weeks if it doesn’t involve architecture changes within the BI infrastructure. Otherwise replacing a BI infrastructure can take from months to one year until having a stable environment. Similarly, an ERP solution can take from six months to years to implement and typically this has impact also on the BI infrastructure. Moreover, the implementation is only the top of the iceberg as further optimizations and changes are needed. It can take even more time until seeing the benefits for the investment.

A new technology can easily have the impact of dominoes within the organization. This effect is best reflected in sayings of the type: 'the wise tell us that a nail keeps a shoe, a shoe a horse, a horse a man, a man a castle, that can fight' and which reflect the impact tools technologies have within organizations when regarded within the broader context. Buying a big car, might involve extending the garage or eventually buying a new house with a bigger garage, or of replacing other devices just for the sake of using them with the new car. Even if not always perceptible, such dependencies are there, and even if the further investments might be acceptable and make sense, the implications can be a bigger shoe that one can wear. Then, the reversed saying can hold: 'for want of a nail, the shoe was lost; for want of a shoe the horse was lost; and for want of a horse the rider was lost'.

For IT technologies the impact is multidimensional as the change of a technology has impact on the IT infrastructure, on the processes associated with them, on the resources required and their skillset, respectively on the various types of flows (data, information, knowledge, materials, money).

Previous Post <<||>> Next Post

14 October 2020

𖣯🧮Strategic Management: Simplicity VI (ERP Implementations' Story II)


Besides the witty sayings and theories advanced in defining what simplicity is about, life shows that there’s a considerable gap between theory and praxis. In the attempt at a definition, one is forced to pull more concepts like harmony, robustness, variety, balance, economy, or proportion, which can be grouped under organic unity or similar concepts. However, intuitionally one can advance the idea that from a cybernetic perspective simplicity is achieved when the information flows are not disrupted and don’t meet unnecessary resistance. By information here are considered the various data aggregations – data, information, knowledge, and eventually wisdom (aka DIKW pyramid) – though it can be extended to encompass materials, cash and vital energy.

One can go further and say that an organization is healthy when the various flows mentioned above run smoothly through the organization nourishing it. The comparison with the human body can go further and say that a blockage in the flow can cause minor headaches or states that can take a period of convalescence to recover from them. Moreover, the sustained effort applied by an organization can result in fatigue or more complex ailments or even diseases if the state is prolonged. 

For example, big projects like ERP implementations tend to suck the vital energy of an organization to the degree that it will take months to recover from the effort, while the changes in the other types of flow can lead to disruptions, especially when the change is not properly managed. Even if ERP implementations provide standard solutions for the value-added processes, they represent vendors’ perspective into the respective processes, which don’t necessarily fit an organization’s needs. One is forced then to make compromises either by keeping close to the standard or by expanding the standard processes to close the gap. Either way processual changes are implied, which affect the information flow, especially for the steps where further coordination is needed, respectively the data flow in respect to implementation or integration with the further systems. A new integration as well as a missing integration have the potential of disrupting the data and information flows.

The processual changes can imply changes in the material flow as the handling of the materials can change, however the most important impact is caused maybe by the processual bottlenecks, which can cause serious disruptions (e.g. late deliveries, production is stopped), and upon case also in the cash-flow (e.g. penalties for late deliveries, higher inventory costs). The two flows can be impacted by the data and information flows independently of the processual changes (e.g. when they have poor quality, when not available, respectively when don’t reach the consumer in timely manner). 

With a new ERP solution, the organization needs to integrate the new data sources into the existing BI infrastructure, or when not possible, to design and implement a new one by taking advantage of the technological advancements. Failing to exploit this potential will impact the other flows, however the major disruptions appear when the needed knowledge about business processes is not available in-house, in explicit and/or implicit form, before, during and after the implementation. 

Independently on how they are organized – in center of excellence or ad-hoc form – is needed a group of people who can manage the various flows and ideally, they should have the appropriate level of empowerment. Typically, the responsibility resides with key users, IT and one or two people from the management. Without a form of ‘organization’ to manage the flows, the organization will reside only on individual effort, which seldom helps reaching the potential. Independently of the number of resources involved, simplicity is achieved when the activities flow naturally. 

Previous Post <<||>> Next Post

Written: Sep-2020, Last Reviewed: Mar-2024

29 September 2020

𖣯🧮Strategic Management: Simplicity V (ERP Implementations' Story I)

Strategic Management

Probably ERP Implementations are one of the most complex type of projects one deals with in the IT world, however their complexity seldom resides in technologies themselves, but in the effort that needs to be made by organizations before, during and post-implementations. Through their transformative nature ERP implementations have the potential of changing the whole organization if their potential is exploited accordingly, which is unfortunately not always the case. Therefore, the challenges don’t resume only to managing a project or implementing a technology, but also in managing change, and that usually happens or needs to happen at several levels. 

Typically, the change is considered mainly at IT infrastructure and processual level, because at these levels most of the visible changes happen – that’s what steals the show. For the whole project duration is about replacing one or more legacy systems, making sure that the new infrastructure works as expected. The more an organization deviates from the standard the more effort is needed, and this effort can exhaust an organization’s resources to the degree that will need some time to recover after that, financially, but maybe more important from a vital point of view.

Even if the technological and processual layers are important, as they form the foundation on which an organization builds upon, besides the financial and material flow there are also the data, informational and knowledge flows, which seems to be neglected. Quite often that’s where the transformational potential resides. If an organization is not able to change positively these flows, on the long term the implementation will deal with problems people wished to be addressed much earlier, when the effort and effect would have met the lowest resistance, respectively the highest impact. 

An ERP implementation involves the migration of data between source(s) and target(s), the data requirements, including the one of appropriate quality, being regarded in respect to the target system(s). As within the data migration steps the data are extracted from the various sources, enriched, and prepared for import into the target system(s), there is the potential of bringing data quality to a level which would help the organization further. It’s probably simpler to imagine the process of taking the data from one place, cleaning and enriching the data to bring it to the needed form, and then putting the data into the new system. It’s a unique chance of improving data quality without touching the source or target system(s) while getting a considerable value.

Unfortunately, many organizations’ efforts to improve the quality of their data stop after the implementation. If there’s no focus and there are no structures in place to continue the effort, sooner or later data’s quality will decrease despite the earlier made efforts. Investing for example in a long-term data quality improvement or even a data management initiative might prove to be an exploratory and iterative process in which mistakes are maybe made, the direction might need to be changed, though, as long learning is involved, in this often resides the power of changing for the better.

When one talks about information there are two aspects to it: how an organization arrives from data to actionable information that reach timely the people who need it, respectively how information is further aggregated, recombined, shared, and harnessed into knowledge. These are the first three layers of knowledge (aka DIKW) pyramid, and an organization’s real success story is in how can manage these flows together, while increasing the value they provide for the organization. It’s an effort that must start with the implementation itself, or even earlier, and continue after the implementation, as an organization seems fit.

Previous Post <<||>> Next Post

Written: Sep-2020, Last Reviewed: Mar-2024

27 September 2020

𖣯Strategic Management: Strategy Design (Part IV: Designing for Simplicity)


More than two centuries ago, in his course on the importance of Style in Literature, George Lewes wisely remarked that 'the first obligation of Simplicity is that of using the simplest means to secure the fullest effect' [1]. This is probably the most important aspect the adopters of the KISS mantra seem to ignore – solutions need to be simple while covering all or most important aspects to assure the maximum benefit. The challenge for many resides in defining what the maximum benefit is about. This state of art is typically poorly understood, especially when people don’t understand what’s possible, respectively of what’s necessary to make things work smoothly. 

To make the simplicity principle work, one must envision the desired state of a product or solution and trace back what’s needed to achieve that vision. One can aim for the maximum or for the minimum possible, respectively for anything in between. That’s at least true in theory, in praxis there are constraints that limit the range of achievement, constraints ranging from the availability of resources, their maturity or the available time, respectively to the limits for growth - the learning capacity of individuals and organization as a whole. 

On the other side following the 80/20 principle, one could achieve in theory 80% of a working solution with 20% of the effort needed in achieving the full 100%. This principle comes with a trick too because one needs to focus on the important components or aspects of the solution for this to work. Otherwise, one is forced to do exploratory work in which the learning is gradually assimilated into the solution. This implies continuous feedback, respectively changing the targets as one progresses in multiple iterations. The approach is typically common to ERP implementations, BI and Data Management initiatives, or similar transformative projects which attempt changing an organization’s data, information, or knowledge flows - the backbones organizations are built upon.     

These two principles can be used together to shape an organization. While simplicity sets a target or compass for quality, the 80/20 principle provides the means of splitting the roadmap and effort into manageable targets while allowing to identify and prioritize the critical components, and they seldom resume only to technology. While technologies provide a potential for transformation, in the end is an organization’s setup that has the transformative role. 

For transformational synergies to happen, each person involved in the process must have a minimum of necessary skillset, knowledge and awareness of what’s required and how a solution can be harnessed. This minimum can be initially addressed through training and self-learning, however without certain mechanisms in place, the magic will not happen by itself. Change needs to be managed from within as part of an organization’s culture, by the people close to the flow, and when necessary, also from the outside, by the ones who can provide guiding direction. Ideally, a strategic approach is needed the vision, mission, goals, objectives, and roadmap are sketched, where intermediary targets are adequately mapped and pursued, and the progress is adequately tracked.

Thus, besides the technological components is needed to consider the required organizational components to support and manage change. These components form a structure which needs to adhere by design to the same principle of simplicity. According to Lewes, the 'simplicity of structure means organic unity' [1], which can imply harmony, robustness, variety, balance, economy or proportion. Without these qualities the structure of the resulting edifice can break under its own weight. Moreover, paraphrasing Eric Hoffer, simplicity marks the end of a continuous process of designing, building, and refining, while complexity marks a primitive stage.

Previous Post <<||>> Next Post

Written: Sep-2020, Last Reviewed: Mar-2024

References:
[1] George H Lewes (1865) "The Principles of Success in Literature"

Considered quotes:
"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)
"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect. But although the mind instinctively rejects all needless complexity, we shall greatly err if we fail to recognise the fact, that what the mind recoils from is not the complexity, but the needlessness." (George H Lewes, "The Principles of Success in Literature", 1865)
"In products of the human mind, simplicity marks the end of a process of refining, while complexity marks a primitive stage." (Eric Hoffer, 1954)

16 December 2013

🎓Knowledge Management: Data, Information, Knowledge, Wisdom (Just the Quotes)

 "Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it." (Samuel Johnson, 1775)

"It is almost as difficult to make a man unlearn his errors as his knowledge. Mal-information is more hopeless than non-information; for error is always more busy than ignorance. Ignorance is a blank sheet, on which we may write; but error is a scribbled one, on which we must first erase. Ignorance is contented to stand still with her back to the truth; but error is more presumptuous, and proceeds in the same direction. Ignorance has no light, but error follows a false one. The consequence is, that error, when she retraces her footsteps, has further to go, before she can arrive at the truth, than ignorance." (Charles C Colton, “Lacon”, 1820)

"In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data." (James C Maxwell, [Letter to Lewis Campbell] 1851) 

"[The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.' These data comprise both the convention regarding the symbols and the language used, and the knowledge available at the moment when the message started." (Dennis Gabor, "Optical transmission" in Information Theory : Papers Read at a Symposium on Information Theory, 1952)

"Knowledge is not something which exists and grows in the abstract. It is a function of human organisms and of social organization. Knowledge, that is to say, is always what somebody knows: the most perfect transcript of knowledge in writing is not knowledge if nobody knows it. Knowledge however grows by the receipt of meaningful information - that is, by the intake of messages by a knower which are capable of reorganising his knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"The idea of knowledge as an improbable structure is still a good place to start. Knowledge, however, has a dimension which goes beyond that of mere information or improbability. This is a dimension of significance which is very hard to reduce to quantitative form. Two knowledge structures might be equally improbable but one might be much more significant than the other." (Kenneth E Boulding, "Beyond Economics: Essays on Society", 1968)

"In perception itself, two distinct processes can be discerned. One is the gathering of the primary, sensory data or simple sensing of such things as light, moisture or pressure, and the other is the structuring of such data into information." (Edward Ihnatowicz, "The Relevance of Manipulation to the Process of Perception", 1977) 

"Data, seeming facts, apparent asso­ciations-these are not certain knowledge of something. They may be puzzles that can one day be explained; they may be trivia that need not be explained at all. (Kenneth Waltz, "Theory of International Politics", 1979)

"Knowledge is the appropriate collection of information, such that it's intent is to be useful. Knowledge is a deterministic process. When someone 'memorizes' information (as less-aspiring test-bound students often do), then they have amassed knowledge. This knowledge has useful meaning to them, but it does not provide for, in and of itself, an integration such as would infer further knowledge." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"Information is data that has been given meaning by way of relational connection. This 'meaning' can be useful, but does not have to be. In computer parlance, a relational database makes information from the data stored within it." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"There is no coherent knowledge, i.e. no uniform comprehensive account of the world and the events in it. There is no comprehensive truth that goes beyond an enumeration of details, but there are many pieces of information, obtained in different ways from different sources and collected for the benefit of the curious. The best way of presenting such knowledge is the list - and the oldest scientific works were indeed lists of facts, parts, coincidences, problems in several specialized domains." (Paul K Feyerabend, "Farewell to Reason", 1987) 

"Probabilities are summaries of knowledge that is left behind when information is transferred to a higher level of abstraction." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Network of Plausible, Inference", 1988)

"Information engineering has been defined with the reference to automated techniques as follows: An interlocking set of automated techniques in which enterprise models, data models and process models are built up in a comprehensive knowledge-base and are used to create and maintain data-processing systems." (James Martin, "Information Engineering, 1989)

"Knowledge is theory. We should be thankful if action of management is based on theory. Knowledge has temporal spread. Information is not knowledge. The world is drowning in information but is slow in acquisition of knowledge. There is no substitute for knowledge." (William E Deming, "The New Economics for Industry, Government, Education", 1993)

"Knowledge, truth, and information flow in networks and swarm systems. I have always been interested in the texture of scientific knowledge because it appears to be lumpy and uneven. Much of what we collectively know derives from a few small areas, yet between them lie vast deserts of ignorance. I can interpret that observation now as the effect of positive feedback and attractors. A little bit of knowledge illuminates much around it, and that new illumination feeds on itself, so one corner explodes. The reverse also holds true: ignorance breeds ignorance. Areas where nothing is known, everyone avoids, so nothing is discovered. The result is an uneven landscape of empty know-nothing interrupted by hills of self-organized knowledge." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995) 

"Now that knowledge is taking the place of capital as the driving force in organizations worldwide, it is all too easy to confuse data with knowledge and information technology with information." (Peter Drucker, "Managing in a Time of Great Change", 1995)

"Data is discrimination between physical states of things (black, white, etc.) that may convey or not convey information to an agent. Whether it does so or not depends on the agent's prior stock of knowledge." (Max Boisot, "Knowledge Assets", 1998)

"The unit of coding is the most basic segment, or element, of the raw data or information that can be assessed in a meaningful way regarding the phenomenon." (Richard Boyatzis, "Transforming qualitative information", 1998)

"While hard data may inform the intellect, it is largely soft data that generates wisdom." (Henry Mintzberg, "Strategy Safari: A Guided Tour Through The Wilds of Strategic Management", 1998)

"Information is just bits of data. Knowledge is putting them together. Wisdom is transcending them." (Ram Dass, "One-Liners: A Mini-Manual for a Spiritual Life (ed. Harmony", 2007)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon."(Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

"We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard's Walk: How Randomness Rules Our Lives", 2009) 

"We reach wisdom when we achieve a deep understanding of acquired knowledge, when we not only 'get it', but when new information blends with prior experience so completely that it makes us better at knowing what to do in other situations, even if they are only loosely related to the information from which our original knowledge came. Just as not all the information we absorb leads to knowledge, not all of the knowledge we acquire leads to wisdom." (Alberto Cairo, "The Functional Art", 2011)

"Any knowledge incapable of being revised with advances in data and human thinking does not deserve the name of knowledge." (Jerry Coyne, "Faith Versus Fact", 2015)

"The term data, unlike the related terms facts and evidence, does not connote truth. Data is descriptive, but data can be erroneous. We tend to distinguish data from information. Data is a primitive or atomic state (as in ‘raw data’). It becomes information only when it is presented in context, in a way that informs. This progression from data to information is not the only direction in which the relationship flows, however; information can also be broken down into pieces, stripped of context, and stored as data. This is the case with most of the data that’s stored in computer systems. Data that’s collected and stored directly by machines, such as sensors, becomes information only when it’s reconnected to its context."  (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Real wisdom is not the knowledge of everything, but the knowledge of which things in life are necessary, which are less necessary, and which are completely unnecessary to know." (Lev N Tolstoy)

"The Information Age offers much to mankind, and I would like to think that we will rise to the challenges it presents. But it is vital to remember that information - in the sense of raw data - is not knowledge, that knowledge is not wisdom, and that wisdom is not foresight. But information is the first essential step to all of these." (Arthur C Clark)

06 April 2012

🧭Business Intelligence: Enterprise Reporting (Part X: Between Potential, Reality, Quality and Stories)

Business Intelligence
Business Intelligence Series

Have you ever felt that you are investing quite a lot of time, effort, money and other resources into your BI infrastructure, and in the end you don’t meet your expectations? As it seems you’re not the only one. The “Does your business intelligence tell you the whole story” paper released in 2009 by KPMG provides some interesting numbers to support that:
1. “More than 50% of business intelligence projects fail to deliver the expected benefit” (BI projects failure)
2. “Two thirds of executives feel that the quality of and timely access to data is poor and inconsistent” (reports and data quality)
3. “Seven out of ten executives do not get the right information to make business decisions.” (BI value)
4. “Fewer than 10% of organizations have successfully used business intelligence to enhance their organizational and technological infrastructures”  (BI alignment)
5. “those with effective business intelligence outperform the market by more than 5% in terms of return on equity” (competitive advantage)

The numbers reflect to some degree also my expectations, though they seem more pessimistic than I expected. That’s not a surprise, considering that such studies can be strongly biased, especially because in them are reflected expectations, presumptions and personal views over the state of art within an organization.

KPMG builds on the above numbers and several other aspects that revolve around the use of governance and alignment in order to increase the value provided by BI to the business, though I feel that they are hardly scratching the surface. Governance and alignment look great into studies and academic work, though they alone can’t bring success, no matter how much their importance and usage is accentuated. Sometimes I feel that people hide behind big words without even grasping the facts. The importance of governance and alignment can’t be neglected, though the argumentation provided by KPMG isn’t flawless. There are statements I can agree with, and many which are circumstantial. Anyway, let’s look a little deeper at the above numbers.

I suppose there is no surprise concerning the huge rate of BI projects’ failure. The value is somewhat close to the rate of software projects’ failure. Why would make a BI project an exception from a typical software project, considering that they are facing almost the same environments and challenges?  In fact, given the role played by BI in decision making, I would say that BI projects are more sensitive to the various factors than a typical software project.  

It doesn’t make sense to retake the motives for which software projects fail, but some particular aspects need to be mentioned. KPMG insists on the poor quality of data, on the relevance and volume of reports and metrics used, the lack of reflecting organization’s objectives, the inflexibility of data models, lack of standardization, all of them reflecting in a degree or other on the success of a BI project. There is much more to it!

KPMG refers to a holistic approach concentrated on the change of focus from technology to the actual needs, a change of process and funding.  A reflection of the holistic approach is also the view of the BI infrastructure from the point of view of the entire IT infrastructure, of the organization, network of partners and of the end-products – mainly models and reports. Many of the problems BI initiatives are confronted with refer to the quality of data and its many dimensions (duplicates, conformity, consistency, integrity, accuracy, availability, timeliness, etc.) , problems which could be in theory solved in the source systems, mainly through design. Other problems, like dealing with complex infrastructures based on more or less compatible IS or BI tools, might involve virtualization, consolidation or harmonization of such solutions, plus the addition of other tools.

Looking at the whole organization, other problems appear: the use of reports and models without understanding the whole luggage of meaning hiding behind them, the different views within the same data and models, the difference of language, problems, requirements and objectives, the departmental and organizational politics, the lack of communication, the lack of trust in the existing models and reports, and so on. What all these points have in common are people! The people are the maybe the most important factor in the adoption and effective usage of BI solutions. It starts with them – identifying their needs, and it ends with them – as end users. Making them aware of all contextual requirements, actually making them knowledge workers and not considering them just simple machines could give a boost to your BI strategy.

Partners doesn’t encompass just software vendors, service providers or consultants, but also the internal organizational structures – teams, departments, sites or any other similar structure. Many problems in BI can be tracked down to partners and the ways a partnership is understood, on how resources are managed, how different goals and strategies are harmonized, on how people collaborate and coordinate. Maybe the most problematic is the partnership between IT and the other departments on one side, and between IT and external partners on the other side. As long IT is not seen as a partner, as long IT is skip from the important decisions or isn’t acting as a mediator between its internal and external partners, there are few chances of succeeding. There are so many aspects and lot of material written on this topic, there are models and methodologies supposed to make things work, but often between theory and practice there is a long distance.

How many of the people you met were blaming the poor quality of the data without actually doing something to improve anything? If the quality of your data in one of your major problems then why aren’t you doing something to improve that?  Taking the ownership over your data is a major step on the way to better data quality, though a data management strategy is needed. This involve the design of a framework that facilitates data quality and data consumption, the design and use of policies, practices and procedures to properly manage the full data lifecycle. Also this can be considered as part of your BI infrastructure, and given the huge volume, the complexity and diversity of data, is nowadays a must for an organization.

The “right information” is an evasive construct. In order to get the right information you must be capable to define what you want, to design your infrastructure with that in mind and to learn how to harness your data. You don’t have to look only at your data and information but also at the whole DIKW pyramid. The bottom line is that you don’t have to build only a BI infrastructure but a knowledge management infrastructure, and methodologies like ITIL can help you achieve that, though they are not sufficient. Sooner or later you’ll arrive to blame the whole DIKW pyramid - the difficulty of extracting information from data, knowledge from information, and the ultimate translation into wisdom. Actually that’s also what the third and fourth of the above statements are screaming out loud – it’s not so easy to get information from the silos of data, same as it’s not easy to align the transformation process with organizations’ strategy.

Also timeliness has a relative meaning. It’s true that nowadays’ business dynamics requires faster access to data, though it requires also to be proactive, many organizations lacking this level of maturity. In order to be proactive it’s necessary to understand your business’ dynamics thoroughly, that being routed primarily in your data, in the tools you are using and the skill set your employees acquired in order to move between the DIKW layers. I would say that the understanding of DIKW is essential in harnessing your BI infrastructure.

KPMG considers that the 5% increase in return on equity associated with the effective usage of BI is a positive sign, not necessarily. The increase can be associated with hazard or other factors as well, even if it’s unlikely probable to be so. The increase it’s quite small when considered with the huge amount of resources spent on BI infrastructure. I believe that BI can do much more for organizations when harnessed adequately. It’s just a belief that needs to be backed up by numbers, hopefully that will happen someday, soon.

Previous Post <<||>> Next Post

30 December 2011

📉Graphical Representation: Understanding (Just the Quotes)

"Charts and graphs are a method of organizing information for a unique purpose. The purpose may be to inform, to persuade, to obtain a clear understanding of certain facts, or to focus information and attention on a particular problem. The information contained in charts and graphs must, obviously, be relevant to the purpose. For decision-making purposes. information must be focused clearly on the issue or issues requiring attention. The need is not simply for 'information', but for structured information, clearly presented and narrowed to fit a distinctive decision-making context. An advantage of having a 'formula' or 'model' appropriate to a given situation is that the formula indicates what kind of information is needed to obtain a solution or answer to a specific problem." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"If two or more data paths ate to appear on the graph. it is essential that these lines be labeled clearly, or at least a reference should be provided for the reader to make the necessary identifications. While clarity seems to be a most obvious goal, graphs with inadequate or confusing labeling do appear in publications, The user should not find identification of data paths troublesome or subject to misunderstanding. The designer normally should place no more than three data paths on the graph to prevent confusion - particularly if the data paths intersect at one or more points on the Cartesian plane." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"Learning to make graphs involves two things: (l) the techniques of plotting statistics, which might be called the artist's job; and (2) understanding the statistics. When you know how to work out graphs, all kinds of statistics will probably become more interesting to you." (Dyno Lowenstein, "Graphs", 1976)

"Understanding is accomplished through: (a) the use of relative size of the shapes used in the graphic; (b) the positioning of the graphic-line forms; (c) shading; (d) the use of scales of measurement; and (e) the use of words to label the forms in the graphic. In addition. in order for a person to attach meaning to a graphic it must also be simple, clear, and appropriate." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)

"Graphs can present internal accounting data effectively. Because one of the main functions of the accountant is to communicate accounting information to users. accountants should use graphs, at least to the extent that they clarify the presentation of accounting data. present the data fairly, and enhance management's ability to make a more informed decision. It has been argued that the human brain can absorb and understand images more easily than words and numbers, and, therefore, graphs may be better communicative devices than written reports or tabular statements." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Understandability implies that the graph will mean something to the audience. If the presentation has little meaning to the audience, it has little value. Understandability is the difference between data and information. Data are facts. Information is facts that mean something and make a difference to whoever receives them. Graphic presentation enhances understanding in a number of ways. Many people find that the visual comparison and contrast of information permit relationships to be grasped more easily. Relationships that had been obscure become clear and provide new insights." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"The effective communication of information in visual form, whether it be text, tables, graphs, charts or diagrams, requires an understanding of those factors which determine the 'legibility', 'readability' and 'comprehensibility', of the information being presented. By legibility we mean: can the data be clearly seen and easily read? By readability we mean: is the information set out in a logical way so that its structure is clear and it can be easily scanned? By comprehensibility we mean: does the data make sense to the audience for whom it is intended? Is the presentation appropriate for their previous knowledge, their present information needs and their information processing capacities?" (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"In part, graphing data needs to be iterative because we often do not know what to expect of the data; a graph can help discover unknown aspects of the data, and once the unknown is known, we frequently find ourselves formulating a new question about the data. Even when we understand the data and are graphing them for presentation, a graph will look different from what we had expected; our mind's eye frequently does not do a good job of predicting what our actual eyes will see." (William S Cleveland, "The Elements of Graphing Data", 1985)

"A chart is a bridge between you and your readers. It reveals your skills at comprehending the source information, at mastering presentation methods and at producing the design. Its success depends a great deal on your readers ' understanding of what you are saying, and how you are saying it. Consider how they will use your chart. Will they want to find out from it more information about the subject? Will they just want a quick impression of the data? Or will they use it as a source for their own analysis? Charts rely upon a visual language which both you and your readers must understand." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Charts and diagrams are the visual presentation of information. Since text and tables of information require close study to obtain the more general impressions of the subject, charts can be used to present readily understandable, easily digestible and, above all, memorable solutions." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Charts offer opportunities to distort information, to misinform. An old adage can be extended to read: 'There are lies, damned lies, statistics and charts'. Our visual impressions are often more memorable than our understanding of the facts they describe. [...] Never let your design enthusiasms overrule your judgement of the truth." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Confusion and clutter are failures of design, not attributes of information. And so the point is to find design strategies that reveal detail and complexity - rather than to fault the data for an excess of complication. Or, worse, to fault viewers for a lack of understanding. Among the most powerful devices for reducing noise and enriching the content of displays is the technique of layering and separation, visually stratifying various aspects of the data." (Edward R Tufte, "Envisioning Information", 1990)

"When analyzing data it is many times advantageous to generate a variety of graphs using the same data. This is true whether there is little or lots of data. Reasons for this are: (1) Frequently, all aspects of a group of data can not be displayed on a single graph. (2) Multiple graphs generally result in a more in-depth understanding of the information. (3) Different aspects of the same data often become apparent. (4) Some types of graphs cause certain features of the data to stand out better (5) Some people relate better to one type of graph than another." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Specific numbers, visual descriptions of objects or events and identifiable locations don’t always jump out, and a graphic may not always present itself right away. A good graphics reporter will often discover graphics potential in less obvious ways. Is the explanation in a story getting bogged down and hard to follow? If so, can the information be organized differently? Perhaps in a more graphic manner? Is there information that hat can be conveyed conceptually to put a thought or idea into a more visual perspective? Visual metaphors (or 'data metaphors' in the case of mathematical or quantifiable information) often make it easier for people to digest information." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"The purpose of an evidence presentation is to assist thinking. Thus presentations should be constructed so as to assist with the fundamental intellectual tasks in reasoning about evidence: describing the data, making multivariate comparisons, understanding causality, integrating a diversity of evidence, and documenting the analysis. Thus the Grand Principle of analytical design: 'The principles of analytical design are derived from the principles of analytical thinking.' Cognitive tasks are turned into principles of evidence presentation and design." (Edward R Tufte, "Beautiful Evidence", 2006)

"A viewer’s eye must be guided to 'read' the elements in a logical order. The design of an exploratory graphic needs to allow for the additional component of discovery - guiding the viewer to first understand the overall concept and then engage her to further explore the supporting information." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)

"Context (information that lends to better understanding the who, what, when, where, and why of your data) can make the data clearer for readers and point them in the right direction. At the least, it can remind you what a graph is about when you come back to it a few months later. […] Context helps readers relate to and understand the data in a visualization better. It provides a sense of scale and strengthens the connection between abstract geometry and colors to the real world." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"A good chart can tell a story about the data, helping you understand relationships among data so you can make better decisions. The wrong chart can make a royal mess out of even the best data set." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"A scatterplot reveals the strength and shape of the relationship between a pair of variables. A scatterplot represents the two variables by axes drawn at right angles to each other, showing the observations as a cloud of points, each point located according to its values on the two variables. Various lines can be added to the plot to help guide our search for understanding." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"One of the main problems with the visual approach to statistical data analysis is that it is too easy to generate too many plots: We can easily become totally overwhelmed by the shear number and variety of graphics that we can generate. In a sense, we have been too successful in our goal of making it easy for the user: Many, many plots can be generated, so many that it becomes impossible to understand our data." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"As a first principle, any visualization should convey its information quickly and easily, and with minimal scope for misunderstanding. Unnecessary visual clutter makes more work for the reader’s brain to do, slows down the understanding (at which point they may give up) and may even allow some incorrect interpretations to creep in." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Well-designed data graphics provide readers with deeper and more nuanced perspectives, while promoting the use of quantitative information in understanding the world and making decisions." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Communicating data through functionally aesthetic charts is not only about perception and precision but also understanding." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Communication requires the ability to expand or contract a message based on norms within a given culture or language. Expansion provides more detail, sometimes adding in information that is culturally relevant or needed for the person to understand. Contraction preserves the same intent but discards information that isn't needed by that person. Some concepts in certain situations require greater detail than others." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Semantic use of color supports the understanding of what the visualization is conveying. When color is used for a specific paradigm, those using the visualization can follow that paradigm. One paradigm might be using a specific color to highlight selections on an otherwise monochrome visualization. In others, color may be categorical but match associations with the time of day [...]. Color can also help direct attention to differences in the data." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Understanding language goes hand in hand with the ability to integrate complex contextual information into an effective visualization and being able to converse with the data interactively, a term we call analytical conversation. It also helps us think about ways to create artifacts that support and manage how we converse with machines as we see and understand data."(Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Understanding the context and the domain of the data is important to help disambiguate concepts. While reasonable defaults can be used to create a visualization, there should be no dead ends. Provide affordances for a user to understand, repair, and refine." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Good design serves a more important function than simply pleasing you: It helps you access ideas. It improves your comprehension and makes the ideas more persuasive. Good design makes lesser charts good and good charts transcendent." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"We see first what stands out. Our eyes go right to change and difference - peaks, valleys, intersections, dominant colors, outliers. Many successful charts - often the ones that please us the most and are shared and talked about - exploit this inclination by showing a single salient point so clearly that we feel we understand the chart’s meaning without even trying." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.