Showing posts with label trust. Show all posts
Showing posts with label trust. Show all posts

22 March 2024

Business Intelligence: Dashboards (Part I: Dashboards Are Dead & Other Crap)

Business Intelligence
Business Intelligence Series

I find annoying the posts that declare that a technology is dead, as they seem to seek the sensational and, in the end, don't offer enough arguments for the positions taken; all is just surfing though a few random ideas. Almost each time I klick on such a link I find myself disappointed. Maybe it's just me - having too great expectations from ad-hoc experts who haven't understood the role of technologies and their lifecycle.

At least until now dashboards are the only visual tool that allows displaying related metrics in a consistent manner, reflecting business objectives, health, or other important perspective into an organization's performance. More recently notebooks seem to be getting closer given their capabilities of presenting data visualizations and some intermediary steps used to obtain the data, though they are still far away from offering similar capabilities. So, from where could come any justification against dashboard's utility? Even if I heard one or two expert voices saying that they don't need KPIs for managing an organization, organizations still need metrics to understand how the organization is doing as a whole and taken on parts. 

Many argue that the design of dashboards is poor, that they don't reflect data visualization best practices, or that they are too difficult to navigate. There are so many books on dashboard and/or graphic design that is almost impossible not to find such a book in any big library if one wants to learn more about design. There are many resources online as well, though it's tough to fight with a mind's stubbornness in showing no interest in what concerns the topic. Conversely, there's also lot of crap on the social networks that qualify after the mainstream as best practices. 

Frankly, design is important, though as long as the dashboards show the right data and the organization can guide itself on the respective numbers, the perfectionists can say whatever they want, even if they are right! Unfortunately, the numbers shown in dashboards raise entitled questions and the reasons are multiple. Do dashboards show the right numbers? Do they focus on the objectives or important issues? Can the number be trusted? Do they reflect reality? Can we use them in decision-making? 

There are so many things that can go wrong when building a dashboard - there are so many transformations that need to be performed, that the chances of failure are high. It's enough to have several blunders in the code or data visualizations for people to stop trusting the data shown.

Trust and quality are complex concepts and there’s no standard path to address them because they are a matter of perception, which can vary and change dynamically based on the situation. There are, however, approaches that allow to minimize this. One can start for example by providing transparency. For each dashboard provide also detailed reports that through drilldown (or also by running the reports separately if that’s not possible) allow to validate the numbers from the report. If users don’t trust the data or the report, then they should pinpoint what’s wrong. Of course, the two sources must be in synch, otherwise the validation will become more complex.

There are also issues related to the approach - the way a reporting tool was introduced, the way dashboards flooded the space, how people reacted, etc. Introducing a reporting tool for dashboards is also a matter of strategy, tactics and operations and the various aspects related to them must be addressed. Few organizations address this properly. Many organizations work after the principle "build it and they will come" even if they build the wrong thing!

Previous Post <<||>> Next Post

01 February 2021

Data Migrations (DM): Quality Acceptance Criteria V

Data Migration

Efficiency 

Efficiency is the degree to which a solution uses the hardware (storage, network) and other organizational resources to fulfill a given task. Data characterized by high volume, velocity, variety and veracity can be challenging to process, requiring upon case more processing power. Therefore, the DM solutions need to consider these aspects as well. However, efficiency refers on whether the available resources are used efficiently – the waste in terms of resource utilization is minimal. 

On the other side the waste of resources can be acceptable when there are other benefits or requirements that need to be considered, respectively when the ratio between resources utilization and effort to built more efficient processes is acceptable.

A DM solution involves iterative and exploratory processes in which knowledge and feedback is integrated in each iteration, therefore it might look like resources are not used efficiently. However, this is a way to handle complexity and uncertainty by breaking the effort in manageable chunks.

Learnability

Learnability is the degree to which a person can become familiar with a solution’s use, the data and the processes associated with it. A DM can be challenging for many technical and non-technical resources as it requires a certain level of skillset and understanding of the requirements, needs and deliverables. The complexity of the data and requirements can be overwhelming, however with appropriate communication and awareness established, the challenges can be overcome. 

Stability

Stability is the degree to which a solution is sensitive to environment changes (e.g. overuse of resource, hardware or software failures, updates), respectively on whether it performs with no performance defects or it does not crash under defined levels of stress. Stability can be monitored during the various phases and countermeasures need to be considered in case the solution is not stable enough (e.g. redesigning the solution, breaking the data in smaller chunks)

Suitability 

Suitability is the degree to which a solutions provides functions that meet the stated and implied needs. No matter how performant and technologically advanced a solution is, it brings less value as long it doesn’t perform what it was intended to do.

Transparency 

Transparency is the degree to which a solution’s stakeholders have access to the requirements, processes, data, documentation, or other information required by them. In a DM transparency is important especially important in respect to the data, logic and rules used in data processing, respectively the number of records processed. 

Trustability

Trustability is the degree to which a solution can be trusted to provide the expected results. Even if the technical team assures that the solution can deliver what was indented, the success of a DM is a matter of perception from stakeholders’ perspective. Providing transparency into the data, rules and processes can improve the level of trust however, special attention need to be given to the issues raised by stakeholders during and after Go-Live, as differences need to be mitigated. 

Understandability 

Understandability is the degree to which the requirements of a solution were understood by the resources involved in terms of what needs to be performed. For the average project resource it might be challenging to understand the implications of a DM, and this can apply to technical as well non-technical resources. Making people aware of the implications is probably one of the most important criteria for success, as the success of a migration is often a matter of perception. 

Usability 

Usability is the degree to which a solution can be used by the targeted users within the agreed context of usage. Ideally DM solutions need to be easy to use, though there are always trade-offs. In the end, a DM must fit the purpose it was built for. 

Previous Post <

25 November 2018

Data Science: Trust (Just the Quotes)

"We must trust to nothing but facts: These are presented to us by Nature, and cannot deceive. We ought, in every instance, to submit our reasoning to the test of experiment, and never to search for truth but by the natural road of experiment and observation." (Antoin-Laurent de Lavoisiere, "Elements of Chemistry", 1790)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"It is of the nature of true science to take nothing on trust or on authority. Every fact must be established by accurate observation, experiment, or calculation. Every law and principle must rest on inductive argument. The apostolic motto, ‘Prove all things, hold fast that which is good’, is thoroughly scientific. It is true that the mere reader of popular science must often be content to take that on testimony which he cannot personally verify; but it is desirable that even the most cursory reader should fully comprehend the modes in which facts are ascertained and the reasons on which the conclusions are based." (Sir John W Dawson, "The Chain of Life in Geological Time", 1880)

"The aim of science is to seek the simplest explanations of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be, ‘Seek simplicity and distrust it’." (Alfred N Whitehead, "The Concept of Nature", 1919)

"Every bit of knowledge we gain and every conclusion we draw about the universe or about any part or feature of it depends finally upon some observation or measurement. Mankind has had again and again the humiliating experience of trusting to intuitive, apparently logical conclusions without observations, and has seen Nature sail by in her radiant chariot of gold in an entirely different direction." (Oliver J Lee, "Measuring Our Universe: From the Inner Atom to Outer Space", 1950)

"Being built on concepts, hypotheses, and experiments, laws are no more accurate or trustworthy than the wording of the definitions and the accuracy and extent of the supporting experiments." (Gerald Holton, "Introduction to Concepts and Theories in Physical Science", 1952)

"No observations are absolutely trustworthy. In no field of observation can we entirely rule out the possibility that an observation is vitiated by a large measurement or execution error. If a reading is found to lie a very long way from its fellows in a series of replicate observations, there must be a suspicion that the deviation is caused by a blunder or gross error of some kind. [...] One sufficiently erroneous reading can wreck the whole of a statistical analysis, however many observations there are." (Francis J Anscombe, "Rejection of Outliers", Technometrics Vol. 2 (2), 1960)

"Even properly done statistics can’t be trusted. The plethora of available statistical techniques and analyses grants researchers an enormous amount of freedom when analyzing their data, and it is trivially easy to ‘torture the data until it confesses’." (Alex Reinhart, "Statistics Done Wrong: The Woefully Complete Guide", 2015)

"Science’s predictions are more trustworthy, but they are limited to what we can systematically observe and tractably model. Big data and machine learning greatly expand that scope. Some everyday things can be predicted by the unaided mind, from catching a ball to carrying on a conversation. Some things, try as we might, are just unpredictable. For the vast middle ground between the two, there’s machine learning." (Pedro Domingos, "The Master Algorithm", 2015)

"The closer that sample-selection procedures approach the gold standard of random selection - for which the definition is that every individual in the population has an equal chance of appearing in the sample - the more we should trust them. If we don’t know whether a sample is random, any statistical measure we conduct may be biased in some unknown way." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"Are your insights based on data that is accurate and reliable? Trustworthy data is correct or valid, free from significant defects and gaps. The trustworthiness of your data begins with the proper collection, processing, and maintenance of the data at its source. However, the reliability of your numbers can also be influenced by how they are handled during the analysis process. Clean data can inadvertently lose its integrity and true meaning depending on how it is analyzed and interpreted." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"I believe that the backlash against statistics is due to four primary reasons. The first, and easiest for most people to relate to, is that even the most basic concepts of descriptive and inferential statistics can be difficult to grasp and even harder to explain. […] The second cause for vitriol is that even well-intentioned experts misapply the tools and techniques of statistics far too often, myself included. Statistical pitfalls are numerous and tough to avoid. When we can't trust the experts to get it right, there's a temptation to throw the baby out with the bathwater. The third reason behind all the hate is that those with an agenda can easily craft statistics to lie when they communicate with us  […] And finally, the fourth cause is that often statistics can be perceived as cold and detached, and they can fail to communicate the human element of an issue." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

10 February 2007

Software Engineering: Trustworthiness (Definitions)

"Having reliable, appropriate, and validated levels of security." (Mark Rhodes-Ousley, "Information Security: The Complete Reference" 2nd Ed., 2013)

"Worthy of being trusted to have certain specified properties." (O Sami Saydjari, "Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time", 2018)

"The perception and confidence in the quality of the model by its users." (Panos Alexopoulos, "Semantic Modeling for Data", 2020)

"Computer hardware, software and procedures that - 1) are reasonably secure from intrusion and misuse; 2) provide a reasonable level of availability, reliability, and correct operation; 3) are reasonably suited to performing their intended functions; and 4) adhere to generally accepted security procedures." (NIST SP 800-12 Rev. 1)

"Worthy of being trusted to fulfill whatever critical requirements may be needed for a particular component, subsystem, system, network, application, mission, enterprise, or other entity. Note From a privacy perspective, a trustworthy system is a system that meets specific privacy requirements in addition to meeting other critical requirements." (NISTIR 8062)

"The degree to which an information system (including the information technology components that are used to build the system) can be expected to preserve the confidentiality, integrity, and availability of the information being processed, stored, or transmitted by the system across the full range of threats. A trustworthy information system is a system that is believed to be capable of operating within defined levels of risk despite the environmental disruptions, human errors, structural failures, and purposeful attacks that are expected to occur in its environment of operation." (NIST SP 800-53 Rev. 4)

"The degree to which the security behavior of a component is demonstrably compliant with its stated functionality." (NIST SP 800-160)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.