Showing posts with label intelligence. Show all posts
Showing posts with label intelligence. Show all posts

07 January 2019

🤝Governance: Accountability (Just the Quotes)

"To hold a group or individual accountable for activities of any kind without assigning to him or them the necessary authority to discharge that responsibility is manifestly both unsatisfactory and inequitable. It is of great Importance to smooth working that at all levels authority and responsibility should be coterminous and coequal." (Lyndall Urwick, "Dynamic Administration", 1942)

"Complete accountability is established and enforced throughout; and if there there is any error committed, it will be discovered on a comparison with the books and can be traced to its source." (Alfred D Chandler Jr, "The Visible Hand", 1977)

"If responsibility - and particularly accountability - is most obviously upwards, moral responsibility also reaches downwards. The commander has a responsibility to those whom he commands. To forget this is to vitiate personal integrity and the ethical validity of the system." (Roger L Shinn, "Military Ethics", 1987)

"Perhaps nothing in our society is more needed for those in positions of authority than accountability." (Larry Burkett, "Business By The Book: Complete Guide of Biblical Principles for the Workplace", 1990)

"Corporate governance is concerned with holding the balance between economic and social goals and between individual and communal goals. The governance framework is there to encourage the efficient use of resources and equally to require accountability for the stewardship of those resources. The aim is to align as nearly as possible the interests of individuals, corporations and society." (Dominic Cadbury, "UK, Commission Report: Corporate Governance", 1992)

"Accountability is essential to personal growth, as well as team growth. How can you improve if you're never wrong? If you don't admit a mistake and take responsibility for it, you're bound to make the same one again." (Pat Summitt, "Reach for the Summit", 1999)

"Responsibility equals accountability equals ownership. And a sense of ownership is the most powerful weapon a team or organization can have." (Pat Summitt, "Reach for the Summit", 1999)

"There's not a chance we'll reach our full potential until we stop blaming each other and start practicing personal accountability." (John G Miller, "QBQ!: The Question Behind the Question", 2001)

"Democracy is not about trust; it is about distrust. It is about accountability, exposure, open debate, critical challenge, and popular input and feedback from the citizenry." (Michael Parenti, "Superpatriotism", 2004)

"No individual can achieve worthy goals without accepting accountability for his or her own actions." (Dan Miller, "No More Dreaded Mondays", 2008)

"In putting together your standards, remember that it is essential to involve your entire team. Standards are not rules issued by the boss; they are a collective identity. Remember, standards are the things that you do all the time and the things for which you hold one another accountable." (Mike Krzyzewski, "The Gold Standard: Building a World-Class Team", 2009)

"Nobody can do everything well, so learn how to delegate responsibility to other winners and then hold them accountable for their decisions." (George Foreman, "Knockout Entrepreneur: My Ten-Count Strategy for Winning at Business", 2010)

"Failing to hold someone accountable is ultimately an act of selfishness." (Patrick Lencioni, "The Advantage, Enhanced Edition: Why Organizational Health Trumps Everything Else In Business", 2012)

"We cannot have a just society that applies the principle of accountability to the powerless and the principle of forgiveness to the powerful. This is the America in which we currently reside." (Chris Hayes, "Twilight of the Elites: America After Meritocracy", 2012)

"Artificial intelligence is a concept that obscures accountability. Our problem is not machines acting like humans - it's humans acting like machines." (John Twelve Hawks, "Spark", 2014)

"In order to cultivate a culture of accountability, first it is essential to assign it clearly. People ought to clearly know what they are accountable for before they can be held to it. This goes beyond assigning key responsibility areas (KRAs). To be accountable for an outcome, we need authority for making decisions, not just responsibility for execution. It is tempting to refrain from the tricky exercise of explicitly assigning accountability. Executives often hope that their reports will figure it out. Unfortunately, this is easier said than done." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Some hierarchy is essential for the effective functioning of an organization. Eliminating hierarchy has the frequent side effect of slowing down decision making and diffusing accountability." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Accountability makes no sense when it undermines the larger goals of education." (Diane Ravitch, "The Death and Life of the Great American School System", 2016)

"[...] high-accountability teams are characterized by having members that are willing and able to resolve issues within the team. They take responsibility for their own actions and hold each other accountable. They take ownership of resolving disputes and feel empowered to do so without intervention from others. They learn quickly by identifying issues and solutions together, adopting better patterns over time. They are able to work without delay because they don’t need anyone else to resolve problems. Their managers are able to work more strategically without being bogged down by day-to-day conflict resolution." (Morgan Evans, "Engineering Manager's Handbook", 2023)

"In a workplace setting, accountability is the willingness to take responsibility for one’s actions and their outcomes. Accountable team members take ownership of their work, admit their mistakes, and are willing to hold each other accountable as peers." (Morgan Evans, "Engineering Manager's Handbook", 2023)

"Low-accountability teams can be recognized based on their tendency to shift blame, avoid addressing issues within the team, and escalate most problems to their manager. In low-accountability teams, it is difficult to determine the root of problems, failures are met with apathy, and managers have to spend much of their time settling disputes and addressing performance. Members of low-accountability teams believe it is not their role to resolve disputes and instead shift that responsibility up to the manager, waiting for further direction. These teams fall into conflict and avoidance deadlocks, unable to move quickly because they cannot resolve issues within the team."

18 December 2018

🔭Data Science: Problem Solving (Just the Quotes)

"Reflexion is careful and laborious thought, and watchful attention directed to the agreeable effect of one's plan. Invention, on the other hand, is the solving of intricate problems and the discovery of new principles by means of brilliancy and versatility." (Marcus Vitruvius Pollio, "De architectura" ["On Architecture], cca. 15BC)

"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)

"The correct solution to any problem depends principally on a true understanding of what the problem is." (Arthur M Wellington, "The Economic Theory of Railway Location", 1887)

"He who seeks for methods without having a definite problem in mind seeks for the most part in vain." (David Hilbert, 1902)

"This diagrammatic method has, however, serious inconveniences as a method for solving logical problems. It does not show how the data are exhibited by cancelling certain constituents, nor does it show how to combine the remaining constituents so as to obtain the consequences sought. In short, it serves only to exhibit one single step in the argument, namely the equation of the problem; it dispenses neither with the previous steps, i.e., 'throwing of the problem into an equation' and the transformation of the premises, nor with the subsequent steps, i.e., the combinations that lead to the various consequences. Hence it is of very little use, inasmuch as the constituents can be represented by algebraic symbols quite as well as by plane regions, and are much easier to deal with in this form." (Louis Couturat, "The Algebra of Logic", 1914)

"A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery." (George Polya, "How to solve it", 1944)

"Success in solving the problem depends on choosing the right aspect, on attacking the fortress from its accessible side." (George Polya, "How to Solve It", 1944)

"[The] function of thinking is not just solving an actual problem but discovering, envisaging, going into deeper questions. Often, in great discovery the most important thing is that a certain question is found." (Max Wertheimer, "Productive Thinking", 1945)

"We can scarcely imagine a problem absolutely new, unlike and unrelated to any formerly solved problem; but if such a problem could exist, it would be insoluble. In fact, when solving a problem, we should always profit from previously solved problems, using their result or their method, or the experience acquired in solving them." (George Polya, 1945)

"I believe, that the decisive idea which brings the solution of a problem is rather often connected with a well-turned word or sentence. The word or the sentence enlightens the situation, gives things, as you say, a physiognomy. It can precede by little the decisive idea or follow on it immediately; perhaps, it arises at the same time as the decisive idea. […]  The right word, the subtly appropriate word, helps us to recall the mathematical idea, perhaps less completely and less objectively than a diagram or a mathematical notation, but in an analogous way. […] It may contribute to fix it in the mind." (George Pólya [in a letter to Jaque Hadamard, "The Psychology of Invention in the Mathematical Field", 1949])

"The problems are solved, not by giving new information, but by arranging what we have known since long." (Ludwig Wittgenstein, "Philosophical Investigations", 1953)

"Solving problems is the specific achievement of intelligence." (George Pólya, 1957)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives." (Instrumentation Technology, 1957)

"A problem that is located and identified is already half solved!" (Bror R Carlson, "Managing for Profit", 1961)

"If we view organizations as adaptive, problem-solving structures, then inferences about effectiveness have to be made, not from static measures of output, but on the basis of the processes through which the organization approaches problems. In other words, no single measurement of organizational efficiency or satisfaction - no single time-slice of organizational performance can provide valid indicators of organizational health." (Warren G Bennis, "General Systems Yearbook", 1962)

"Solving problems can be regarded as the most characteristically human activity." (George Pólya, "Mathematical Discovery", 1962)

"The final test of a theory is its capacity to solve the problems which originated it." (George Dantzig, "Linear Programming and Extensions", 1963)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"An expert problem solver must be endowed with two incompatible qualities, a restless imagination and a patient pertinacity.” (Howard W Eves, “In Mathematical Circles”, 1969)

"The problem-solving approach allows for mental double-clutching. It does not require a direct switch from one point of view to another. It provides a period 'in neutural' where there is an openness to facts and, therefore, a willingness to consider alternative views." (William Reddin, "Managerial Effectiveness", 1970)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"If we deal with our problem not knowing, or pretending not to know the general theory encompassing the concrete case before us, if we tackle the problem "with bare hands", we have a better chance to understand the scientist's attitude in general, and especially the task of the applied mathematician." (George Pólya, "Mathematical Methods in Science", 1977)

"Systems represent someone's attempt at solution to problems, but they do not solve problems; they produce complicated responses." (Melvin J Sykes, Maryland Law Review, 1978)

“Solving problems can be regarded as the most characteristically human activity.” (George Polya, 1981)

"The problem solver needs to stand back and examine problem contexts in the light of different 'Ws' (Weltanschauungen). Perhaps he can then decide which 'W' seems to capture the essence of the particular problem context he is faced with. This whole process needs formalizing if it is to be carried out successfully. The problem solver needs to be aware of different paradigms in the social sciences, and he must be prepared to view the problem context through each of these paradigms." (Michael C Jackson, "Towards a System of Systems Methodologies", 1984)

"People in general tend to assume that there is some 'right' way of solving problems. Formal logic, for example, is regarded as a correct approach to thinking, but thinking is always a compromise between the demands of comprehensiveness, speed, and accuracy. There is no best way of thinking." (James L McKenney & Peter G W Keen, Harvard Business Review on Human Relations, 1986)

"A great many problems are easier to solve rigorously if you know in advance what the answer is." (Ian Stewart, "From Here to Infinity", 1987)

"Define the problem before you pursue a solution." (John Williams, Inc. Magazine's Guide to Small Business Success, 1987)

"No matter how complicated a problem is, it usually can be reduced to a simple, comprehensible form which is often the best solution." (Dr. An Wang, Nation's Business, 1987)

"There are many things you can do with problems besides solving them. First you must define them, pose them. But then of course you can also refi ne them, depose them, or expose them or even dissolve them! A given problem may send you looking for analogies, and some of these may lead you astray, suggesting new and different problems, related or not to the original. Ends and means can get reversed. You had a goal, but the means you found didn’t lead to it, so you found a new goal they did lead to. It’s called play. Creative mathematicians play a lot; around any problem really interesting they develop a whole cluster of analogies, of playthings." (David Hawkins, "The Spirit of Play", Los Alamos Science, 1987)

"A scientific problem can be illuminated by the discovery of a profound analogy, and a mundane problem can be solved in a similar way." (Philip Johnson-Laird, "The Computer and the Mind", 1988)

"Anecdotes may be more useful than equations in understanding the problem." (Robert Kuttner, "The New Republic", The New York Times, 1988)

"Most people would rush ahead and implement a solution before they know what the problem is." (Q T Wiles, Inc. Magazine, 1988)

“A mental model is a knowledge structure that incorporates both declarative knowledge (e.g., device models) and procedural knowledge (e.g., procedures for determining distributions of voltages within a circuit), and a control structure that determines how the procedural and declarative knowledge are used in solving problems (e.g., mentally simulating the behavior of a circuit).” (Barbara Y White & John R Frederiksen, “Causal Model Progressions as a Foundation for Intelligent Learning Environments”, Artificial Intelligence 42, 1990)

"An important symptom of an emerging understanding is the capacity to represent a problem in a number of different ways and to approach its solution from varied vantage points; a single, rigid representation is unlikely to suffice." (Howard Gardner, “The Unschooled Mind”, 1991)

“[By understanding] I mean simply a sufficient grasp of concepts, principles, or skills so that one can bring them to bear on new problems and situations, deciding in which ways one’s present competencies can suffice and in which ways one may require new skills or knowledge.” (Howard Gardner, “The Unschooled Mind”, 1991)

"We consider the notion of ‘system’ as an organising concept, before going on to look in detail at various systemic metaphors that may be used as a basis for structuring thinking about organisations and problem situations." (Michael C Jackson, "Creative Problem Solving: Total Systems Intervention", 1991)

“But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology.” (Stephen Jay Gould, “This View of Life: In the Mind of the Beholder”, Natural History Vol. 103 (2), 1994)

"The term mental model refers to knowledge structures utilized in the solving of problems. Mental models are causal and thus may be functionally defined in the sense that they allow a problem solver to engage in description, explanation, and prediction. Mental models may also be defined in a structural sense as consisting of objects, states that those objects exist in, and processes that are responsible for those objects’ changing states." (Robert Hafner & Jim Stewart, "Revising Explanatory Models to Accommodate Anomalous Genetic Phenomena: Problem Solving in the ‘Context of Discovery’", Science Education 79 (2), 1995)

"The purpose of a conceptual model is to provide a vocabulary of terms and concepts that can be used to describe problems and/or solutions of design. It is not the purpose of a model to address specific problems, and even less to propose solutions for them. Drawing an analogy with linguistics, a conceptual model is analogous to a language, while design patterns are analogous to rhetorical figures, which are predefined templates of language usages, suited particularly to specific problems." (Peter P Chen [Ed.], "Advances in Conceptual Modeling", 1999)

"The three basic mechanisms of averaging, feedback and division of labor give us a first idea of a how a CMM [Collective Mental Map] can be developed in the most efficient way, that is, how a given number of individuals can achieve a maximum of collective problem-solving competence. A collective mental map is developed basically by superposing a number of individual mental maps. There must be sufficient diversity among these individual maps to cover an as large as possible domain, yet sufficient redundancy so that the overlap between maps is large enough to make the resulting graph fully connected, and so that each preference in the map is the superposition of a number of individual preferences that is large enough to cancel out individual fluctuations. The best way to quickly expand and improve the map and fill in gaps is to use a positive feedback that encourages individuals to use high preference paths discovered by others, yet is not so strong that it discourages the exploration of new paths." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"What it means for a mental model to be a structural analog is that it embodies a representation of the spatial and temporal relations among, and the causal structures connecting the events and entities depicted and whatever other information that is relevant to the problem-solving talks. […] The essential points are that a mental model can be nonlinguistic in form and the mental mechanisms are such that they can satisfy the model-building and simulative constraints necessary for the activity of mental modeling." (Nancy J Nersessian, "Model-based reasoning in conceptual change", 1999)

"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)

"[...] a general-purpose universal optimization strategy is theoretically impossible, and the only way one strategy can outperform another is if it is specialized to the specific problem under consideration." (Yu-Chi Ho & David L Pepyne, "Simple explanation of the no-free-lunch theorem and its implications", Journal of Optimization Theory and Applications 115, 2002)

"Mathematical modeling is as much ‘art’ as ‘science’: it requires the practitioner to (i) identify a so-called ‘real world’ problem (whatever the context may be); (ii) formulate it in mathematical terms (the ‘word problem’ so beloved of undergraduates); (iii) solve the problem thus formulated (if possible; perhaps approximate solutions will suffice, especially if the complete problem is intractable); and (iv) interpret the solution in the context of the original problem." (John A Adam, "Mathematics in Nature", 2003)

"What is a mathematical model? One basic answer is that it is the formulation in mathematical terms of the assumptions and their consequences believed to underlie a particular ‘real world’ problem. The aim of mathematical modeling is the practical application of mathematics to help unravel the underlying mechanisms involved in, for example, economic, physical, biological, or other systems and processes." (John A Adam, "Mathematics in Nature", 2003)

"Alternative models are neither right nor wrong, just more or less useful in allowing us to operate in the world and discover more and better options for solving problems." (Andrew Weil," The Natural Mind: A Revolutionary Approach to the Drug Problem", 2004)

“A conceptual model is a mental image of a system, its components, its interactions. It lays the foundation for more elaborate models, such as physical or numerical models. A conceptual model provides a framework in which to think about the workings of a system or about problem solving in general. An ensuing operational model can be no better than its underlying conceptualization.” (Henry N Pollack, “Uncertain Science … Uncertain World”, 2005)

"Graphics is the visual means of resolving logical problems." (Jacques Bertin, "Graphics and Graphic Information Processing", 2011)

"In specific cases, we think by applying mental rules, which are similar to rules in computer programs. In most of the cases, however, we reason by constructing, inspecting, and manipulating mental models. These models and the processes that manipulate them are the basis of our competence to reason. In general, it is believed that humans have the competence to perform such inferences error-free. Errors do occur, however, because reasoning performance is limited by capacities of the cognitive system, misunderstanding of the premises, ambiguity of problems, and motivational factors. Moreover, background knowledge can significantly influence our reasoning performance. This influence can either be facilitation or an impedance of the reasoning process." (Carsten Held et al, "Mental Models and the Mind", 2006)

"Every problem has a solution; it may sometimes just need another perspective.” (Rebecca Mallery et al, "NLP for Rookies", 2009)

"Mental acuity of any kind comes from solving problems yourself, not from being told how to solve them.” (Paul Lockhart, "A Mathematician's Lament", 2009)

"Mostly we rely on stories to put our ideas into context and give them meaning. It should be no surprise, then, that the human capacity for storytelling plays an important role in the intrinsically human-centered approach to problem solving, design thinking." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Mental models are formed over time through a deep enculturation process, so it follows that any attempt to align mental models must focus heavily on collective sense making. Alignment only happens through a process of socialisation; people working together, solving problems together, making sense of the world together." (Robina Chatham & Brian Sutton, "Changing the IT Leader’s Mindset", 2010)

"Mathematical modeling is the application of mathematics to describe real-world problems and investigating important questions that arise from it." (Sandip Banerjee, "Mathematical Modeling: Models, Analysis and Applications", 2014)

"Mental imagery is often useful in problem solving. Verbal descriptions of problems can become confusing, and a mental image can clear away excessive detail to bring out important aspects of the problem. Imagery is most useful with problems that hinge on some spatial relationship. However, if the problem requires an unusual solution, mental imagery alone can be misleading, since it is difficult to change one’s understanding of a mental image. In many cases, it helps to draw a concrete picture since a picture can be turned around, played with, and reinterpreted, yielding new solutions in a way that a mental image cannot." (James Schindler, "Followership", 2014)

“Framing the right problem is equally or even more important than solving it.” (Pearl Zhu, “Change, Creativity and Problem-Solving”, 2017)

14 December 2018

🔭Data Science: Algorithms (Just the Quotes)

"Mathematics is an aspect of culture as well as a collection of algorithms." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Design problems - generating or discovering alternatives - are complex largely because they involve two spaces, an action space and a state space, that generally have completely different structures. To find a design requires mapping the former of these on the latter. For many, if not most, design problems in the real world systematic algorithms are not known that guarantee solutions with reasonable amounts of computing effort. Design uses a wide range of heuristic devices - like means-end analysis, satisficing, and the other procedures that have been outlined - that have been found by experience to enhance the efficiency of search. Much remains to be learned about the nature and effectiveness of these devices." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

"An algorithm must be seen to be believed, and the best way to learn what an algorithm is all about is to try it." (Donald E Knuth, The Art of Computer Programming Vol. I, 1968)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"Algorithmic complexity theory and nonlinear dynamics together establish the fact that determinism reigns only over a quite finite domain; outside this small haven of order lies a largely uncharted, vast wasteland of chaos." (Joseph Ford, "Progress in Chaotic Dynamics: Essays in Honor of Joseph Ford's 60th Birthday", 1988)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"Algorithms are a set of procedures to generate the answer to a problem." (Stuart Kauffman, "At Home in the Universe: The Search for Laws of Complexity", 1995)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The vast majority of information that we have on most processes tends to be nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form." (Timothy J Ross & W Jerry Parkinson, "Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems", 2002)

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"The burgeoning field of computer science has shifted our view of the physical world from that of a collection of interacting material particles to one of a seething network of information. In this way of looking at nature, the laws of physics are a form of software, or algorithm, while the material world - the hardware - plays the role of a gigantic computer." (Paul C W Davies, "Laying Down the Laws", New Scientist, 2007)

"An algorithm refers to a successive and finite procedure by which it is possible to solve a certain problem. Algorithms are the operational base for most computer programs. They consist of a series of instructions that, thanks to programmers’ prior knowledge about the essential characteristics of a problem that must be solved, allow a step-by-step path to the solution." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Programming is a science dressed up as art, because most of us don’t understand the physics of software and it’s rarely, if ever, taught. The physics of software is not algorithms, data structures, languages, and abstractions. These are just tools we make, use, and throw away. The real physics of software is the physics of people. Specifically, it’s about our limitations when it comes to complexity and our desire to work together to solve large problems in pieces. This is the science of programming: make building blocks that people can understand and use easily, and people will work together to solve the very largest problems." (Pieter Hintjens, "ZeroMQ: Messaging for Many Applications", 2012)

"These nature-inspired algorithms gradually became more and more attractive and popular among the evolutionary computation research community, and together they were named swarm intelligence, which became the little brother of the major four evolutionary computation algorithms." (Yuhui Shi, "Emerging Research on Swarm Intelligence and Algorithm Optimization", Information Science Reference, 2014)

"[...] algorithms, which are abstract or idealized process descriptions that ignore details and practicalities. An algorithm is a precise and unambiguous recipe. It’s expressed in terms of a fixed set of basic operations whose meanings are completely known and specified. It spells out a sequence of steps using those operations, with all possible situations covered, and it’s guaranteed to stop eventually." (Brian W Kernighan, "Understanding the Digital World", 2017)

"An algorithm is the computer science version of a careful, precise, unambiguous recipe or tax form, a sequence of steps that is guaranteed to compute a result correctly." (Brian W Kernighan, "Understanding the Digital World", 2017)

"Again, classical statistics only summarizes data, so it does not provide even a language for asking [a counterfactual] question. Causal inference provides a notation and, more importantly, offers a solution. As with predicting the effect of interventions [...], in many cases we can emulate human retrospective thinking with an algorithm that takes what we know about the observed world and produces an answer about the counterfactual world." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"Algorithms describe the solution to a problem in terms of the data needed to represent the  problem instance and a set of steps necessary to produce the intended result." (Bradley N Miller et al, "Python Programming in Context", 2019)

"An algorithm, meanwhile, is a step-by-step recipe for performing a series of actions, and in most cases 'algorithm' means simply 'computer program'." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Each of us is sweating data, and those data are being mopped up and wrung out into oceans of information. Algorithms and large datasets are being used for everything from finding us love to deciding whether, if we are accused of a crime, we go to prison before the trial or are instead allowed to post bail. We all need to understand what these data are and how they can be exploited." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Many people have strong intuitions about whether they would rather have a vital decision about them made by algorithms or humans. Some people are touchingly impressed by the capabilities of the algorithms; others have far too much faith in human judgment. The truth is that sometimes the algorithms will do better than the humans, and sometimes they won’t. If we want to avoid the problems and unlock the promise of big data, we’re going to need to assess the performance of the algorithms on a case-by-case basis. All too often, this is much harder than it should be. […] So the problem is not the algorithms, or the big datasets. The problem is a lack of scrutiny, transparency, and debate." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

More quotes on "Algorithms" at the-web-of-knowledge.blogspot.com.

02 November 2018

🔭Data Science: Intelligence (Just the Quotes)

"To be able to discern that what is true is true, and that what is false is false, - this is the mark and character of intelligence." (Ralph W Emerson, "Essays", 1841)

"We study the complex in the simple; and only from the intuition of the lower can we safely proceed to the intellection of the higher degrees. The only danger lies in the leaping from low to high, with the neglect of the intervening gradations." (Samuel T Coleridge, "Physiology of Life", 1848)

"The accidental causes of science are only 'accidents' relatively to the intelligence of a man." (Chauncey Wright, "The Genesis of Species", North American Review, 1871)

"Does the harmony the human intelligence thinks it discovers in nature exist outside of this intelligence? No, beyond doubt, a reality completely independent of the mind which conceives it, sees or feels it, is an impossibility." (Henri Poincaré, "The Value of Science", 1905)

"No one can predict how far we shall be enabled by means of our limited intelligence to penetrate into the mysteries of a universe immeasurably vast and wonderful; nevertheless, each step in advance is certain to bring new blessings to humanity and new inspiration to greater endeavor." (Theodore W Richards, "The Fundamental Properties of the Elements", [Faraday lecture] 1911)

"It may be impossible for human intelligence to comprehend absolute truth, but it is possible to observe Nature with an unbiased mind and to bear truthful testimony of things seen." (Sir Richard A Gregory, "Discovery, Or, The Spirit and Service of Science", 1916)

"In other words then, if a machine is expected to be infallible, it cannot also be intelligent. There are several theorems which say almost exactly that. But these theorems say nothing about how much intelligence may be displayed if a machine makes no pretense at infallibility." (Alan M Turing, 1946)

"A computer would deserve to be called intelligent if it could deceive a human into believing that it was human." (Alan Turing, "Computing Machinery and Intelligence" , Mind Vol. 59, 1950)

"All intelligent endeavor stands with one foot on observation and the other on contemplation." (Gerald Holton & Duane H D Roller, "Foundations of Modern Physical Science", 1950)

"What in fact is the schema of the object? In one essential respect it is a schema belonging to intelligence. To have the concept of an object is to attribute the perceived figure to a substantial basis, so that the figure and the substance that it thus indicates continue to exist outside the perceptual field. The permanence of the object seen from this viewpoint is not only a product of intelligence, but constitutes the very first of those fundamental ideas of conservation which we shall see developing within the thought process." (Jean Piaget, "The Psychology of Intelligence", 1950)

"[…] observation is not enough, and it seems to me that in science, as in the arts, there is very little worth having that does not require the exercise of intuition as well as of intelligence, the use of imagination as well as of information." (Kathleen Lonsdale, "Facts About Crystals", American Scientist Vol. 39 (4), 1951)

"Concepts are for me specific mental abilities exercised in acts of judgment, and expressed in the intelligent use of words (though not exclusively in such use)." (Peter T Geach, "Mental Acts: Their Content and their Objects", 1954)

"The following are some aspects of the artificial intelligence problem: […] If a machine can do a job, then an automatic calculator can be programmed to simulate the machine. […] It may be speculated that a large part of human thought consists of manipulating words according to rules of reasoning and rules of conjecture. From this point of view, forming a generalization consists of admitting a new word and some rules whereby sentences containing it imply and are implied by others. This idea has never been very precisely formulated nor have examples been worked out. […] How can a set of (hypothetical) neurons be arranged so as to form concepts. […] to get a measure of the efficiency of a calculation it is necessary to have on hand a method of measuring the complexity of calculating devices which in turn can be done. […] Probably a truly intelligent machine will carry out activities which may best be described as self-improvement. […] A number of types of 'abstraction' can be distinctly defined and several others less distinctly. […] the difference between creative thinking and unimaginative competent thinking lies in the injection of a some randomness. The randomness must be guided by intuition to be efficient." (John McCarthy et al, "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence", 1955)

"Solving problems is the specific achievement of intelligence." (George Polya, 1957)

"Computers do not decrease the need for mathematical analysis, but rather greatly increase this need. They actually extend the use of analysis into the fields of computers and computation, the former area being almost unknown until recently, the latter never having been as intensively investigated as its importance warrants. Finally, it is up to the user of computational equipment to define his needs in terms of his problems, In any case, computers can never eliminate the need for problem-solving through human ingenuity and intelligence." (Richard E Bellman & Paul Brock, "On the Concepts of a Problem and Problem-Solving", American Mathematical Monthly 67, 1960)

"Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an 'intelligence explosion:, and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make." (Irving J Good, "Speculations Concerning the First Ultraintelligent Machine", Advances in Computers Vol. 6, 1965)

"When intelligent machines are constructed, we should not be surprised to find them as confused and as stubborn as men in their convictions about mind-matter, consciousness, free will, and the like." (Marvin Minsky, "Matter, Mind, and Models", Proceedings of the International Federation of Information Processing Congress Vol. 1 (49), 1965)

"Artificial intelligence is the science of making machines do things that would require intelligence if done by men." (Marvin Minsky, 1968)

"Intelligence has two parts, which we shall call the epistemological and the heuristic. The epistemological part is the representation of the world in such a form that the solution of problems follows from the facts expressed in the representation. The heuristic part is the mechanism that on the basis of the information solves the problem and decides what to do." (John McCarthy & Patrick J Hayes, "Some Philosophical Problems from the Standpoint of Artificial Intelligence", Machine Intelligence 4, 1969)

"Questions are the engines of intellect, the cerebral machines which convert energy to motion, and curiosity to controlled inquiry." (David H Fischer, "Historians’ Fallacies", 1970)

"Man is not a machine, [...] although man most certainly processes information, he does not necessarily process it in the way computers do. Computers and men are not species of the same genus. [...] No other organism, and certainly no computer, can be made to confront genuine human problems in human terms. [...] However much intelligence computers may attain, now or in the future, theirs must always be an intelligence alien to genuine human problems and concerns." (Joesph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation, 1976)

"Play is the only way the highest intelligence of humankind can unfold." (Joseph C Pearce, "Magical Child: Rediscovering Nature's Plan for Our Children", 1977)

"Because of mathematical indeterminancy and the uncertainty principle, it may be a law of nature that no nervous system is capable of acquiring enough knowledge to significantly predict the future of any other intelligent system in detail. Nor can intelligent minds gain enough self-knowledge to know their own future, capture fate, and in this sense eliminate free will." (Edward O Wilson, "On Human Nature", 1978)

"Collective intelligence emerges when a group of people work together effectively. Collective intelligence can be additive (each adds his or her part which together form the whole) or it can be synergetic, where the whole is greater than the sum of its parts." (Trudy and Peter Johnson-Lenz, "Groupware: Orchestrating the Emergence of Collective Intelligence", cca. 1980)

"Knowing a great deal is not the same as being smart; intelligence is not information alone but also judgement, the manner in which information is coordinated and used." (Carl Sagan, "Cosmos", 1980)

"The basic idea of cognitive science is that intelligent beings are semantic engines - in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found." (John Haugeland, "Semantic Engines: An introduction to mind design", 1981)

"There is a tendency to mistake data for wisdom, just as there has always been a tendency to confuse logic with values, intelligence with insight. Unobstructed access to facts can produce unlimited good only if it is matched by the desire and ability to find out what they mean and where they lead." (Norman Cousins, "Human Options : An Autobiographical Notebook", 1981) 

"Cybernetic information theory suggests the possibility of assuming that intelligence is a feature of any feedback system that manifests a capacity for learning." (Paul Hawken et al, "Seven Tomorrows", 1982)

"We lose all intelligence by averaging." (John Naisbitt, "Megatrends: Ten New Directions Transforming Our Lives", 1982)

"Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped onto the other (the computer)." (George Johnson, Machinery of the Mind: Inside the New Science of Artificial Intelligence, 1986)

"Cybernetics is simultaneously the most important science of the age and the least recognized and understood. It is neither robotics nor freezing dead people. It is not limited to computer applications and it has as much to say about human interactions as it does about machine intelligence. Today’s cybernetics is at the root of major revolutions in biology, artificial intelligence, neural modeling, psychology, education, and mathematics. At last there is a unifying framework that suspends long-held differences between science and art, and between external reality and internal belief." (Paul Pangaro, "New Order From Old: The Rise of Second-Order Cybernetics and Its Implications for Machine Intelligence", 1988)

"A popular myth says that the invention of the computer diminishes our sense of ourselves, because it shows that rational thought is not special to human beings, but can be carried on by a mere machine. It is a short stop from there to the conclusion that intelligence is mechanical, which many people find to be an affront to all that is most precious and singular about their humanness." (Jeremy Campbell, "The improbable machine", 1989)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"Modeling underlies our ability to think and imagine, to use signs and language, to communicate, to generalize from experience, to deal with the unexpected, and to make sense out of the raw bombardment of our sensations. It allows us to see patterns, to appreciate, predict, and manipulate processes and things, and to express meaning and purpose. In short, it is one of the most essential activities of the human mind. It is the foundation of what we call intelligent behavior and is a large part of what makes us human. We are, in a word, modelers: creatures that build and use models routinely, habitually – sometimes even compulsively – to face, understand, and interact with reality."  (Jeff Rothenberg, "The Nature of Modeling. In: Artificial Intelligence, Simulation, and Modeling", 1989)

"We haven't worked on ways to develop a higher social intelligence […] We need this higher intelligence to operate socially or we're not going to survive. […] If we don't manage things socially, individual high intelligence is not going to make much difference. [...] Ordinary thought in society is incoherent - it is going in all sorts of directions, with thoughts conflicting and canceling each other out. But if people were to think together in a coherent way, it would have tremendous power." (David Bohm, "New Age Journal", 1989)

"[Language comprehension] involves many components of intelligence: recognition of words, decoding them into meanings, segmenting word sequences into grammatical constituents, combining meanings into statements, inferring connections among statements, holding in short-term memory earlier concepts while processing later discourse, inferring the writer’s or speaker’s intentions, schematization of the gist of a passage, and memory retrieval in answering questions about the passage. [… The reader] constructs a mental representation of the situation and actions being described. […] Readers tend to remember the mental model they constructed from a text, rather than the text itself." (Gordon H Bower & Daniel G Morrow, 1990)

"The insight at the root of artificial intelligence was that these 'bits' (manipulated by computers) could just as well stand as symbols for concepts that the machine would combine by the strict rules of logic or the looser associations of psychology." (Daniel Crevier, "AI: The tumultuous history of the search for artificial intelligence", 1993)

"The leading edge of growth of intelligence is at the cultural and societal level. It is like a mind that is struggling to wake up. This is necessary because the most difficult problems we face are now collective ones. They are caused by complex global interactions and are beyond the scope of individuals to understand and solve. Individual mind, with its isolated viewpoints and narrow interests, is no longer enough." (Jeff Wright, "Basic Beliefs", [email] 1995)

"Adaptation is the process of changing a system during its operation in a dynamically changing environment. Learning and interaction are elements of this process. Without adaptation there is no intelligence." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Artificial intelligence comprises methods, tools, and systems for solving problems that normally require the intelligence of humans. The term intelligence is always defined as the ability to learn effectively, to react adaptively, to make proper decisions, to communicate in language or images in a sophisticated way, and to understand." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Learning is the process of obtaining new knowledge. It results in a better reaction to the same inputs at the next session of operation. It means improvement. It is a step toward adaptation. Learning is a major characteristic of intelligent systems." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Intelligence is: (a) the most complex phenomenon in the Universe; or (b) a profoundly simple process. The answer, of course, is (c) both of the above. It's another one of those great dualities that make life interesting." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"It [collective intelligence] is a form of universally distributed intelligence, constantly enhanced, coordinated in real time, and resulting in the effective mobilization of skills. I'll add the following indispensable characteristic to this definition: The basis and goal of collective intelligence is mutual recognition and enrichment of individuals rather than the cult of fetishized or hypostatized communities." (Pierre Levy, "Collective Intelligence", 1999)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"Once a computer achieves human intelligence it will necessarily roar past it." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"[…] when software systems become so intractable that they can no longer be controlled, swarm intelligence offers an alternative way of designing an ‘intelligent’ systems, in which autonomy, emergence, and distributed functioning replace control, preprogramming, and centralization." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Ecological rationality uses reason – rational reconstruction – to examine the behavior of individuals based on their experience and folk knowledge, who are ‘naïve’ in their ability to apply constructivist tools to the decisions they make; to understand the emergent order in human cultures; to discover the possible intelligence embodied in the rules, norms and institutions of our cultural and biological heritage that are created from human interactions but not by deliberate human design. People follow rules without being able to articulate them, but they can be discovered." (Vernon L Smith, "Constructivist and ecological rationality in economics",  2002)

"But intelligence is not just a matter of acting or behaving intelligently. Behavior is a manifestation of intelligence, but not the central characteristic or primary definition of being intelligent. A moment's reflection proves this: You can be intelligent just lying in the dark, thinking and understanding. Ignoring what goes on in your head and focusing instead on behavior has been a large impediment to understanding intelligence and building intelligent machines." (Jeff Hawkins, "On Intelligence", 2004)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006))

"Swarm intelligence is sometimes also referred to as mob intelligence. Swarm intelligence uses large groups of agents to solve complicated problems. Swarm intelligence uses a combination of accumulation, teamwork, and voting to produce solutions. Accumulation occurs when agents contribute parts of a solution to a group. Teamwork occurs when different agents or subgroups of agents accidentally or purposefully work on different parts of a large problem. Voting occurs when agents propose solutions or components of solutions and the other agents vote explicitly by rating the proposal’s quality or vote implicitly by choosing whether to follow the proposal." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

"The brain and its cognitive mental processes are the biological foundation for creating metaphors about the world and oneself. Artificial intelligence, human beings’ attempt to transcend their biology, tries to enter into these scenarios to learn how they function. But there is another metaphor of the world that has its own particular landscapes, inhabitants, and laws. The brain provides the organic structure that is necessary for generating the mind, which in turn is considered a process that results from brain activity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Cultures are never merely intellectual constructs. They take form through the collective intelligence and memory, through a commonly held psychology and emotions, through spiritual and artistic communion." (Tariq Ramadan, "Islam and the Arab Awakening", 2012)

"An intuition is neither caprice nor a sixth sense but a form of unconscious intelligence." (Gerd Gigerenzer, "Risk Savvy", 2015)

"Artificial intelligence is the elucidation of the human learning process, the quantification of the human thinking process, the explication of human behavior, and the understanding of what makes intelligence possible." (Kai-Fu Lee, "AI Superpowers: China, Silicon Valley, and the New World Order", 2018)

"Deep learning has instead given us machines with truly impressive abilities but no intelligence. The difference is profound and lies in the absence of a model of reality." (Judea Pearl, "The Book of Why: The New Science of Cause and Effect", 2018)

"AI won‘t be fool proof in the future since it will only as good as the data and information that we give it to learn. It could be the case that simple elementary tricks could fool the AI algorithm and it may serve a complete waste of output as a result." (Zoltan Andrejkovics, "Together: AI and Human. On the Same Side", 2019)

"People who assume that extensions of modern machine learning methods like deep learning will somehow 'train up', or learn to be intelligent like humans, do not understand the fundamental limitations that are already known. Admitting the necessity of supplying a bias to learning systems is tantamount to Turing’s observing that insights about mathematics must be supplied by human minds from outside formal methods, since machine learning bias is determined, prior to learning, by human designers." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)

More quotes on "Intelligence" at the-web-of-knowledge.blogspot.com

06 May 2018

🔬Data Science: Swarm Intelligence (Definitions)

"Swarm systems generate novelty for three reasons: (1) They are 'sensitive to initial conditions' - a scientific shorthand for saying that the size of the effect is not proportional to the size of the cause - so they can make a surprising mountain out of a molehill. (2) They hide countless novel possibilities in the exponential combinations of many interlinked individuals. (3) They don’t reckon individuals, so therefore individual variation and imperfection can be allowed. In swarm systems with heritability, individual variation and imperfection will lead to perpetual novelty, or what we call evolution." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Dumb parts, properly connected into a swarm, yield smart results." (Kevin Kelly, "New Rules for the New Economy", 1999)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"Just what valuable insights do ants, bees, and other social insects hold? Consider termites. Individually, they have meager intelligence. And they work with no supervision. Yet collectively they build mounds that are engineering marvels, able to maintain ambient temperature and comfortable levels of oxygen and carbon dioxide even as the nest grows. Indeed, for social insects teamwork is largely self-organized, coordinated primarily through the interactions of individual colony members. Together they can solve difficult problems (like choosing the shortest route to a food source from myriad possible pathways) even though each interaction might be very simple (one ant merely following the trail left by another). The collective behavior that emerges from a group of social insects has been dubbed 'swarm intelligence'." (Eric Bonabeau & Christopher Meyer, Swarm Intelligence: A Whole New Way to Think About Business, Harvard Business Review, 2001)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." (Ajith Abraham et al, "Swarm Intelligence in Data Mining", 2006)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach discussed later in this chapter. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

[swarm intelligence] "Refers to a class of algorithms inspired by the collective behaviour of insect swarms, ant colonies, the flocking behaviour of some bird species, or the herding behaviour of some mammals, such that the behaviour of the whole can be considered as exhibiting a rudimentary form of 'intelligence'." (John Fulcher, "Intelligent Information Systems", 2009)

"The property of a system whereby the collective behaviors of unsophisticated agents interacting locally with their environment cause coherent functional global patterns to emerge." (M L Gavrilova, "Adaptive Algorithms for Intelligent Geometric Computing", 2009) 

[swarm intelligence] "Is a discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, SI focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment." (Elina Pacini et al, "Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments", 2013). 

"Swarm intelligence (SI) is a branch of computational intelligence that discusses the collective behavior emerging within self-organizing societies of agents. SI was inspired by the observation of the collective behavior in societies in nature such as the movement of birds and fish. The collective behavior of such ecosystems, and their artificial counterpart of SI, is not encoded within the set of rules that determines the movement of each isolated agent, but it emerges through the interaction of multiple agents." (Maximos A Kaliakatsos-Papakostas et al, "Intelligent Music Composition", 2013)

"Collective intelligence of societies of biological (social animals) or artificial (robots, computer agents) individuals. In artificial intelligence, it gave rise to a computational paradigm based on decentralisation, self-organisation, local interactions, and collective emergent behaviours." (D T Pham & M Castellani, "The Bees Algorithm as a Biologically Inspired Optimisation Method", 2015)

"It is the field of artificial intelligence in which the population is in the form of agents which search in a parallel fashion with multiple initialization points. The swarm intelligence-based algorithms mimic the physical and natural processes for mathematical modeling of the optimization algorithm. They have the properties of information interchange and non-centralized control structure." (Sajad A Rather & P Shanthi Bala, "Analysis of Gravitation-Based Optimization Algorithms for Clustering and Classification", 2020)

"It [swarm intelligence] is the discipline dealing with natural and artificial systems consisting of many individuals who coordinate through decentralized monitoring and self-organization." (Mehmet A Cifci, "Optimizing WSNs for CPS Using Machine Learning Techniques", 2021)

Resources:
More quotes on "Swarm Intelligence" at the-web-of-knowledge.blogspot.com.

05 April 2018

🔬Data Science: Genetic Algorithms [GA] (Definitions)

"A method for solving optimization problems using parallel search, based on the biological paradigm of natural selection and 'survival of the fittest'." (Joseph P Bigus, "Data Mining with Neural Networks: Solving Business Problems from Application Development to Decision Support", 1996)

"Algorithms for solving complex combinatorial and organizational problems with many variants, by employing analogy with nature's evolution. The general steps a genetic algorithm cycles through are: generate a new population (crossover) starting at the beginning with initial one; select the best individuals; mutate, if necessary; repeat the same until a satisfactory solution is found according to a goodness (fitness) function." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"The type of algorithm that locates optimal binary strings by processing an initially random population of strings using artificial mutation, crossover, and selection operators, in an analogy with the process of natural selection." (David E Goldberg, "Genetic Algorithms", 1989)

"A technique for estimating computer models (e.g., Machine Learning) based on methods adapted from the field of genetics in biology. To use this technique, one encodes possible model behaviors into a 'genes'. After each generation, the current models are rated and allowed to mate and breed based on their fitness. In the process of mating, the genes are exchanged, and crossovers and mutations can occur. The current population is discarded and its offspring forms the next generation." (William J Raynor Jr., "The International Dictionary of Artificial Intelligence", 1999)

"Genetic algorithms are problem-solving techniques that solve problems by evolving solutions as nature does, rather than by looking for solutions in a more principled way. Genetic algorithms, sometimes hybridized with other optimization algorithms, are the best optimization algorithms available across a wide range of problem types." (Guido Deboeck & Teuvo Kohonen (Eds), "Visual Explorations in Finance with Self-Organizing Maps" 2nd Ed., 2000)

"learning principle, in which learning results are foully from generations of solutions by crossing and eliminating their members. An improved behavior usually ensues from selective stochastic replacements in subsets of system parameters." (Teuvo Kohonen, "Self-Organizing Maps 3rd Ed.", 2001)

"A genetic algorithm is a search method used in computational intelligence to find true or approximate solutions to optimization and search problems." (Omar F El-Gayar et al, "Current Issues and Future Trends of Clinical Decision Support Systems", 2008)

"A method of evolutionary computation for problem solving. There are states also called sequences and a set of possibility final states. Methods of mutation are used on genetic sequences to achieve better sequences." (Attila Benko & Cecília S Lányi, "History of Artificial Intelligence", 2009) 

"Genetic algorithms are derivative free, stochastic optimization methods based on the concepts of natural selection and evolutionary processes." (Yorgos Goletsis et al, Bankruptcy Prediction through Artificial Intelligence, 2009)

"Genetic Algorithms (GAs) are algorithms that use operations found in natural genetics to guide their way through a search space and are increasingly being used in the field of optimisation. The robust nature and simple mechanics of genetic algorithms make them inviting tools for search learning and optimization. Genetic algorithms are based on computational models of fundamental evolutionary processes such as selection, recombination and mutation." (Masoud Mohammadian, Supervised Learning of Fuzzy Logic Systems, 2009)

"The algorithms that are modelled on the natural process of evolution. These algorithms employ methods such as crossover, mutation and natural selection and provide the best possible solutions after analyzing a group of sub-optimal solutions which are provided as inputs." (Prayag Narula, "Evolutionary Computing Approach for Ad-Hoc Networks", 2009)

"The type of algorithm that locates optimal binary strings by processing an initially random population of strings using artificial mutation, crossover, and selection operators, in an analogy with the process of natural selection." (Robert Nisbet et al, "Handbook of statistical analysis and data mining applications", 2009)

"These algorithms mimic the process of natural evolution and perform explorative search. The main component of this method is chromosomes that represent solutions to the problem. It uses selection, crossover, and mutation to obtain chromosomes of highest quality." (Indranil Bose, "Data Mining in Tourism", 2009)

"Search algorithms used in machine learning which involve iteratively generating new candidate solutions by combining two high scoring earlier (or parent) solutions in a search for a better solution." (Radian Belu, "Artificial Intelligence Techniques for Solar Energy and Photovoltaic Applications", 2013)

"Genetic algorithms (GAs) is a stochastic search methodology belonging to the larger family of artificial intelligence procedures and evolutionary algorithms (EA). They are used to generate useful solutions to optimization and search problems mimicking Darwinian evolution." (Niccolò Gordini, "Genetic Algorithms for Small Enterprises Default Prediction: Empirical Evidence from Italy", 2014)

"Genetic algorithms are based on the biological theory of evolution. This type of algorithms is useful for searching and optimization." (Ivan Idris, "Python Data Analysis", 2014)

"A Stochastic optimization algorithms based on the principles of natural evolution." (Harish Garg, "A Hybrid GA-GSA Algorithm for Optimizing the Performance of an Industrial System by Utilizing Uncertain Data", 2015)

"It is a stochastic but not random method of search used for optimization or learning. Genetic algorithm is basically a search technique that simulates biological evolution during optimization process." (Salim Lahmir, "Prediction of International Stock Markets Based on Hybrid Intelligent Systems", 2016)

"Machine learning algorithms inspired by genetic processes, for example, an evolution where classifiers with the greatest accuracy are trained further." (David Natingga, "Data Science Algorithms in a Week" 2nd Ed., 2018)

04 February 2018

🔬Data Science: Artificial Intelligence [AI] (Definitions)

"A computer would deserve to be called intelligent if it could deceive a human into believing that it was human." (Alan Turing, "Computing Machinery and Intelligence", 1950)

"Artificial intelligence is the science of making machines do things that would require intelligence if done by men." (Marvin Minsky, 1968)

"Artificial intelligence comprises methods, tools, and systems for solving problems that normally require the intelligence of humans. The term intelligence is always defined as the ability to learn effectively, to react adaptively, to make proper decisions, to communicate in language or images in a sophisticated way, and to understand." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996) 

"AI views the mind as a type of logical symbol processor that works with strings of text or symbols much as a computer works with strings of Os and Is. In practice, AI means expert systems or decision support systems." (Guido Deboeck & Teuvo Kohonen (Eds), "Visual Explorations in Finance with Self-Organizing Maps" 2nd Ed., 2000)

"Software that performs a function previously ascribed only to human beings, such as natural language processing." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The branch of computer science that is concerned with making computers behave and 'think' like humans." (Linda Volonino & Efraim Turban, "Information Technology for Management" 8th Ed., 2011)

"A field of computer science focused on the development of intelligent-acting agents. Often guided by the theory of how humans solve problems. Has a reputation for overpromising. Wryly definable as all computational problems not yet solved." (Gary Miner et al, "Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications", 2012)

"Artificial intelligence is the mimicking of human thought and cognitive processes to solve complex problems automatically. AI uses techniques for writing computer code to represent and manipulate knowledge." (Radian Belu, "Artificial Intelligence Techniques for Solar Energy and Photovoltaic Applications", 2013)

"It is the investigation exploring whether intelligence can be replicated in machines, to perform tasks that humans can successfully carry out." (Hamid R Arabnia et al, "Application of Big Data for National Security", 2015)

"The study of computer systems that model and apply the intelligence of the human mind" (Nell Dale & John Lewis, "Computer Science Illuminated" 6th Ed., 2015)

"Machines that are designed to evaluate and respond to situations in an appropriate manner. Most artificial intelligence machines are computer based and many of them have achieved remarkable levels of performance in specific areas." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

"A discipline with the goal to develop technology that solves complex problems with skill and creativity that rivals that of the human brain." (O Sami Saydjari, "Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time", 2018)

"A machine’s ability to make decisions and perform tasks that simulate human intelligence and behavior." (Kirti R Bhatele et al, "The Role of Artificial Intelligence in Cyber Security", 2019)

"An attempt to recreate a living intellect, especially human intelligence, in a computer environment." (Tolga Ensari et al, "Overview of Machine Learning Approaches for Wireless Communication", 2019)

"The theory governing the development of computer systems that are able to perform tasks which normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages." (Nil Goksel & Aras Bozkurt, "Artificial Intelligence in Education: Current Insights and Future Perspectives", 2019)

"Algorithms which make machines learn from experience, adjust to new inputs and perform human-like tasks." (Lejla Banjanović-Mehmedović & Fahrudin Mehmedović, "Intelligent Manufacturing Systems Driven by Artificial Intelligence in Industry 4.0", 2020)

"It is the method of mimicking the human intelligence by the machines." (Shouvik Chakraborty & Kalyani Mali, "An Overview of Biomedical Image Analysis From the Deep Learning Perspective", 2020)

"AI is a simulation of human intelligence through the progress of intelligent machines that think and work like humans carrying out such human activities as speech recognition, problem-solving, learning, and planning." (Hari K Kondaveeti et al, "Deep Learning Applications in Agriculture: The Role of Deep Learning in Smart Agriculture", 2021)

"Artificial intelligence (AI) refers to the ability of machines to have cognitive capabilities similar to humans using advanced algorithms and quality data." (Vijayaraghavan Varadharajan & Akanksha Rajendra Singh, "Building Intelligent Cities: Concepts, Principles, and Technologies", 2021)

"Domain of science that deals with the development of computer systems to perform actions like speech-recognition, decision-making, understanding human’s natural language, etc., like humans." (Shatakshi Singhet al, "A Survey on Intelligence Tools for Data Analytics", 2021)

"It is a set of software and hardware systems with many capabilities such as behaving human-like or numerical logic, motion, speech, and sound perception. In other words, AI makes machines think and percept like humans." (Mehmet A Cifci, "Optimizing WSNs for CPS Using Machine Learning Techniques", 2021)

"Machines that work and react like humans using computer programs known as algorithms Algorithms must remain current for AI to work properly, so they rely on machine learning to update them with changes in the worldwide economy and society." (Sue Milton, "Data Privacy vs. Data Security", Global Business Leadership Development for the Fourth Industrial Revolution, 2021)

"Science of simulating intelligence in machines and program them to mimic human actions." (Revathi Rajendran et al, "Convergence of AI, ML, and DL for Enabling Smart Intelligence: Artificial Intelligence, Machine Learning, Deep Learning, Internet of Things", 2021)

"The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages." (Jan Bosch et al, "Engineering AI Systems: A Research Agenda", Artificial Intelligence Paradigms for Smart Cyber-Physical Systems, 2021)

"AI is any set of concepts, applications or technologies that allow a computer to perform tasks that mimic human behavior." (RapidMiner) [source]

"Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. Specific applications of AI include expert systems, natural language processing (NLP), speech recognition and machine vision." (Techtarget) [source]

"A discipline involving research and development of machines that are aware of their surroundings. Most work in A.I. centers on using machine awareness to solve problems or accomplish some task." (KDnuggets)

"An area of computer science which refers to the creation of intelligent machines that can react to scenarios and make decisions as a human would." (Board International)

"A set of sciences, theories and techniques whose purpose is to reproduce by a machine the cognitive abilities of a human being." (Council of Europe) 

"The theory and capabilities that strive to mimic human intelligence through experience and learning." (Forrester)

"Artificial Intelligence (AI) is the broad term used to describe the set of technologies that enable machines to sense, comprehend, act and learn." (Accenture)

"Artificial intelligence (AI) applies advanced analysis and logic-based techniques, including machine learning, to interpret events, support and automate decisions, and take actions." (Gartner)

12 August 2014

🌡️Performance Management: Emotional Intelligence (Definitions)

"A gauge of an individual’s ability to control his or her emotions and evaluate and manage the emotions of others. Individuals with high levels of emotional intelligence do an outstanding job at leading teams, managing others, and working with customers." (Gina Abudi & Brandon Toropov, "The Complete Idiot's Guide to Best Practices for Small Business", 2011)

"The capability to identify, assess, and manage the personal emotions of oneself and other people, as well as the collective emotions of groups of people." (For Dummies, "PMP Certification All-in-One For Dummies" 2nd Ed., 2013)

"The ability to perceive, control, and evaluate emotions in oneself and in others. US psychologist Daniel Goleman noted that high EQ is common in business leaders and facilitates other leadership traits. |" (DK, "The Business Book", 2014)

"Describes an ability, capacity, or skill to perceive, assess, and manage the emotions of oneself, of others, and of groups." (Project Management Institute, "Project Manager Competency Development Framework 3rd Ed.", 2017)

"The ability to identify, assess, and manage the personal emotions of oneself and other people, as well as the collective emotions of groups of people." (Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK® Guide )", 2017)

"Emotional intelligence is the measurement of an individual’s abilities to recognise and manage their own emotions and the emotions of other people, both individually and in groups." (Christina Lovelock & Debra Paul, "Delivering Business Analysis: The BA Service handbook", 2019)

"The ability to identify, assess, monitor, and control emotions of self to guide thinking and impact effective actions of others." (Joan C Dessinger, "Fundamentals of Performance Improvement 3rd Ed", 2012)

"The ability to identify, assess, and manage your own emotions and the emotions of others; useful in reducing tension and increasing cooperation." (Cate McCoy & James L Haner, "CAPM Certified Associate in Project Management Practice Exams", 2018)

"The ability, capacity, and skill to identify, assess, and manage the emotions of one's self, of others, and of groups." (IQBBA)

08 September 2006

🖌️James Surowiecki - Collected Quotes

"Diversity and independence are important because the best collective decisions are the product of disagreement and contest, not consensus or compromise." (James Surowiecki, "The Wisdom of Crowds", 2005)

"Groups are only smart when there is a balance between the information that everyone in the group shares and the information that each of the members of the group holds privately. It's the combination of all those pieces of independent information, some of them right, some of the wrong, that keeps the group wise." (James Surowiecki, "The Wisdom of Crowds", 2005)

"Errors in individual judgment won’t wreck the group’s collective judgment as long as those errors aren’t systematically pointing in the same direction. One of the quickest ways to make people’s judgments systematically biased is to make them dependent on each other for information." (James Surowiecki, "The Wisdom of Crowds", 2005)

"The fact that cognitive diversity matters does not mean that if you assemble a group of diverse but thoroughly uninformed people, their collective wisdom will be smarter than an expert's. But if you can assemble a diverse group of people who possess varying degrees of knowledge and insight, you're better off entrusting it with major decisions rather than leaving them in the hands of one or two people, no matter how smart those people are." (James Surowiecki, "The Wisdom of Crowds", 2005)

"The smartest groups, then, are made up of people with diverse perspectives who are able to stay independent of each other." (James Surowiecki, "The Wisdom of Crowds", 2005)

"[...] under the right circumstances, groups are remarkably intelligent, and are often smarter than the smartest people in them. Groups do not need to be dominated by exceptionally intelligent people in order to be smart. Even if most of the people within a group are not especially well-informed or rational, it can still reach a collectively wise decision." (James Surowiecki, "The Wisdom of Crowds", 2005)

15 April 2006

🖍️Ray Kurzweil - Collected Quotes

"A primary reason that evolution - of life-forms or technology - speeds up is that it builds on its own increasing order." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"Neither noise nor information is predictable." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"Once a computer achieves human intelligence it will necessarily roar past it." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"Sometimes, a deeper order - a better fit to a purpose - is achieved through simplification rather than further increases in complexity." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"The Law of Accelerating Returns: As order exponentially increases, time exponentially speeds up (that is, the time interval between salient events grows shorter as time passes)." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"The Law of Time and Chaos: In a process, the time interval between salient events (that is, events that change the nature of the process, or significantly affect the future of the process) expands of contracts along with the amount of chaos." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"Order [...] is information that fits a purpose." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"A key aspect of a probabilistic fractal is that it enables the generation of a great deal of apparent complexity, including extensive varying detail, from a relatively small amount of design information. Biology uses this same principle. Genes supply the design information, but the detail in an organism is vastly greater than the genetic design information."  (Ray Kurzweil, "The Singularity is Near", 2005)

"Although the Singularity has many faces, its most important implication is this: our technology will match and then vastly exceed the refinement and suppleness of what we regard as the best of human traits."  (Ray Kurzweil, "The Singularity is Near", 2005)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"However, the law of accelerating returns pertains to evolution, which is not a closed system. It takes place amid great chaos and indeed depends on the disorder in its midst, from which it draws its options for diversity. And from these options, an evolutionary process continually prunes its choices to create ever greater order."  (Ray Kurzweil, "The Singularity is Near", 2005)

"'Increasing complexity' on its own is not, however, the ultimate goal or end-product of these evolutionary processes. Evolution results in better answers, not necessarily more complicated ones. Sometimes a superior solution is a simpler one."  (Ray Kurzweil, "The Singularity is Near", 2005)

"Machines can pool their resources, intelligence, and memories. Two machines—or one million machines - can join together to become one and then become separate again. Multiple machines can do both at the same time: become one and separate simultaneously. Humans call this falling in love, but our biological ability to do this is fleeting and unreliable." (Ray Kurzweil, "The Singularity is Near", 2005)

"Most long-range forecasts of what is technically feasible in future time periods dramatically underestimate the power of future developments because they are based on what I call the 'intuitive linear' view of history rather than the 'historical exponential'.” view'." (Ray Kurzweil, "The Singularity is Near", 2005)

"Order is information that fits a purpose. The measure of order is the measure of how well the information fits the purpose."  (Ray Kurzweil, "The Singularity is Near", 2005)

"The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant). Linear versus exponential: Linear growth is steady; exponential growth becomes explosive." (Ray Kurzweil, "The Singularity is Near", 2005)

"The Singularity will represent the culmination of the merger of our biological thinking and existence with our technology, resulting in a world that is still human but that transcends our biological roots. There will be no distinction, post-Singularity, between human and machine or between physical and virtual reality. If you wonder what will remain unequivocally human in such a world, it’s simply this quality: ours is the species that inherently seeks to extend its physical and mental reach beyond current limitations." (Ray Kurzweil, "The Singularity is Near", 2005)

"[...] there are no hard problems, only problems that are hard to a certain level of intelligence." (Ray Kurzweil, "The Singularity is Near", 2005)

"When a machine manages to be simultaneously meaningful and surprising in the same rich way, it too compels a mentalistic interpretation. Of course, somewhere behind the scenes, there are programmers who, in principle, have a mechanical interpretation. But even for them, that interpretation loses its grip as the working program fills its memory with details too voluminous for them to grasp."  (Ray Kurzweil, "The Singularity is Near", 2005)

"If understanding language and other phenomena through statistical analysis does not count as true understanding, then humans have no understanding either." (Ray Kurzweil, "How to Create a Mind", 2012)

"The story of evolution unfolds with increasing levels of abstraction." (Ray Kurzweil, "How to Create a Mind", 2012)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.