Showing posts with label modularity. Show all posts
Showing posts with label modularity. Show all posts

01 February 2021

📦Data Migrations (DM): Quality Assurance (Part III: Quality Acceptance Criteria III)

Data Migration
Data Migrations Series

Repeatability

Repeatability is the degree with which a DM can be repeated and obtain consistent results between repetitions. Even if a DM is supposed to be a one-time activity for a project, to guarantee a certain level of quality it’s important to consider several iterations in which the data requirements are refined and made sure that the data can be imported as needed into the target system(s). Considered as a process, as long the data and the rules haven’t changed, the results should be the same or have the expected level of deviation from expectations. 

This requirement is important especially for the data migrated during UAT and Go-Live, time during which the input data and rules need to remain frozen (even if small changes in the data can still occur). In fact, that’s the role of UAT – to assure that the data have the expected quality and when compared to the previous dry-run, that it attains the expected level of consistency. 

Reusability

Reusability is the degree to which the whole solution, parts of the logic or data can be reused for multiple purposes. Master data and the logic associated with them have high reusability potential as they tend to be referenced by multiple entities. 

Modularity

Modularity is the degree to which a solution is composed of discrete components such that a change to one component has minimal impact on other components. It applies to the solution itself but also to the degree to which the logic for the various entities is partitioned so to assure a minimal impact. 

Partitionability

Partitionability is the degree to which data or logic can be partitioned to address the various requirements. Despite the assurance that the data will be migrated only once, in practice this assumption can be easily invalidated. It’s enough to increase the system freeze by a few days and/or to have transaction data that suddenly requires master data not considered. Even if the deltas can be migrated in system manually, it’s probably recommended to migrate them using the same logic. Moreover, the performing of incremental loads can be a project requirement. 

Data might need to be partitioned into batches to improve processing’s performance. Partitioning the logic based on certain parameters (e.g. business unit, categorical values) allows more flexibility in handling other requirements (e.g. reversibility, performance, testability, reusability). 

Performance

Performance refers to the degree a piece of software can process data into an amount of time considered as acceptable for the business. It can vary with the architecture and methods used, respectively data volume, veracity, variance, variability, or quality.

Performance is a critical requirement for a DM, especially when considering the amount of time spent on executing the logic during development, tests and troubleshooting, as well for other activities. Performance is important during dry-runs but more important during Go-Live, as it equates with a period during which the system(s) are not available for the users. Upon case, a few hours of delays can have an important impact on the business. In extremis, the delays can sum up to days. 

Predictability

Predictability is the degree to which the results and behavior of a solution, respectively the processes involve are predictable based on the design, implementation or other factors considered (e.g. best practices, methodology used, experience, procedures and processes). Highly predictable solutions are desirable, though reaching the required level of performance and quality can be challenging. 

The results from the dry-runs can offer an indication on whether the data migrated during UAT and Go-Live provide a certain level of assurance that the DM will be a success. Otherwise, an additional dry-run should be planned during UAT, if the schedule allows it.

Previous Post <> Nest Post 

17 November 2007

🏗️Software Engineering: Modularity (Just the Quotes)

"Make sure every module hides something." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Make the coupling between modules visible." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Most programs are too big to be comprehended as a single chunk. They must be divided into smaller pieces that can be conquered separately. That is the only way to write them reliably; it is the only way to read and understand them. [...] When a program is not broken up into small enough pieces, the larger modules often fail to deliver on these promises. They try to do too much, or too many different things, and hence are difficult to maintain and are too specialized for general use." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"When the operation to be done is more complex, write a separate subroutine or function. The ease of later comprehending, debugging, and changing the program will more than compensate for any overhead caused by adding the extra modules." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Write and test a big program in small pieces." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"A good top-down design avoids bugs in several ways. First, the clarity of structure and representation makes the precise statement of requirements and functions of the modules easier. Second, the partitioning and independence of modules avoids system bugs. Third, the suppression of detail makes flaws in the structure more apparent. Fourth, the design can be tested at each of its refinement steps, so testing can start earlier and focus on the proper level of detail at each step." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"The programmer's primary weapon in the never-ending battle against slow system is to change the intramodular structure. Our first response should be to reorganize the modules' data structures." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"By pulling together all of the decisions affecting the choice of modules and interrelationships in a system, we necessarily affect the way in which other decisions are organized and resolved. Thus, some issues which have traditionally been approached in a certain way during the earliest phase of a project may have to be dealt with in an entirely different manner at a much later stage once the designer graduates to a structured design approach." (Edward Yourdon & Larry L Constantine, "Structured Design: Fundamentals of a discipline of computer program and systems design", 1978)

"Elements (lines of code) in a coincidentally-cohesive module have no relationship. Typically occurs as the result of modularizing existing code, to separate out redundant code." (Edward Yourdon & Larry L Constantine, "Structured Design: Fundamentals of a discipline of computer program and systems design", 1978)

"Wherever there is modularity there is the potential for misunderstanding: Hiding information implies a need to check communication." (Alan J Perlis, "Epigrams on Programming", 1982)

"Most of us managers are prone to one failing: A tendency to manage people as though they were modular components." (Tom DeMarco & Timothy Lister, "Peopleware: Productive Projects and Teams", 1987)

"Extra features were once considered desirable. We now recognize that 'free' features are rarely free. Any increase in generality that does not contribute to reliability, modularity, maintainability, and robustness should be suspected." (Boris Beizer, "Software Testing Techniques", 1990)

"Modularity's goal is to make each routine or class like a 'black box': You know what goes in, and you know what comes out, but you don't know what happens inside." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)

"The concept of modularity is related to information hiding, encapsulation, and other design heuristics. But sometimes thinking about how to assemble a system from a set of black boxes provides insights that information hiding and encapsulation don't, so the concept is worth having in your back pocket." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)

"Modularity, an approach that separates a large system into simpler parts that are individually designed and operated, incorrectly assumes that complex system behavior can essentially be reduced to the sum of its parts. A planned decomposition of a system into modules works well for systems that are not too complex. […] However, as systems become more complex, this approach forces engineers to devote increasing attention to designing the interfaces between parts, eventually causing the process to break down."  (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004)

"Whether you are designing systems or individual modules, never forget to use the simplest thing that can possibly work." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Design is the bridging activity between gathering and implementation of software requirements that satisfies the required needs. […] The fundamental goal of design is to reduce the number of dependencies between modules, thus reducing the complexity of the system. This is also known as coupling; lesser the coupling the better is the design. On the other hand, higher the binding between elements within a module (known as cohesion) the better is the design." (Vasudeva Varma, "Software Architecture: A Case Based Approach", 2009)

"The principle of modularization advocates the creation of cohesive and loosely coupled abstractions through techniques such as localization and decomposition." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.