Showing posts with label big data. Show all posts
Showing posts with label big data. Show all posts

20 March 2021

🧭Business Intelligence: New Technologies, Old Challenges (Part II - ETL vs. ELT)

 

Business Intelligence

Data lakes and similar cloud-based repositories drove the requirement of loading the raw data before performing any transformations on the data. At least that’s the approach the new wave of ELT (Extract, Load, Transform) technologies use to handle analytical and data integration workloads, which is probably recommendable for the mentioned cloud-based contexts. However, ELT technologies are especially relevant when is needed to handle data with high velocity, variance, validity or different value of truth (aka big data). This because they allow processing the workloads over architectures that can be scaled with workloads’ demands.

This is probably the most important aspect, even if there can be further advantages, like using built-in connectors to a wide range of sources or implementing complex data flow controls. The ETL (Extract, Transform, Load) tools have the same capabilities, maybe reduced to certain data sources, though their newer versions seem to bridge the gap.

One of the most stressed advantages of ELT is the possibility of having all the (business) data in the repository, though these are not technological advantages. The same can be obtained via ETL tools, even if this might involve upon case a bigger effort, effort depending on the functionality existing in each tool. It’s true that ETL solutions have a narrower scope by loading a subset of the available data, or that transformations are made before loading the data, though this depends on the scope considered while building the data warehouse or data mart, respectively the design of ETL packages, and both are a matter of choice, choices that can be traced back to business requirements or technical best practices.

Some of the advantages seen are context-dependent – the context in which the technologies are put, respectively the problems are solved. It is often imputed to ETL solutions that the available data are already prepared (aggregated, converted) and new requirements will drive additional effort. On the other side, in ELT-based solutions all the data are made available and eventually further transformed, but also here the level of transformations made depends on specific requirements. Independently of the approach used, the data are still available if needed, respectively involve certain effort for further processing.

Building usable and reliable data models is dependent on good design, and in the design process reside the most important challenges. In theory, some think that in ETL scenarios the design is done beforehand though that’s not necessarily true. One can pull the raw data from the source and build the data models in the target repositories.

Data conversion and cleaning is needed under both approaches. In some scenarios is ideal to do this upfront, minimizing the effect these processes have on data’s usage, while in other scenarios it’s helpful to address them later in the process, with the risk that each project will address them differently. This can become an issue and should be ideally addressed by design (e.g. by building an intermediate layer) or at least organizationally (e.g. enforcing best practices).

Advancing that ELT is better just because the data are true (being in raw form) can be taken only as a marketing slogan. The degree of truth data has depends on the way data reflects business’ processes and the way data are maintained, while their quality is judged entirely on their intended use. Even if raw data allow more flexibility in handling the various requests, the challenges involved in processing can be neglected only under the consequences that follow from this.

Looking at the analytics and data integration cloud-based technologies, they seem to allow both approaches, thus building optimal solutions relying on professionals’ wisdom of making appropriate choices.

Previous Post <<||>>Next Post

30 October 2020

Data Science: Data Strategy (Part I: Big Data vs. Business Strategies)

Data Science

A strategy, independently on whether applied to organizations, chess, and other situations, allows identifying the moves having the most promising results from a range of possible moves that can change as one progresses into the game. Typically, the moves compete for same or similar resources, each move having at the respective time a potential value expressed in quantitative and/or qualitative terms, while the values are dependent on the information available about one’s and partners’ positions into the game. Therefore, a strategy is dependent on the decision-making processes in place, the information available about own business, respective the concurrence, as well about the game.

Big data is not about a technology but an umbrella term for multiple technologies that support in handling data with high volume, veracity, velocity or variety. The technologies attempt helping organizations in harnessing what is known as Big data (data having the before mentioned characteristics), for example by allowing answering to business questions, gaining insight into the business or market, improving decision-making. Through this Big data helps delivering value to businesses, at least in theory.

Big-data technologies can harness all data of an organization though this doesn’t imply that all data can provide value, especially when considered in respect to the investments made. Data bring value when they have the potential of uncovering hidden trends or (special) patterns of behavior, when they can be associated in new meaningful ways. Data that don’t reflect such characteristics are less susceptible of bringing value for an organization no matter how much one tries to process the respective data. However, looking at the data through multiple techniques can help organization get a better understanding of the data, though here is more about the processes of attempting understanding the data than the potential associated directly with the data.

Through active effort in understanding the data one becomes aware of the impact the quality of data have on business decisions, on how the business and processes are reflected in its data, how data can be used to control processes and focus on what matters. These are aspects that can be corroborated with the use of simple BI capabilities and don’t necessarily require more complex capabilities or tools. Therefore allowing employees the time to analyze and play with the data, can in theory have a considerable impact on how data are harnessed within an organization.

If an organization’s decision-making processes is dependent on actual data and insight (e.g. stock market) then the organization is more likely to profit from it. In opposition, organizations whose decision-making processes hand handle hours, days or months of latency in their data, then more likely the technologies will bring little value. Probably can be found similar examples for veracity, variety or similar characteristics consider under Big data.

The Big data technologies can make a difference especially when the extreme aspects of their characteristics can be harnessed. One talks about potential use which is different than the actual use. The use of technologies doesn’t equate with results, as knowledge about the tools and the business is mandatory to harness the respective tools. For example, insight doesn’t necessarily imply improved decision-making because it relies on people’s understanding about the business, about the numbers and models used.

That’s maybe one of the reasons why organization fail in deriving value from Big data. It’s great that companies invest in their Big data, Analytics/BI infrastructures, though without working actively in integrating the new insights/knowledge and upgrading people’s skillset, the effects will be under expectations. Investing in employees’ skillset is maybe one of the important decisions an organization can make as part of its strategy.

Note:
Written as answer to a Medium post on Big data and business strategies. 

31 December 2018

🔭Data Science: Big Data (Just the Quotes)

"If we gather more and more data and establish more and more associations, however, we will not finally find that we know something. We will simply end up having more and more data and larger sets of correlations." (Kenneth N Waltz, "Theory of International Politics Source: Theory of International Politics", 1979)

“There are those who try to generalize, synthesize, and build models, and there are those who believe nothing and constantly call for more data. The tension between these two groups is a healthy one; science develops mainly because of the model builders, yet they need the second group to keep them honest.” (Andrew Miall, “Principles of Sedimentary Basin Analysis”, 1984)

"Big data can change the way social science is performed, but will not replace statistical common sense." (Thomas Landsall-Welfare, "Nowcasting the mood of the nation", Significance 9(4), 2012)

"Big Data is data that exceeds the processing capacity of conventional database systems. The data is too big, moves too fast, or doesn’t fit the strictures of your database architectures. To gain value from this data, you must choose an alternative way to process it." (Edd Wilder-James, "What is big data?", 2012) [source]

"The secret to getting the most from Big Data isn’t found in huge server farms or massive parallel computing or in-memory algorithms. Instead, it’s in the almighty pencil." (Matt Ariker, "The One Tool You Need To Make Big Data Work: The Pencil", 2012)

"Big data is the most disruptive force this industry has seen since the introduction of the relational database." (Jeffrey Needham, "Disruptive Possibilities: How Big Data Changes Everything", 2013)

"No subjective metric can escape strategic gaming [...] The possibility of mischief is bottomless. Fighting ratings is fruitless, as they satisfy a very human need. If one scheme is beaten down, another will take its place and wear its flaws. Big Data just deepens the danger. The more complex the rating formulas, the more numerous the opportunities there are to dress up the numbers. The larger the data sets, the harder it is to audit them." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"There is convincing evidence that data-driven decision-making and big data technologies substantially improve business performance. Data science supports data-driven decision-making - and sometimes conducts such decision-making automatically - and depends upon technologies for 'big data' storage and engineering, but its principles are separate." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"Our needs going forward will be best served by how we make use of not just this data but all data. We live in an era of Big Data. The world has seen an explosion of information in the past decades, so much so that people and institutions now struggle to keep pace. In fact, one of the reasons for the attachment to the simplicity of our indicators may be an inverse reaction to the sheer and bewildering volume of information most of us are bombarded by on a daily basis. […] The lesson for a world of Big Data is that in an environment with excessive information, people may gravitate toward answers that simplify reality rather than embrace the sheer complexity of it." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"The other buzzword that epitomizes a bias toward substitution is 'big data'. Today’s companies have an insatiable appetite for data, mistakenly believing that more data always creates more value. But big data is usually dumb data. Computers can find patterns that elude humans, but they don’t know how to compare patterns from different sources or how to interpret complex behaviors. Actionable insights can only come from a human analyst (or the kind of generalized artificial intelligence that exists only in science fiction)." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"We have let ourselves become enchanted by big data only because we exoticize technology. We’re impressed with small feats accomplished by computers alone, but we ignore big achievements from complementarity because the human contribution makes them less uncanny. Watson, Deep Blue, and ever-better machine learning algorithms are cool. But the most valuable companies in the future won’t ask what problems can be solved with computers alone. Instead, they’ll ask: how can computers help humans solve hard problems?" (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"As business leaders we need to understand that lack of data is not the issue. Most businesses have more than enough data to use constructively; we just don't know how to use it. The reality is that most businesses are already data rich, but insight poor." (Bernard Marr, Big Data: Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, 2015)

"Big data is based on the feedback economy where the Internet of Things places sensors on more and more equipment. More and more data is being generated as medical records are digitized, more stores have loyalty cards to track consumer purchases, and people are wearing health-tracking devices. Generally, big data is more about looking at behavior, rather than monitoring transactions, which is the domain of traditional relational databases. As the cost of storage is dropping, companies track more and more data to look for patterns and build predictive models." (Neil Dunlop, "Big Data", 2015)

"Big Data often seems like a meaningless buzz phrase to older database professionals who have been experiencing exponential growth in database volumes since time immemorial. There has never been a moment in the history of database management systems when the increasing volume of data has not been remarkable." (Guy Harrison, "Next Generation Databases: NoSQL, NewSQL, and Big Data", 2015)

"Dimensionality reduction is essential for coping with big data - like the data coming in through your senses every second. A picture may be worth a thousand words, but it’s also a million times more costly to process and remember. [...] A common complaint about big data is that the more data you have, the easier it is to find spurious patterns in it. This may be true if the data is just a huge set of disconnected entities, but if they’re interrelated, the picture changes." (Pedro Domingos, "The Master Algorithm", 2015)

"Science’s predictions are more trustworthy, but they are limited to what we can systematically observe and tractably model. Big data and machine learning greatly expand that scope. Some everyday things can be predicted by the unaided mind, from catching a ball to carrying on a conversation. Some things, try as we might, are just unpredictable. For the vast middle ground between the two, there’s machine learning." (Pedro Domingos, "The Master Algorithm", 2015)

"The human side of analytics is the biggest challenge to implementing big data." (Paul Gibbons, "The Science of Successful Organizational Change", 2015)

"To make progress, every field of science needs to have data commensurate with the complexity of the phenomena it studies. [...] With big data and machine learning, you can understand much more complex phenomena than before. In most fields, scientists have traditionally used only very limited kinds of models, like linear regression, where the curve you fit to the data is always a straight line. Unfortunately, most phenomena in the world are nonlinear. [...] Machine learning opens up a vast new world of nonlinear models." (Pedro Domingos, "The Master Algorithm", 2015)

"Underfitting is when a model doesn’t take into account enough information to accurately model real life. For example, if we observed only two points on an exponential curve, we would probably assert that there is a linear relationship there. But there may not be a pattern, because there are only two points to reference. [...] It seems that the best way to mitigate underfitting a model is to give it more information, but this actually can be a problem as well. More data can mean more noise and more problems. Using too much data and too complex of a model will yield something that works for that particular data set and nothing else." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"We are moving slowly into an era where Big Data is the starting point, not the end." (Pearl Zhu, "Digital Master: Debunk the Myths of Enterprise Digital Maturity", 2015)

"A popular misconception holds that the era of Big Data means the end of a need for sampling. In fact, the proliferation of data of varying quality and relevance reinforces the need for sampling as a tool to work efficiently with a variety of data, and minimize bias. Even in a Big Data project, predictive models are typically developed and piloted with samples." (Peter C Bruce & Andrew G Bruce, "Statistics for Data Scientists: 50 Essential Concepts", 2016)

"Big data is, in a nutshell, large amounts of data that can be gathered up and analyzed to determine whether any patterns emerge and to make better decisions." (Daniel Covington, Analytics: Data Science, Data Analysis and Predictive Analytics for Business, 2016)

"Big Data processes codify the past. They do not invent the future. Doing that requires moral imagination, and that’s something only humans can provide. We have to explicitly embed better values into our algorithms, creating Big Data models that follow our ethical lead. Sometimes that will mean putting fairness ahead of profit." (Cathy O'Neil, "Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy", 2016)

"While Big Data, when managed wisely, can provide important insights, many of them will be disruptive. After all, it aims to find patterns that are invisible to human eyes. The challenge for data scientists is to understand the ecosystems they are wading into and to present not just the problems but also their possible solutions." (Cathy O'Neil, "Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy", 2016)

"Big Data allows us to meaningfully zoom in on small segments of a dataset to gain new insights on who we are." (Seth Stephens-Davidowitz, "Everybody Lies: What the Internet Can Tell Us About Who We Really Are", 2017)

"Effects without an understanding of the causes behind them, on the other hand, are just bunches of data points floating in the ether, offering nothing useful by themselves. Big Data is information, equivalent to the patterns of light that fall onto the eye. Big Data is like the history of stimuli that our eyes have responded to. And as we discussed earlier, stimuli are themselves meaningless because they could mean anything. The same is true for Big Data, unless something transformative is brought to all those data sets… understanding." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

"The term [Big Data] simply refers to sets of data so immense that they require new methods of mathematical analysis, and numerous servers. Big Data - and, more accurately, the capacity to collect it - has changed the way companies conduct business and governments look at problems, since the belief wildly trumpeted in the media is that this vast repository of information will yield deep insights that were previously out of reach." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Just as they did thirty years ago, machine learning programs (including those with deep neural networks) operate almost entirely in an associational mode. They are driven by a stream of observations to which they attempt to fit a function, in much the same way that a statistician tries to fit a line to a collection of points. Deep neural networks have added many more layers to the complexity of the fitted function, but raw data still drives the fitting process. They continue to improve in accuracy as more data are fitted, but they do not benefit from the 'super-evolutionary speedup'."  (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"One of the biggest myths is the belief that data science is an autonomous process that we can let loose on our data to find the answers to our problems. In reality, data science requires skilled human oversight throughout the different stages of the process. [...] The second big myth of data science is that every data science project needs big data and needs to use deep learning. In general, having more data helps, but having the right data is the more important requirement. [...] A third data science myth is that modern data science software is easy to use, and so data science is easy to do. [...] The last myth about data science [...] is the belief that data science pays for itself quickly. The truth of this belief depends on the context of the organization. Adopting data science can require significant investment in terms of developing data infrastructure and hiring staff with data science expertise. Furthermore, data science will not give positive results on every project." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"With the growing availability of massive data sets and user-friendly analysis software, it might be thought that there is less need for training in statistical methods. This would be naïve in the extreme. Far from freeing us from the need for statistical skills, bigger data and the rise in the number and complexity of scientific studies makes it even more difficult to draw appropriate conclusions. More data means that we need to be even more aware of what the evidence is actually worth." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Making big data work is harder than it seems. Statisticians have spent the past two hundred years figuring out what traps lie in wait when we try to understand the world through data. The data are bigger, faster, and cheaper these days, but we must not pretend that the traps have all been made safe. They have not." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Many people have strong intuitions about whether they would rather have a vital decision about them made by algorithms or humans. Some people are touchingly impressed by the capabilities of the algorithms; others have far too much faith in human judgment. The truth is that sometimes the algorithms will do better than the humans, and sometimes they won’t. If we want to avoid the problems and unlock the promise of big data, we’re going to need to assess the performance of the algorithms on a case-by-case basis. All too often, this is much harder than it should be. […] So the problem is not the algorithms, or the big datasets. The problem is a lack of scrutiny, transparency, and debate." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"The problem is the hype, the notion that something magical will emerge if only we can accumulate data on a large enough scale. We just need to be reminded: Big data is not better; it’s just bigger. And it certainly doesn’t speak for itself." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"[...] the focus on Big Data AI seems to be an excuse to put forth a number of vague and hand-waving theories, where the actual details and the ultimate success of neuroscience is handed over to quasi- mythological claims about the powers of large datasets and inductive computation. Where humans fail to illuminate a complicated domain with testable theory, machine learning and big data supposedly can step in and render traditional concerns about finding robust theories. This seems to be the logic of Data Brain efforts today. (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

"We live on islands surrounded by seas of data. Some call it 'big data'. In these seas live various species of observable phenomena. Ideas, hypotheses, explanations, and graphics also roam in the seas of data and can clarify the waters or allow unsupported species to die. These creatures thrive on visual explanation and scientific proof. Over time new varieties of graphical species arise, prompted by new problems and inner visions of the fishers in the seas of data." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"Visualizations can remove the background noise from enormous sets of data so that only the most important points stand out to the intended audience. This is particularly important in the era of big data. The more data there is, the more chance for noise and outliers to interfere with the core concepts of the data set." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Visualisation is fundamentally limited by the number of pixels you can pump to a screen. If you have big data, you have way more data than pixels, so you have to summarise your data. Statistics gives you lots of really good tools for this." (Hadley Wickham)

17 December 2018

🔭Data Science: Insight (Just the Quotes)

"[…] it is from long experience chiefly that we are to expect the most certain rules of practice, yet it is withal to be remembered, that observations, and to put us upon the most probable means of improving any art, is to get the best insight we can into the nature and properties of those things which we are desirous to cultivate and improve." (Stephen Hales, "Vegetable Staticks", 1727)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"The attempt to characterize exactly models of an empirical theory almost inevitably yields a more precise and clearer understanding of the exact character of a theory. The emptiness and shallowness of many classical theories in the social sciences is well brought out by the attempt to formulate in any exact fashion what constitutes a model of the theory. The kind of theory which mainly consists of insightful remarks and heuristic slogans will not be amenable to this treatment. The effort to make it exact will at the same time reveal the weakness of the theory." (Patrick Suppes," A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences", Synthese  Vol. 12 (2/3), 1960)

"Model-making, the imaginative and logical steps which precede the experiment, may be judged the most valuable part of scientific method because skill and insight in these matters are rare. Without them we do not know what experiment to do. But it is the experiment which provides the raw material for scientific theory. Scientific theory cannot be built directly from the conclusions of conceptual models." (Herbert G Andrewartha," Introduction to the Study of Animal Population", 1961)

"The purpose of computing is insight, not numbers […] sometimes […] the purpose of computing numbers is not yet in sight." (Richard Hamming, "Numerical Methods for Scientists and Engineers", 1962)

"The mediation of theory and praxis can only be clarified if to begin with we distinguish three functions, which are measured in terms of different criteria: the formation and extension of critical theorems, which can stand up to scientific discourse; the organization of processes of enlightenment, in which such theorems are applied and can be tested in a unique manner by the initiation of processes of reflection carried on within certain groups toward which these processes have been directed; and the selection of appropriate strategies, the solution of tactical questions, and the conduct of the political struggle. On the first level, the aim is true statements, on the second, authentic insights, and on the third, prudent decisions." (Jürgen Habermas, "Introduction to Theory and Practice", 1963)

"[...] it is rather more difficult to recapture directness and simplicity than to advance in the direction of ever more sophistication and complexity. Any third-rate engineer or researcher can increase complexity; but it takes a certain flair of real insight to make things simple again." (Ernst F Schumacher, "Small Is Beautiful", 1973)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"There is a tendency to mistake data for wisdom, just as there has always been a tendency to confuse logic with values, intelligence with insight. Unobstructed access to facts can produce unlimited good only if it is matched by the desire and ability to find out what they mean and where they lead." (Norman Cousins, "Human Options : An Autobiographical Notebook", 1981)

"The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts based on small but profound insights; the insights themselves come from concrete special cases." (Paul Halmos, "Selecta: Expository writing", 1983)

"All the efforts of the researcher to find other models, conceptions, different mathematical forms, better linguistic modes of expression, to do justice to newly discovered layers of being mean self-transformation. The researcher in his place is the human being in self-transformation to more profound insight into what is given." (John Dessauer, Universitas: A Quarterly German Review of the Arts and Sciences Vol. 26 (4), 1984)

"[…] new insights fail to get put into practice because they conflict with deeply held internal images of how the world works [...] images that limit us to familiar ways of thinking and acting. That is why the discipline of managing mental models - surfacing, testing, and improving our internal pictures of how the world works - promises to be a major breakthrough for learning organizations." (Peter Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"Management is not founded on observation and experiment, but on a drive towards a set of outcomes. These aims are not altogether explicit; at one extreme they may amount to no more than an intention to preserve the status quo, at the other extreme they may embody an obsessional demand for power, profit or prestige. But the scientist's quest for insight, for understanding, for wanting to know what makes the system tick, rarely figures in the manager's motivation. Secondly, and therefore, management is not, even in intention, separable from its own intentions and desires: its policies express them. Thirdly, management is not normally aware of the conventional nature of its intellectual processes and control procedures. It is accustomed to confuse its conventions for recording information with truths-about-the-business, its subjective institutional languages for discussing the business with an objective language of fact and its models of reality with reality itself." (Stanford Beer, "Decision and Control", 1994)

"Ideas about organization are always based on implicit images or metaphors that persuade us to see, understand, and manage situations in a particular way. Metaphors create insight. But they also distort. They have strengths. But they also have limitations. In creating ways of seeing, they create ways of not seeing. There can be no single theory or metaphor that gives an all-purpose point of view, and there can be no simple 'correct theory' for structuring everything we do." (Gareth Morgan, "Imaginization", 1997)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world."  (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"The purpose of analysis is insight. The best analysis is the simplest analysis which provides the needed insight." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)

"Central tendency is the formal expression for the notion of where data is centered, best understood by most readers as 'average'. There is no one way of measuring where data are centered, and different measures provide different insights." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The other buzzword that epitomizes a bias toward substitution is 'big data'. Today’s companies have an insatiable appetite for data, mistakenly believing that more data always creates more value. But big data is usually dumb data. Computers can find patterns that elude humans, but they don’t know how to compare patterns from different sources or how to interpret complex behaviors. Actionable insights can only come from a human analyst (or the kind of generalized artificial intelligence that exists only in science fiction)." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"As business leaders we need to understand that lack of data is not the issue. Most businesses have more than enough data to use constructively; we just don't know how to use it. The reality is that most businesses are already data rich, but insight poor." (Bernard Marr, Big Data: Using SMART Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, 2015)

"While Big Data, when managed wisely, can provide important insights, many of them will be disruptive. After all, it aims to find patterns that are invisible to human eyes. The challenge for data scientists is to understand the ecosystems they are wading into and to present not just the problems but also their possible solutions." (Cathy O'Neil, "Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy", 2016)

"Big Data allows us to meaningfully zoom in on small segments of a dataset to gain new insights on who we are." (Seth Stephens-Davidowitz, "Everybody Lies: What the Internet Can Tell Us About Who We Really Are", 2017)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)

"Quantum Machine Learning is defined as the branch of science and technology that is concerned with the application of quantum mechanical phenomena such as superposition, entanglement and tunneling for designing software and hardware to provide machines the ability to learn insights and patterns from data and the environment, and the ability to adapt automatically to changing situations with high precision, accuracy and speed." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)

"The goal of data science is to improve decision making by basing decisions on insights extracted from large data sets. As a field of activity, data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting nonobvious and useful patterns from large data sets. It is closely related to the fields of data mining and machine learning, but it is broader in scope. (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"The patterns that we extract using data science are useful only if they give us insight into the problem that enables us to do something to help solve the problem." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"A random collection of interesting but disconnected facts will lack the unifying theme to become a data story - it may be informative, but it won’t be insightful." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"An essential underpinning of both the kaizen and lean methodologies is data. Without data, companies using these approaches simply wouldn’t know what to improve or whether their incremental changes were successful. Data provides the clarity and specificity that’s often needed to drive positive change. The importance of having baselines, benchmarks, and targets isn’t isolated to just business; it can transcend everything from personal development to social causes. The right insight can instill both the courage and confidence to forge a new direction - turning a leap of faith into an informed expedition." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"An insight is when you mix your creative and intellectual labor with a set of data points to create a point of view resulting in a useful assertion. You 'see into' an object of inquiry to reveal important characteristics about its nature." (Eben Hewitt, "Technology Strategy Patterns: Architecture as strategy" 2nd Ed., 2019)

"An essential underpinning of both the kaizen and lean methodologies is data. Without data, companies using these approaches simply wouldn’t know what to improve or whether their incremental changes were successful. Data provides the clarity and specificity that’s often needed to drive positive change. The importance of having baselines, benchmarks, and targets isn’t isolated to just business; it can transcend everything from personal development to social causes. The right insight can instill both the courage and confidence to forge a new direction - turning a leap of faith into an informed expedition." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Before you can even consider creating a data story, you must have a meaningful insight to share. One of the essential attributes of a data story is a central or main insight. Without a main point, your data story will lack purpose, direction, and cohesion. A central insight is the unifying theme (telos appeal) that ties your various findings together and guides your audience to a focal point or climax for your data story. However, when you have an increasing amount of data at your disposal, insights can be elusive. The noise from irrelevant and peripheral data can interfere with your ability to pinpoint the important signals hidden within its core." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling is transformative. Many people don’t realize that when they share insights, they’re not just imparting information to other people. The natural consequence of sharing an insight is change. Stop doing that, and do more of this. Focus less on them, and concentrate more on these people. Spend less there, and invest more here. A poignant insight will drive an enlightened audience to think or act differently. So, as a data storyteller, you’re not only guiding the audience through the data, you’re also acting as a change agent. Rather than just pointing out possible enhancements, you’re helping your audience fully understand the urgency of the changes and giving them the confidence to move forward." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Some problems are just too complicated for rational logical solutions. They admit of insights, not answers." (Jerome B Wiesner)

23 November 2018

🔭Data Science: Missing Data (Just the Quotes)

"Place little faith in an average or a graph or a trend when those important figures are missing."  (Darell Huff, "How to Lie with Statistics", 1954)

"Missing data values pose a particularly sticky problem for symbols. For instance, if the ray corresponding to a missing value is simply left off of a star symbol, the result will be almost indistinguishable from a minimum (i.e., an extreme) value. It may be better either (i) to impute a value, perhaps a median for that variable, or a fitted value from some regression on other variables, (ii) to indicate that the value is missing, possibly with a dashed line, or (iii) not to draw the symbol for a particular observation if any value is missing." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The progress of science requires more than new data; it needs novel frameworks and contexts. And where do these fundamentally new views of the world arise? They are not simply discovered by pure observation; they require new modes of thought. And where can we find them, if old modes do not even include the right metaphors? The nature of true genius must lie in the elusive capacity to construct these new modes from apparent darkness. The basic chanciness and unpredictability of science must also reside in the inherent difficulty of such a task." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 1985)

"We often think, naïvely, that missing data are the primary impediments to intellectual progress - just find the right facts and all problems will dissipate. But barriers are often deeper and more abstract in thought. We must have access to the right metaphor, not only to the requisite information. Revolutionary thinkers are not, primarily, gatherers of facts, but weavers of new intellectual structures." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 1985)

"[...] as the planning process proceeds to a specific financial or marketing state, it is usually discovered that a considerable body of 'numbers' is missing, but needed numbers for which there has been no regular system of collection and reporting; numbers that must be collected outside the firm in some cases. This serendipity usually pays off in a much better management information system in the form of reports which will be collected and reviewed routinely." (William H. Franklin Jr., Financial Strategies, 1987)

"We have found that some of the hardest errors to detect by traditional methods are unsuspected gaps in the data collection (we usually discovered them serendipitously in the course of graphical checking)." (Peter Huber, "Huge data sets", Compstat ’94: Proceedings, 1994)

"Unfortunately, just collecting the data in one place and making it easily available isn’t enough. When operational data from transactions is loaded into the data warehouse, it often contains missing or inaccurate data. How good or bad the data is a function of the amount of input checking done in the application that generates the transaction. Unfortunately, many deployed applications are less than stellar when it comes to validating the inputs. To overcome this problem, the operational data must go through a 'cleansing' process, which takes care of missing or out-of-range values. If this cleansing step is not done before the data is loaded into the data warehouse, it will have to be performed repeatedly whenever that data is used in a data mining operation." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"If you have only a small proportion of cases with missing data, you can simply throw out those cases for purposes of estimation; if you want to make predictions for cases with missing inputs, you don’t have the option of throwing those cases out." (Warren S Sarle, "Prediction with missing inputs", 1998)

"Every statistical analysis is an interpretation of the data, and missingness affects the interpretation. The challenge is that when the reasons for the missingness cannot be determined there is basically no way to make appropriate statistical adjustments. Sensitivity analyses are designed to model and explore a reasonable range of explanations in order to assess the robustness of the results." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"The best rule is: Don't have any missing data, Unfortunately, that is unrealistic. Therefore, plan for missing data and develop strategies to account for them. Do this before starting the study. The strategy should state explicitly how the type of missingness will be examined, how it will be handled, and how the sensitivity of the results to the missing data will be assessed." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Statistics depend on collecting information. If questions go unasked, or if they are asked in ways that limit responses, or if measures count some cases but exclude others, information goes ungathered, and missing numbers result. Nevertheless, choices regarding which data to collect and how to go about collecting the information are inevitable." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"A sin of omission – leaving something out – is a strong one and not always recognized; itʼs hard to ask for something you donʼt know is missing. When looking into the data, even before it is graphed and charted, there is potential for abuse. Simply not having all the data or the correct data before telling your story can cause problems and unhappy endings." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Having NUMBERSENSE means: (•) Not taking published data at face value; (•) Knowing which questions to ask; (•) Having a nose for doctored statistics. [...] NUMBERSENSE is that bit of skepticism, urge to probe, and desire to verify. It’s having the truffle hog’s nose to hunt the delicacies. Developing NUMBERSENSE takes training and patience. It is essential to know a few basic statistical concepts. Understanding the nature of means, medians, and percentile ranks is important. Breaking down ratios into components facilitates clear thinking. Ratios can also be interpreted as weighted averages, with those weights arranged by rules of inclusion and exclusion. Missing data must be carefully vetted, especially when they are substituted with statistical estimates. Blatant fraud, while difficult to detect, is often exposed by inconsistency." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Quality without science and research is absurd. You can't make inferences that something works when you have 60 percent missing data." (Peter Pronovost, "Safe Patients, Smart Hospitals", 2010)

"The only thing we know for sure about a missing data point is that it is not there, and there is nothing that the magic of statistics can do change that. The best that can be managed is to estimate the extent to which missing data have influenced the inferences we wish to draw." (Howard Wainer, "14 Conversations About Three Things", Journal of Educational and Behavioral Statistics Vol. 35(1, 2010)

"There are several key issues in the field of statistics that impact our analyses once data have been imported into a software program. These data issues are commonly referred to as the measurement scale of variables, restriction in the range of data, missing data values, outliers, linearity, and nonnormality." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"Missing data is the blind spot of statisticians. If they are not paying full attention, they lose track of these little details. Even when they notice, many unwittingly sway things our way. Most ranking systems ignore missing values." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Accuracy and coherence are related concepts pertaining to data quality. Accuracy refers to the comprehensiveness or extent of missing data, performance of error edits, and other quality assurance strategies. Coherence is the degree to which data - item value and meaning are consistent over time and are comparable to similar variables from other routinely used data sources." (Aileen Rothbard, "Quality Issues in the Use of Administrative Data Records", 2015)

"How good the data quality is can be looked at both subjectively and objectively. The subjective component is based on the experience and needs of the stakeholders and can differ by who is being asked to judge it. For example, the data managers may see the data quality as excellent, but consumers may disagree. One way to assess it is to construct a survey for stakeholders and ask them about their perception of the data via a questionnaire. The other component of data quality is objective. Measuring the percentage of missing data elements, the degree of consistency between records, how quickly data can be retrieved on request, and the percentage of incorrect matches on identifiers (same identifier, different social security number, gender, date of birth) are some examples." (Aileen Rothbard, "Quality Issues in the Use of Administrative Data Records", 2015)

"When we find data quality issues due to valid data during data exploration, we should note these issues in a data quality plan for potential handling later in the project. The most common issues in this regard are missing values and outliers, which are both examples of noise in the data." (John D. Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Unless we’re collecting data ourselves, there’s a limit to how much we can do to combat the problem of missing data. But we can and should remember to ask who or what might be missing from the data we’re being told about. Some missing numbers are obvious […]. Other omissions show up only when we take a close look at the claim in question." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"[Making reasoned macro calls] starts with having the best and longest-time-series data you can find. You may have to take some risks in terms of the quality of data sources, but it amazes me how people are often more willing to act based on little or no data than to use data that is a challenge to assemble." (Robert J Shiller)

07 February 2018

🔬Data Science: Hadoop (Definitions)

"An Apache-managed software framework derived from MapReduce and Bigtable. Hadoop allows applications based on MapReduce to run on large clusters of commodity hardware. Hadoop is designed to parallelize data processing across computing nodes to speed computations and hide latency. Two major components of Hadoop exist: a massively scalable distributed file system that can support petabytes of data and a massively scalable MapReduce engine that computes results in batch." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"An open-source software platform developed by Apache Software Foundation for data-intensive applications where the data are often widely distributed across different hardware systems and geographical locations." (Kenneth A Shaw, "Integrated Management of Processes and Information", 2013)

"Technology designed to house Big Data; a framework for managing data" (Daniel Linstedt & W H Inmon, "Data Architecture: A Primer for the Data Scientist", 2014)

"an Apache-managed software framework derived from MapReduce. Big Table Hadoop enables applications based on MapReduce to run on large clusters of commodity hardware. Hadoop is designed to parallelize data processing across computing nodes to speed up computations and hide latency. The two major components of Hadoop are a massively scalable distributed file system that can support petabytes of data and a massively scalable MapReduce engine that computes results in batch." (Judith S Hurwitz, "Cognitive Computing and Big Data Analytics", 2015)

"An open-source framework that is built to process and store huge amounts of data across a distributed file system." (Jason Williamson, "Getting a Big Data Job For Dummies", 2015)

"Open-source software framework for distributed storage and distributed processing of Big Data on clusters of commodity hardware." (Hamid R Arabnia et al, "Application of Big Data for National Security", 2015)

"A batch processing infrastructure that stores fi les and distributes work across a group of servers. The infrastructure is composed of HDFS and MapReduce components. Hadoop is an open source software platform designed to store and process quantities of data that are too large for just one particular device or server. Hadoop’s strength lies in its ability to scale across thousands of commodity servers that don’t share memory or disk space." (Benoy Antony et al, "Professional Hadoop®", 2016)

"Apache Hadoop is an open-source framework for processing large volume of data in a clustered environment. It uses simple MapReduce programming model for reliable, scalable and distributed computing. The storage and computation both are distributed in this framework." (Kaushik Pal, 2016)

"A framework that allow for the distributed processing for large datasets." (Neha Garg & Kamlesh Sharma, "Machine Learning in Text Analysis", 2020)

 "Hadoop is an open source implementation of the MapReduce paper. Initially, Hadoop required that the map, reduce, and any custom format readers be implemented and deployed to the cluster. Eventually, higher level abstractions were developed, like Apache Hive and Apache Pig." (Alex Thomas, "Natural Language Processing with Spark NLP", 2020)

"A batch processing infrastructure that stores files and distributes work across a group of servers." (Oracle)

"an open-source framework that is built to enable the process and storage of big data across a distributed file system." (Analytics Insight)

"Apache Hadoop is an open-source, Java-based software platform that manages data processing and storage for big data applications. Hadoop works by distributing large data sets and analytics jobs across nodes in a computing cluster, breaking them down into smaller workloads that can be run in parallel. Hadoop can process both structured and unstructured data, and scale up reliably from a single server to thousands of machines." (Databricks) [source]

"Hadoop is an open source software framework for storing and processing large volumes of distributed data. It provides a set of instructions that organizes and processes data on many servers rather than from a centralized management nexus." (Informatica) [source]

01 February 2018

🔬Data Science: MapReduce (Definitions)

"A data processing and aggregation paradigm consisting of a 'map' phase that selects data and a 'reduce' phase that transforms the data. In MongoDB, you can run arbitrary aggregations over data using map-reduce." (MongoDb, "Glossary", 2008)

"A divide-and-conquer strategy for processing large data sets in parallel. In the 'map' phase, the data sets are subdivided. The desired computation is performed on each subset. The 'reduce' phase combines the results of the subset calculations into a final result. MapReduce frameworks handle the details of managing the operations and the nodes they run on, including restarting operations that fail for some reason. The user of the framework only has to write the algorithms for mapping and reducing the data sets and computing with the subsets." (Dean Wampler & Alex Payne, "Programming Scala", 2009)

"A method by which computationally intensive problems can be processed on multiple computers in parallel. The method can be divided into a mapping step and a reducing step. In the mapping step, a master computer divides a problem into smaller problems that are distributed to other computers. In the reducing step, the master computer collects the output from the other computers. Although MapReduce is intended for Big Data resources, holding petabytes of data, most Big Data problems do not require MapReduce." (Jules H Berman, "Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information", 2013)

"An early Big Data (before this term became popular) programming solution originally developed by Google for parallel processing using very large data sets distributed across a number of computing and storage systems. A Hadoop implementation of MapReduce is now available." (Kenneth A Shaw, "Integrated Management of Processes and Information", 2013)

"Designed by Google as a way of efficiently executing a set of functions against a large amount of data in batch mode. The 'map' component distributes the programming problem or tasks across a large number of systems and handles the placement of the tasks in a way that balances the load and manages recovery from failures. After the distributed computation is completed, another function called 'reduce' aggregates all the elements back together to provide a result." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A programming model consisting of two logical steps - Map and Reduce - for processing massively parallelizable problems across extremely large datasets using a large cluster of commodity computers." (Haoliang Wang et al, "Accessing Big Data in the Cloud Using Mobile Devices", Handbook of Research on Cloud Infrastructures for Big Data Analytics, 2014)

"Algorithm that is used to split massive data sets among many commodity hardware pieces in an effort to reduce computing time." (Billie Anderson & J Michael Hardin, "Harnessing the Power of Big Data Analytics", Encyclopedia of Business Analytics and Optimization, 2014)

"MapReduce is a parallel programming model proposed by Google and is used to distribute computing on clusters of computers for processing large data sets." (Jyotsna T Wassan, "Emergence of NoSQL Platforms for Big Data Needs", Encyclopedia of Business Analytics and Optimization, 2014)

"A concept which is an abstraction of the primitives ‘map’ and ‘reduce’. Most of the computations are carried by applying a ‘map’ operation to each global record in order to generate key/value pairs and then apply the reduce operation in order to combine the derived data appropriately." (P S Shivalkar & B K Tripathy, "Rough Set Based Green Cloud Computing in Emerging Markets", Encyclopedia of Information Science and Technology 3rd Ed., 2015) 

"A programming model that uses a divide and conquer method to speed-up processing large datasets, with a special focus on semi-structured data." (Alfredo Cuzzocrea & Mohamed M Gaber, "Data Science and Distributed Intelligence", Encyclopedia of Information Science and Technology 3rd Ed., 2015) 

"MapReduce is a programming model for general-purpose parallelization of data-intensive processing. MapReduce divides the processing into two phases: a mapping phase, in which data is broken up into chunks that can be processed by separate threads - potentially running on separate machines; and a reduce phase, which combines the output from the mappers into the final result." (Guy Harrison, "Next Generation Databases: NoSQL, NewSQL, and Big Data", 2015)

"MapReduce is a technological framework for processing parallelize-able problems across huge data sets using a large number of computers (nodes). […] MapReduce consists of two major steps: 'Map' and 'Reduce'. They are similar to the original Fork and Join operations in distributed systems, but they can consider a large number of computers that can be constructed based on the Internet cloud. In the Map-step, the master computer (a node) first divides the input into smaller sub-problems and then distributes them to worker computers (worker nodes). A worker node may also be a sub-master node to distribute the sub-problem into even smaller problems that will form a multi-level structure of a task tree. The worker node can solve the sub-problem and report the results back to its upper level master node. In the Reduce-step, the master node will collect the results from the worker nodes and then combine the answers in an output (solution) of the original problem." (Li M Chen et al, "Mathematical Problems in Data Science: Theoretical and Practical Methods", 2015)

"A programming model which process massive amounts of unstructured data in parallel and distributed cluster of processors." (Fatma Mohamed et al, "Data Streams Processing Techniques Data Streams Processing Techniques", Handbook of Research on Machine Learning Innovations and Trends, 2017)

"A data processing framework of Hadoop which provides data intensive computation of large data sets by dividing tasks across several machines and finally combining the result." (Rupali Ahuja, "Hadoop Framework for Handling Big Data Needs", Handbook of Research on Big Data Storage and Visualization Techniques, 2018)

"A high-level programming model, which uses the “map” and “reduce” functions, for processing high volumes of data." (Carson K.-S. Leung, "Big Data Analysis and Mining", Encyclopedia of Information Science and Technology 4th Ed., 2018)

"Is a computational paradigm for processing massive datasets in parallel if the computation fits a three-step pattern: map, shard and reduce. The map process is a parallel one. Each process executes on a different part of data and produces (key, value) pairs. The shard process collects the generated pairs, sorts and partitions them. Each partition is assigned to a different reduce process which produces a single result." (Venkat Gudivada et al, "Database Systems for Big Data Storage and Retrieval", Handbook of Research on Big Data Storage and Visualization Techniques, 2018)

"Is a programming model or algorithm for the processing of data using a parallel programming implementation and was originally used for academic purposes associated with parallel programming techniques. (Soraya Sedkaoui, "Understanding Data Analytics Is Good but Knowing How to Use It Is Better!", Big Data Analytics for Entrepreneurial Success, 2019)

"MapReduce is a style of programming based on functional programming that was the basis of Hadoop." (Alex Thomas, "Natural Language Processing with Spark NLP", 2020)

"Is a specific programming model, which as such represents a new approach to solving the problem of processing large amounts of differently structured data. It consists of two functions - Map (sorting and filtering data) and Reduce (summarizing intermediate results), and it is executed in parallel and distributed." (Savo Stupar et al, "Importance of Applying Big Data Concept in Marketing Decision Making", Handbook of Research on Applied AI for International Business and Marketing Applications, 2021)

"A software framework for processing vast amounts of data." (Analytics Insight)

15 January 2018

🔬Data Science: Big Data (Definitions)

"Big Data: when the size and performance requirements for data management become significant design and decision factors for implementing a data management and analysis system. For some organizations, facing hundreds of gigabytes of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration." (Jimmy Guterman, 2009)

"A buzzword for the challenges of and approaches to working with data sets that are too big to manage with traditional tools, such as relational databases. So called NoSQL databases, clustered data processing tools like MapReduce, and other tools are used to gather, store, and analyze such data sets." (Dean Wampler, "Functional Programming for Java Developers", 2011)

"Big data: techniques and technologies that make handling data at extreme scale economical." (Brian Hopkins, "Big Data, Brewer, And A Couple Of Webinars", 2011) [source]

"Big Data is data whose scale, distribution, diversity, and/or timeliness require the use of new technical architectures and analytics to enable insights that unlock new sources of business value." (McKinsey & Co., "Big Data: The Next Frontier for Innovation, Competition, and Productivity", 2011)

"Data volumes that are exceptionally large, normally greater than 100 Terabyte and more commonly refer to the Petabyte and Exabyte range. Big data has begun to be used when discussing Data Warehousing and analytic solutions where the volume of data poses specific challenges that are unique to very large volumes of data including: data loading, modeling, cleansing, and analytics, and are often solved using massively parallel processing, or parallel processing and distributed data solutions." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"Big data is data that exceeds the processing capacity of conventional database systems. The data is too big, moves too fast, or doesn’t fit the strictures of your database architectures. To gain value from this data, you must choose an alternative way to process it." (Edd Wilder-James, "What is big data?", 2012) [source]

"A collection of data whose very size, rate of accumulation, or increased complexity makes it difficult to analyze and comprehend in a timely and accurate manner." (Kenneth A Shaw, "Integrated Management of Processes and Information", 2013)

"A colloquial term referring to exceedingly large datasets that are otherwise unwieldy to deal with in a reasonable amount of time in the absence of specialized tools. They are different from normal data in terms of volume, velocity, and variety and typically require unique approaches for capture, processing, analysis, search, and visualization." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"Big data is the term increasingly used to describe the process of applying serious computing power – the latest in machine learning and artificial intelligence – to seriously massive and often highly complex sets of information." (Microsoft, 2013) [source]

"Big data is what happened when the cost of storing information became less than the cost of making the decision to throw it away." (Tim O’Reilly, [email correspondence, 2013)

"The capability to manage a huge volume of disparate data, at the right speed and within the right time frame, to allow real-time analysis and reaction. Big data is typically broken down by three characteristics, including volume (how much data), velocity (how fast that data is processed), and variety (the various types of data)." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A colloquial term referring to datasets that are otherwise unwieldy to deal with in a reasonable amount of time in the absence of specialized tools. Common characteristics include large amounts of data (volume), different types of data (variety), and ever-increasing speed of generation (velocity). They typically require unique approaches for capture, processing, analysis, search, and visualization." (Evan Stubbs, "Big Data, Big Innovation", 2014)

"An extremely large database which generally defies standard methods of analysis." (Owen P. Hall Jr., "Teaching and Using Analytics in Management Education", 2014)

"Datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze." (Xiuli He et al, Supply Chain Analytics: Challenges and Opportunities, 2014)

"More data than can be processed by today's database systems, or acutely high volume, velocity, and variety of information assets that demand IG to manage and leverage for decision-making insights and cost management." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"The term that refers to data that has one or more of the following dimensions, known as the four Vs: Volume, Variety, Velocity, and Veracity." (Brenda L Dietrich et al, "Analytics Across the Enterprise", 2014)

"A collection of models, techniques and algorithms that aim at representing, managing, querying and mining large-scale amounts of data (mainly semi-structured data) in distributed environments (e.g., Clouds)." (Alfredo Cuzzocrea & Mohamed M Gaber, "Data Science and Distributed Intelligence", 2015)

"A process to deliver decision-making insights. The process uses people and technology to quickly analyze large amounts of data of different types (traditional table structured data and unstructured data, such as pictures, video, email, and Tweets) from a variety of sources to produce a stream of actionable knowledge." (James R Kalyvas & Michael R Overly, "Big Data: A Businessand Legal Guide", 2015)

"A relative term referring to data that is difficult to process with conventional technology due to extreme values in one or more of three attributes: volume (how much data must be processed), variety (the complexity of the data to be processed) and velocity (the speed at which data is produced or at which it arrives for processing). As data management technologies improve, the threshold for what is considered big data rises. For example, a terabyte of slow-moving simple data was once considered big data, but today that is easily managed. In the future, a yottabyte data set may be manipulated on desktop, but for now it would be considered big data as it requires extraordinary measures to process." (Judith S Hurwitz, "Cognitive Computing and Big Data Analytics", 2015)

"Big data is a discipline that deals with processing, storing, and analyzing heterogeneous (structured/semistructured/unstructured) large data sets that cannot be handled by traditional information management technologies that have been used to process structured data. Gartner defined big data based on the three Vs: volume, velocity, and variety." (Saumya Chaki, "Enterprise Information Management in Practice", 2015)

"Records that are so large (terabytes and exabytes) and diverse (from sensors to social media data) that they require new, powerful technologies for storage, management, analysis and visualization." (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"Term used to describe the exponential growth, variety, and availability of data, both structured and unstructured." (Hamid R Arabnia et al, "Application of Big Data for National Security", 2015)

"A broad term for large and complex data sets that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, and information privacy. The term often refers simply to the use of predictive analytics or other certain advanced methods to extract value from data, and seldom to a particular size of data set." (Suren Behari, "Data Science and Big Data Analytics in Financial Services: A Case Study", 2016)

"A combination of facts and artifacts drawn from a myriad of sources and stored without regard to rational or normalized disciplines or structures." (Gregory Lampshire, "The Data and Analytics Playbook", 2016)

"A term that describes a large dataset that grows in size over time. It refers to the size of dataset that exceeds the capturing, storage, management, and analysis of traditional databases. The term refers to the dataset that has large, more varied, and complex structure, accompanies by difficulties of data storage, analysis, and visualization. Big Data are characterized with their high-volume, -velocity and –variety information assets." (Kenneth C C Yang & Yowei Kang, "Real-Time Bidding Advertising: Challenges and Opportunities for Advertising Curriculum, Research, and Practice", 2016)

"Big data is a blanket term for any collection of data sets so large or complex that it becomes difficult to process them using traditional data management techniques such as, for example, the RDBMS (relational database management systems)." (Davy Cielen et al, "Introducing Data Science", 2016)

"For digital resources, inexpensive storage and high bandwidth have largely eliminated capacity as a constraint for organizing systems, with an exception for big data, which is defined as a collection of data that is too big to be managed by typical database software and hardware architectures." (Robert J Glushko, "The Discipline of Organizing: Professional Edition, 4th Ed", 2016)

"Large sets of data that are leveraged to make better business decisions. Retail data can be sales, product inventory, e-mail offers, customer information, competitor pricing, product descriptions, social media, and much more." (Brittany Bullard, "Style and Statistics", 2016)

"A term used to describe large sets of structured and unstructured data. Data sets are continually increasing in size and may grow too large for traditional storage and retrieval. Data may be captured and analyzed as it is created and then stored in files." (Daniel J Power & Ciara Heavin, "Decision Support, Analytics, and Business Intelligence" 3rd Ed., 2017)

"Datasets of structured and unstructured information that are so large and complex that they cannot be adequately processed and analyzed with traditional data tools and applications. |" (Jonathan Ferrar et al, "The Power of People", 2017)

"Big data are often defined in terms of the three Vs: the extreme volume of data, the variety of the data types, and the velocity at which the data must be processed." (John D Kelleher & Brendan Tierney, "Data science", 2018)

"Very large data volumes that are complex and varied, and often collected and must be analyzed in real time." (Daniel J. Power & Ciara Heavin, "Data-Based Decision Making and Digital Transformation", 2018)

"A generic term that designates the massive volume of data that is generated by the increasing use of digital tools and information systems. The term big data is used when the amount of data that an organization has to manage reaches a critical volume that requires new technological approaches in terms of storage, processing, and usage. Volume, velocity, and variety are usually the three criteria used to qualify a database as 'big data'." (Soraya Sedkaoui, "Big Data Analytics for Entrepreneurial Success", 2019)

"Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation." (Thomas Ochs & Ute A Riemann, "IT Strategy Follows Digitalization", 2019)

"The capability to manage a huge volume of disparate data, at the right speed and within the right time frame, to allow real time analysis and reaction." (K Hariharanath, "BIG Data: An Enabler in Developing Business Models in Cloud Computing Environments", 2019)

"A term used to refer to the massive datasets generated in the digital age. Both the volume and speed at which data are generated is far greater than in the past and requires powerful computing technologies." (Osman Kandara & Eugene Kennedy, "Educational Data Mining: A Guide for Educational Researchers", 2020)

"Refers to data sets that are so voluminous and complex that traditional data processing application software is inadequate to deal with them." (James O Odia & Osaheni T Akpata, "Role of Data Science and Data Analytics in Forensic Accounting and Fraud Detection", 2021)

"The evolving term that describes a large volume of structured, semi-structured and unstructured data that has the potential to be mined for information and used in machine learning projects and other advanced analytics applications." (Nenad Stefanovic, "Big Data Analytics in Supply Chain Management", 2021)

"The term 'big data' is related to gathering and storing extra-large volume of structured, semi-structured and unstructured data with high Velocity and Variability to be used in advanced analytics applications." (Ahmad M Kabil, Integrating Big Data Technology Into Organizational Decision Support Systems, 2021)

"A collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications." (Board International) 

"A collection of data so large that it cannot be stored, transmitted or processed by traditional means." (Open Data Handbook) 

"an accumulation of data that is too large and complex for processing by traditional database management tools" (Merriam-Webster)

"Extremely large data sets that may be analyzed to reveal patterns and trends and that are typically too complex to be dealt with using traditional processing techniques." (Solutions Review)

"is a term for very large and complex datasets that exceed the ability of traditional data processing applications to deal with them. Big data technologies include data virtualization, data integration tools, and search and knowledge discovery tools." (Accenture)

"The practices and technology that close the gap between the data available and the ability to turn that data into business insight." (Forrester)

"Big data is a term applied to data sets whose size or type is beyond the ability of traditional relational databases to capture, manage and process the data with low latency. Big data has one or more of the following characteristics: high volume, high velocity or high variety." (IBM) [source]

"Big data is a term that describes the large volume of data – both structured and unstructured – that inundates a business on a day-to-day basis. But it’s not the amount of data that’s important. It’s what organizations do with the data that matters. Big data can be analyzed for insights that lead to better decisions and strategic business moves." (SAS) [source]

"Big data is a combination of structured, semistructured and unstructured data collected by organizations that can be mined for information and used in machine learning projects, predictive modeling and other advanced analytics applications." (Techtarget)

"Big data is a term used for large data sets that include structured, semi-structured, and unstructured data." (Xplenty) [source]

"Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation." (Gartner)

"Big data is the catch-all term used to describe gathering, analyzing, and storing massive amounts of digital information to improve operations." (Talend) [source]

"Big data refers to the 21st-century phenomenon of exponential growth of business data, and the challenges that come with it, including holistic collection, storage, management, and analysis of all the data that a business owns or uses." (Informatica) [source]

14 December 2015

🪙Business Intelligence: Datasets (Just the Quotes)

"Of course statistical graphics, just like statistical calculations, are only as good as what goes into them. An ill-specified or preposterous model or a puny data set cannot be rescued by a graphic (or by calculation), no matter how clever or fancy. A silly theory means a silly graphic." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"No matter what the data, and no matter how the values are arranged and presented, you must always use some method of analysis to come up with an interpretation of the data.
While every data set contains noise, some data sets may contain signals. Therefore, before you can detect a signal within any given data set, you must first filter out the noise." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Since the average is a measure of location, it is common to use averages to compare two data sets. The set with the greater average is thought to ‘exceed’ the other set. While such comparisons may be helpful, they must be used with caution. After all, for any given data set, most of the values will not be equal to the average." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Enabling insight into large and complex datasets is a prevalent theme in current visualization research for which different approaches are pursued. Topology-based methods are built on the idea of abstracting characteristic structures such as the topological skeleton from the data and to construct the visualization accordingly." (Helwig Hauser et al [Eds.], "Topology-based Methods in Visualization", 2007)

"Most mainstream data-mining techniques ignore the fact that real-world datasets are combinations of underlying data, and build single models from them. If such datasets can first be separated into the components that underlie them, we might expect that the quality of the models will improve significantly. (David Skillicorn, "Understanding Complex Datasets: Data Mining with Matrix Decompositions", 2007)

"For a given dataset there is not a great deal of advice which can be given on content and context. hose who know their own data should know best for their specific purposes. It is advisable to think hard about what should be shown and to check with others if the graphic makes the desired impression. Design should be let to designers, though some basic guidelines should be followed: consistency is important (sets of graphics should be in similar style and use equivalent scaling); proximity is helpful (place graphics on the same page, or on the facing page, of any text that refers to them); and layout should be checked (graphics should be neither too small nor too large and be attractively positioned relative to the whole page or display)."(Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"Graphical displays are often constructed to place principal focus on the individual observations in a dataset, and this is particularly helpful in identifying both the typical positions of data points and unusual or influential cases. However, in many investigations, principal interest lies in identifying the nature of underlying trends and relationships between variables, and so it is often helpful to enhance graphical displays in ways which give deeper insight into these features. This can be very beneficial both for small datasets, where variation can obscure underlying patterns, and large datasets, where the volume of data is so large that effective representation inevitably involves suitable summaries." (Adrian W Bowman, "Smoothing Techniques for Visualisation" [in "Handbook of Data Visualization"], 2008)

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"There are two main reasons for using graphic displays of datasets: either to present or to explore data. Presenting data involves deciding what information you want to convey and drawing a display appropriate for the content and for the intended audience. [...] Exploring data is a much more individual matter, using graphics to find information and to generate ideas.Many displays may be drawn. They can be changed at will or discarded and new versions prepared, so generally no one plot is especially important, and they all have a short life span." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"To extract useful information from such large and structured data sets, a first step is to be able to visualize their structure, identifying interesting patterns, trends, and complex relationships between the items. The main idea of visual data exploration is to produce a representation of the data in such a way that the human eye can gain insight into their structure and patterns." (George Michailidis, "Data Visualization Through Their Graph Representations" [in "Handbook of Data Visualization"], 2008)

"[...] the form of a technological object must depend on the tasks it should help with. This is one of the most important principles to remember when dealing with infographics and visualizations: The form should be constrained by the functions of your presentation. There may be more than one form a data set can adopt so that readers can perform operations with it and extract meanings, but the data cannot adopt any form. Choosing visual shapes to encode information should not be based on aesthetics and personal tastes alone." (Alberto Cairo, "The Functional Art", 2011)

"If you look too hard at a set of data, you will find something - but it might not generalize beyond the data you’re looking at. This is referred to as overfitting a dataset. Data mining techniques can be very powerful, and the need to detect and avoid overfitting is one of the most important concepts to grasp when applying data mining to real problems. The concept of overfitting and its avoidance permeates data science processes, algorithms, and evaluation methods." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"No subjective metric can escape strategic gaming [...] The possibility of mischief is bottomless. Fighting ratings is fruitless, as they satisfy a very human need. If one scheme is beaten down, another will take its place and wear its flaws. Big Data just deepens the danger. The more complex the rating formulas, the more numerous the opportunities there are to dress up the numbers. The larger the data sets, the harder it is to audit them." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Big Data allows us to meaningfully zoom in on small segments of a dataset to gain new insights on who we are." (Seth Stephens-Davidowitz, "Everybody Lies: What the Internet Can Tell Us About Who We Really Are", 2017)

"Effects without an understanding of the causes behind them, on the other hand, are just bunches of data points floating in the ether, offering nothing useful by themselves. Big Data is information, equivalent to the patterns of light that fall onto the eye. Big Data is like the history of stimuli that our eyes have responded to. And as we discussed earlier, stimuli are themselves meaningless because they could mean anything. The same is true for Big Data, unless something transformative is brought to all those data sets… understanding." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

"One way to lie with statistics is to compare things - datasets, populations, types of products - that are different from one another, and pretend that they’re not. As the old idiom says, you can’t compare apples with oranges." (Daniel J Levitin, "Weaponized Lies", 2017)

"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Creating effective visualizations is hard. Not because a dataset requires an exotic and bespoke visual representation - for many problems, standard statistical charts will suffice. And not because creating a visualization requires coding expertise in an unfamiliar programming language [...]. Rather, creating effective visualizations is difficult because the problems that are best addressed by visualization are often complex and ill-formed. The task of figuring out what attributes of a dataset are important is often conflated with figuring out what type of visualization to use. Picking a chart type to represent specific attributes in a dataset is comparatively easy. Deciding on which data attributes will help answer a question, however, is a complex, poorly defined, and user-driven process that can require several rounds of visualization and exploration to resolve." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

"[…] creating effective visualizations is difficult because the problems that are best addressed by visualization are often complex and ill-formed. The task of figuring out what attributes of a dataset are important is often conflated with figuring out what type of visualization to use. Picking a chart type to represent specific attributes in a dataset is comparatively easy. Deciding on which data attributes will help answer a question, however, is a complex, poorly defined, and user-driven process that can require several rounds of visualization and exploration to resolve." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Every dataset has subtleties; it can be far too easy to slip down rabbit holes of complications. Being systematic about the operationalization can help focus our conversations with experts, only introducing complications when needed." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"The goal of data science is to improve decision making by basing decisions on insights extracted from large data sets. As a field of activity, data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting nonobvious and useful patterns from large data sets. It is closely related to the fields of data mining and machine learning, but it is broader in scope. (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Using data science, we can uncover the important patterns in a data set, and these patterns can reveal the important attributes in the domain. The reason why data science is used in so many domains is that it doesn’t matter what the problem domain is: if the right data are available and the problem can be clearly defined, then data science can help."  (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Each of us is sweating data, and those data are being mopped up and wrung out into oceans of information. Algorithms and large datasets are being used for everything from finding us love to deciding whether, if we are accused of a crime, we go to prison before the trial or are instead allowed to post bail. We all need to understand what these data are and how they can be exploited." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"It’d be nice to fondly imagine that high-quality statistics simply appear in a spreadsheet somewhere, divine providence from the numerical heavens. Yet any dataset begins with somebody deciding to collect the numbers. What numbers are and aren’t collected, what is and isn’t measured, and who is included or excluded are the result of all-too-human assumptions, preconceptions, and oversights." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Many people have strong intuitions about whether they would rather have a vital decision about them made by algorithms or humans. Some people are touchingly impressed by the capabilities of the algorithms; others have far too much faith in human judgment. The truth is that sometimes the algorithms will do better than the humans, and sometimes they won’t. If we want to avoid the problems and unlock the promise of big data, we’re going to need to assess the performance of the algorithms on a case-by-case basis. All too often, this is much harder than it should be. […] So the problem is not the algorithms, or the big datasets. The problem is a lack of scrutiny, transparency, and debate." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.