Showing posts with label projects. Show all posts
Showing posts with label projects. Show all posts

09 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part IV: Making It in the Statistics)

Business Intelligence
Business Intelligence Series

Various sources (e.g., [1], [2], [3]) advance the failure rates for data projects somewhere between 70% and 85%, rates which are a bit higher than the failure of standard projects estimated at 60-75% but not by much. This means that only 2-3 out of 10 projects will succeed and that’s another reason to plan for failure, respectively embrace the failure

Unfortunately, the statistics advanced on project failure have no solid fundament and should be regarded with circumspection as long the methodology and information about the population used for the estimates aren’t shared, though they do reflect an important point – many data projects do fail! It would be foolish to think that your project will not fail just because you’re a big company, and you have the best resources, and you have a proven rate of success, and you took all the precautions for the project not to fail.

Usually at the end of a project the team meets together to document the lessons learned in the hope that the next projects will benefit from them. The team did learn something, though as the practice shows even if the team managed to avoid some issues, other issues will impact the next similar project, leading to similar variances. One can summarize this as "on the average the impact of new issues and avoided known issues tends to zero out" or "on average, the plusses and minuses balance each other across projects". It’s probably a question of focus – if organizations focus too much on certain aspects, other aspects are ignored and/or unseen. 

So, your first data project will more likely fail. The question is: what do you do about it? It’s important to be aware of why projects and data projects fail, though starting to consider and monitor each possible issue can prove to be ineffective. One can, however, create a risk register from the list and estimate the rates for each of the potential failures, respectively focus on only the top 3-5 which have the highest risk. Of course, one should reevaluate the estimates on a regular basis though that’s Risk Management 101. 

Besides this, one should focus on how the team can make the project succeed. When adopting a technology, methodology or set of processes, it’s recommended to start with a proof-of-concept (PoC). To make the PoC a helpful experience it’s probably important to start with a topic that’s not too big to handle, but that also involves some complexity that would allow the organization to evaluate the targeted set of tools and technologies. It can also be a topic for which other organizations have made important progress, respectively succeed. The temptation is big to approach the most stringent issues in the organization, respectively to build something big that can have an enormous impact for the organization. Jumping too soon into such topics can just increase the chances of failure. 

One can also formulate the goals, objectives and further requirements in a form that allows the organization to build upon them even if the project fails. A PoC is about learning, building a foundation, doing the groundwork, exploring, mapping the unknown, and identifying what's still missing to make progress, respectively closing the full circle. A PoC is less about overachievement and a big impact, which can happen, though is a consequence of the good work done in the PoC. 

The bottom line, no matter whether you succeed or fail, once you start a project, you’ll still make it in the statistics! More important is what you’ve learnt after the first data project, respectively how you can use the respective knowledge in further projects to make a difference!

Previous Post <<||>> Next Post

References:
[1] Harvard Business Review (2023) Keep Your AI Projects on Track, by Iavor Bojinov (link)
[2] Cognilytica (2023) The Shocking Truth: 70-80% of AI Projects Fail! (link)
[3] VentureBeat (2019) Why do 87% of data science projects never make it into production? (link)

14 December 2023

💫ERP Systems: Microsoft Dynamics 365's Invoice Capture (Some Thoughts to Start with)

Enterprise Resource Planning

Introduction

It's almost the year end and it's time for reviewing what went good and not that good during the year. On the "successful projects" list I can put the Invoice Capture implementation. I wrote on a previous post a short review on what the feature is about.

I had the chance of configuring Invoice Capture for Cost invoices (invoices without Purchase orders) while it was still in public preview, and we went live soon after the feature became generally available. The implementation had its challenges though in the end it was a positive experience, learning a lot from my colleagues, from Microsoft, other consultants and business users who embarked on the same journey. 

Where to Start?

Usually, it's a good idea to start with the documentation and the standard training material, which provides a good overview of what Invoice Capture is about, the steps needed for configuration, the processes involved, permissions, etc. 

You should check also the "Invoice Capture for Dynamics 365" group on Yammer (aka Viva) because besides the latest version of the Implementation Guide document are published in there also the Release notes and training videos associated with them, to which other users provide (lot of) feedback and questions. Some information is first available in the group and much later made available in the documentation. If you're facing an error or a challenge, more likely there's a conversation in there and the answer you're looking for. Otherwise, you can start a thread and the others will try to help. At least until now, Microsoft was quite active in helping.

Via FastTrack, Microsoft provided several sessions in Dec-2022 (preview) and Sep-2023 (GA) that can be used to get a good overview about the feature and its implementation. Frankly, I would start with the last session and then explore the other resources. In the process I found useful several other resources, mainly YouTube content - see Dan's Corner (link), DAFTD365 - and LinkedIn - see Hendrik M Larsen's posts

You might want to also check the Release planner for Finance, to see what features are in the pipeline, respectively the Ideas for Dynamics to get an idea what kind of improvements others wish for. 

In parallel, one can start sketching the "AS IS" and "TO BE" processes, and eventually put together a business case for using Invoice Capture to digitize the processing of Vendor invoices. This isn't a simple Change request, therefore it makes sense to start a project, though its scope is relatively small. 

Bridging the Gap

One can look at the "TO BE" process based on the functionality provided, respectively planned by Microsoft for Invoice capture, or look at the broader picture and sketch how an ideal digitized process should look like. If the gap between the two pictures is big, then might be a good idea to look at alternatives, which anyway should be done as part of the business case. There might be third-party tools out there (e,g, ExFlow) which provide similar functionality, however on the long term it makes sense to go with Microsoft, even if the full extent of the functionality might be not available. 

A review of other tools might be good - to understand how the ISV's approached the integration, what kind of features they provide, respectively whether the ideal digitized process makes sense. Conversely, this will imply more effort.

The current version of Invoice capture provides a good basis to build upon. One can use Power Apps or Power Automate to address some of the gaps, some gaps can be discussed with Microsoft and stress their importance, while other gaps are maybe not that important and can be dismissed. One way or another one must be ready to compromise as long as this doesn't have an important impact on the business. 

The Project

The scope of the project might be relatively small, though one should follow the best practices of Project Management and make sure that all important stakeholders are involved, that the right resources are available when needed, manage the requirements adequately, assure that the changes are adequately tested, that the users are trained, the process documented, etc.

It's important to understand that the simple configuration of Invoice capture will not be the end of the effort. As Microsoft will release further features directly and indirectly related to Invoice Capture, additional effort might be involved after the implementation went live to address the gaps, opportunities, as well as the risks. Moreover, Invoice Capture requires a learning curve; addressing the lessons learned might involve further changes in the system's setup as well in data's management. Therefore, further effort must be planned accordingly. 

Even if we talk about a full implementation or the implementation of a feature, the overall success tends to be more dependent on how the implementation is approached than on the technology involved. 

Closing Thoughts

Some of the points made here can be applied to similar feature implementations. Overall, it's important to gather enough information to start the project and in time to reach the level of depth required by it. Don't expect for things to be perfect, start small and evolve, prioritize, cover the gaps, optimize!

Previous post <<||>> Next post

29 March 2021

Notes: Team Data Science Process (TDSP)

Team Data Science Process (TDSP)
Acronyms:
Artificial Intelligence (AI)
Cross-Industry Standard Process for Data Mining (CRISP-DM)
Data Mining (DM)
Knowledge Discovery in Databases (KDD)
Team Data Science Process (TDSP) 
Version Control System (VCS)
Visual Studio Team Services (VSTS)

Resources:
[1] Microsoft Azure (2020) What is the Team Data Science Process? [source]
[2] Microsoft Azure (2020) The business understanding stage of the Team Data Science Process lifecycle [source]
[3] Microsoft Azure (2020) Data acquisition and understanding stage of the Team Data Science Process [source]
[4] Microsoft Azure (2020) Modeling stage of the Team Data Science Process lifecycle [source
[5] Microsoft Azure (2020) Deployment stage of the Team Data Science Process lifecycle [source]
[6] Microsoft Azure (2020) Customer acceptance stage of the Team Data Science Process lifecycle [source]

20 March 2021

🧭Business Intelligence: New Technologies, Old Challenges (Part I: An Introduction)

Business Intelligence

Each important technology has the potential of creating divides between the specialists from a given field. This aspect is more suggestive in the data-driven fields like BI/Analytics or Data Warehousing. The data professionals (engineers, scientists, analysts, developers) skilled only in the new wave of technologies tend to disregard the role played by the former technologies and their role in the data landscape. The argumentation for such behavior is rooted in the belief that a new technology is better and can solve any problem better than previous technologies did. It’s a kind of mirage professionals and customers can easily fall under.

Being bigger, faster, having new functionality, doesn’t make a tool the best choice by default. The choice must be rooted in the problem to be solved and the set of requirements it comes with. Just because a vibratory rammer is a new technology, is faster and has more power in applying pressure, this doesn’t mean that it will replace a hammer. Where a certain type of power is needed the vibratory rammer might be the best tool, while for situations in which a minimum of power and probably more precision is needed, like driving in a nail, then an adequately sized hammer will prove to be a better choice.

A technology is to be used in certain (business/technological) contexts, and even if contexts often overlap, the further details (aka requirements) should lead to the proper use of tools. It’s in a professional’s duties to be able to differentiate between contexts, requirements and the capabilities of the tools appropriate for each context. In this resides partially a professional’s mastery over its field of work and of providing adequate solutions for customers’ needs. Especially in IT, it’s not enough to master the new tools but also have an understanding about preceding tools, usage contexts, capabilities and challenges.

From an historical perspective each tool appeared to fill a demand, and even if maybe it didn’t manage to fill it adequately, the experience obtained can prove to be valuable in one way or another. Otherwise, one risks reinventing the wheel, or more dangerously, repeating the failures of the past. Each new technology seems to provide a deja-vu from this perspective.

Moreover, a new technology provides new opportunities and requires maybe to change our way of thinking in respect to how the technology is used and the processes or techniques associated with it. Knowledge of the past technologies help identifying such opportunities easier. How a tool is used is also a matter of skills, while its appropriate use and adoption implies an inherent learning curve. Having previous experience with similar tools tends to reduce the learning curve considerably, though hands-on learning is still necessary, and appropriate learning materials or tutoring is upon case needed for a smoother transition.

In what concerns the implementation of mature technologies, most of the challenges were seldom the technologies themselves but of non-technical nature, ranging from the poor understanding/knowledge about the tools, their role and the implications they have for an organization, to an organization’s maturity in leading projects. Even the most-advanced technology can fail in the hands of non-experts. Experience can’t be judged based only on the years spent in the field or the number of projects one worked on, but on the understanding acquired about implementation and usage’s challenges. These latter aspects seem to be widely ignored, even if it can make the difference between success and failure in a technology’s implementation.

Ultimately, each technology is appropriate in certain contexts and a new technology doesn’t necessarily make another obsolete, at least not until the old contexts become obsolete.

Previous Post <<||>>Next Post

07 March 2021

💼Project Management: Methodologies (Part II: Agile Manifesto Reloaded II - Requirements Management)

Project Management

Independently of its scope and the methodology used, each software development project is made of the same blocks/phases arranged eventually differently. It starts with Requirements Managements (RM) subprocesses in which the functional and non-functional requirements are gathered, consolidated, prioritized and brought to a form which facilitates their understanding and estimation. It’s an iterative process as there can be overlapping in functionality, requirements that don’t bring any significant benefit when compared with the investment, respectively new aspects are discovered during the internal discussions or with the implementer.

As output of this phase, it’s important having a list of requirements that reflect customer’s needs in respect to the product(s) to be implemented. Once frozen, the list defines project’s scope and is used for estimating the costs, sketching a draft of the final solution, respectively of reaching a contractual agreement with the implementer. Ideally the set of requirements should be completed and be coherent while reflecting customer’s needs. It allows thus in theory to agree upon costs as well about an architecture and other important aspects (responsibilities/accountability).

Typically, each new requirement considered after this stage needs to go through a Change Management (CM) process in which it gets formulated to the needed level of detail, a cost, effort and impact analysis is performed, respectively the budget for it is approved or the change gets rejected. Ideally small changes can be considered as part of a buffer budget upfront, however in the end each change comes with a cost and project delays.

Some changes can come late in the project and can have an important impact on the whole architecture when important aspects were missed upfront. Moreover, when the number of changes goes beyond a certain limit it can lead to what is known as scope creep, with important consequences on project’s costs, timeline and quality. Therefore, to minimize the impact on the project, the number of changes needs to be kept to a minimum, typically considering only the critical changes, while the others can be still implemented after project’s end.

The agile manifesto’s principles impose an important constraint on the requirements - changing requirements is a good practice even late in the process – an assumption - best requirements emerge from self-organizing teams, and probably one implication – the requirements need to be defined together with the implementer.

The way changing requirements are handled seem to provide more flexibility though it’s actually a constraint imposed on the CM process which interfaces with the RM processes. Without a proper CM in place, any requirement might arrive to be implemented, independently on whether is feasible or not. This can easily make project’s costs explode, sometimes unnecessarily, while accommodating extreme behavior like changing the same functionality frequently, handling exceptions extensively, etc.

It’s usually helpful to define the requirements together with the implementer, as this can bring more quality in the process, even if more time needs to be invested. However, starting from a solid set of requirements is a critical factor for project’s success. The manifesto makes no direct statement about this. Just iterates that good requirements emerge from self-organizing teams which is not necessarily the case. 

The users who in theory can define the requirements best are the ones who have the deepest knowledge about an organization’s processes and IT architecture, typically the key users and/or IT experts. Self-organization revolves around how a team organizes itself and handles the various activities, though there’s no guarantee that it will address the important aspects, no matter how motivated the team is, how constant the pace, how excellent the technical details were handled or how good the final product works.

Previous Post <<||>>Next Post

💼Project Management: Methodologies (Part I: Agile Manifesto Reloaded I - An Introduction)

 

Project Management

There are so many books written on agile methodologies, each attempting to depict the realities of software development projects. There are many truths considered in them, though they seem to blend in a complex texture in which the writer takes usually the position of a preacher in which the sins of the traditional technologies are contrasted with the agile principles. In extremis everything done in the past seems to be wrong, while the agile methods seem to be a panacea, which is seldom the case.

There are already 20 years since the agile manifesto was published and the methodologies adhering to the respective principles don’t seem to provide the expected success, suffering from the same chronical symptoms of their predecessors - they are poorly understood and implemented, tend to function after hammer’s principle, respectively the software development projects still deliver poor results. Moreover, there are more and more professionals who raise their voice against agile practices.

Frankly, the principles behind the agile manifesto make sense. A project should by definition satisfy stakeholders’ requirements, ideally through regular deliveries that incorporate the needed functionality while gradually seeking to get early feedback from customers, respectively involve the customer through all project’s duration, working together to deliver a feasible product. Moreover, self-organizing teams, face-to-face meetings, constant pace, technical excellence should allow minimizing the waste, respectively maximizing the efficiency in the project. Further aspects like simplicity, good design and architecture should establish a basis for success.

Re-reading the agile manifesto, even if each read pulls from experience more and more pro and cons, the manifesto continues to look like a Christmas wish-list. Even if the represented ideas make sense and satisfy a specific need, they are difficult to achieve in a project’s context and setup. Each wish introduces a constraint that brings with it its own limitations. Unfortunately, each policy introduced by a methodology follows the same pattern, no matter of the methodology considered. Moreover, the wishes cover only a small subset from a project’s texture, are general and let lot of space for interpretation and implementation, though the same can be said about any principles that don’t provide a coherent worldview or a conceptual model.

The software development industry needs a coherent worldview that reflects its assumptions, models, characteristics, laws and challenges. Software Engineering (SE) attempts providing such a worldview though unfortunately is too complex for many and there seem to be a big divide when considered in respect to the worldviews introduced by the various Project Management (PM) methodologies. Studying one or two PM methodologies, learning a few programming languages and even the hand on experience on a few projects won’t fill the gaps in knowledge associated with the SE worldview.

Organizations don’t seem to see the need for professionals of having a formal education in SE. On the other side is expected from employees to have by default some of the skillset required, which is not the case. Besides understanding and implementing a technology there are a set of knowledge areas in which the IT professional must have at least a high-level knowledge if it’s expected from him/her to think critically about the respective areas. Unfortunately, the lack of such knowledge leads sometimes to situations which can impact negatively projects.

Almost each important word from the agile manifesto pulls with it a set of concepts from a SE’ worldview – customer satisfaction, software delivery, working software, requirements management, change management, cooperation, teamwork, trust, motivation, communication, metrics, stakeholders’ management, good design, good architecture, lessons learned, performance management, etc. The manifesto needs to be regarded from a SE’s eyeglasses if one expects value from it.

Previous Post <<||>>  Next Post

04 March 2021

💼Project Management: Project Execution (Part IV: Projects' Dynamics II - Motion)

Project Management

Motion is the action or process of moving or being moved between an initial and a final or intermediate point. From the tinniest endeavors to the movement of the planets and beyond, everything is governed by motion. If the laws of nature seem to reveal an inner structural perfection, the activities people perform are quite often far from perfect, which is acceptable if we consider that (almost) everything is a learning process. What is probably less acceptable is the volume of inefficient motion we can easily categorize sometimes as waste.

The waste associated with motion can take many forms: sorting through a pile of tools to find the right one, searching for information, moving back and forth to reach a destination or achieve a goal, etc. Suboptimal motion can have important effects for an organization resulting in reduced productivity, respectively higher costs.

If for repetitive activities that involve a certain degree of similarity can be found typically a way to optimize the motion, the higher the uncertainty of the steps involved, the more difficult it becomes to optimize it. It’s the case of discovery endeavors in which the path between start and destination can’t be traced beforehand, respectively when the destination or path in between can’t be depicted to the needed level of detail. A strategy’s implementation, ERP implementations and other complex projects, especially the ones dealing with new technologies and/or incomplete knowledge, tend to be exploratory in nature and thus fall under this latter type a motion.

In other words, one must know at minimum the starting point, the destination, how to reach it and what it takes to reach it – resources, knowledge, skillset. When one has all this information one can go on and estimate how long it will take to reach the destination, though the estimate reflects the information available as well estimator’s skills in translating the information into a realistic roadmap. Each new information has the potential of impacting considerably the whole process, in extremis to the degree that one must start the journey anew. The complexity of such projects and the volume of uncertainty can make estimation difficult if not impossible, no matter how good estimators' skills are. At best an estimator can come with a best- and worst-case estimation, both however dependent on the assumptions made.

Moreover, complex projects are sensitive to the initial conditions or auspices under which they start. This sensitivity can turn a project in a totally different direction or pace, that can be reinforced positively or negatively as the project progresses. It’s a continuous interplay between internal and external factors and components that can create synergies or have adverse effects with the potential of reaching tipping points.

Related to the initial conditions, as the praxis sometimes shows, for entities found in continuous movement (like organizations) it’s also important to know from where one’s coming (and at what speed), as the previous impulse (driving force) can be further used or stirred as needed. Metaphorically, a project will need a certain time to find the right pace if it lacks the proper impulse.

Unless the team is trained to play and plays like an orchestra, the impact of deviations from expectations can be hardly quantified. To minimize the waste, ideally a project’s journey should minimally deviate from the optimal path, which can be challenging to achieve as a project’s mass can pull the project in one direction or the other. The more the project advances the bigger the mass, fact which can make a project unstoppable. When such high-mass projects are stopped, their impulse can continue to haunt the organization years after.

Previous Post <<||>> Next Post

💼Project Management: Project Execution (Part III: Projects' Dynamics - An Introduction)

Despite the considerable collection of books on Project Management (PM) and related methodologies, and the fact that projects are inherent endeavors in professional as well personal life (setups that would give in theory people the environment and exposure to different project types), people’s understanding on what it takes to plan and execute a project seems to be narrow and questionable sometimes. Moreover, their understanding diverges considerably from common sense. It’s also true that knowledge and common sense are relative when considering any human endeavor in which there are multiple roads to the same destination, or when learning requires time, effort, skills, and implies certain prerequisites, however the lack of such knowledge can hurt when endeavor’s success is a must and a team effort. 

Even if the lack of understanding about PM can be considered as minor when compared with other challenges/problems faced by a project, when one’s running fast to finish a race, even a small pebble in one’s running shoes can hurt a lot, especially when one doesn’t have the luxury to stop and remove the stone, as it would make sense to do.

It resides in the human nature to resist change, to seek for information that only confirm own opinions, to follow the same approach in handling challenges, even if the attempts are far from optimal, even if people who walked the same path tell you that there’s a better way and even sketch the path and provide information about what it takes to reach there. As it seems, there’s the predisposition to learn on the hard way, if there’s significant learning involved at all. Unfortunately, such situations occur in projects and the solutions often overrun the boundaries of PM, where social and communication skills must be brought into play. 

On the other side, there’s still hope that change can be managed optimally once the facts are explained to a certain level that facilitates understanding. However, such an attempt can prove to be quite a challenge, given the various setups in which PM takes place. The intersection between technologies and organizational setups lead to complex scenarios which make such work more difficult, even if projects’ challenges are of organizational rather than technological nature. 

When the knowledge we have about the world doesn’t fit our expectation, a simple heuristic is to return to the basics. A solid edifice can be built only on a solid foundation and the best foundation in coping with reality is to establish common ground with other people. One can achieve this by identifying their suppositions and expectations, by closing the gap in perception and understanding, by establishing a basis for communication, in which feedback is a must if one wants to make significant progress.

Despite of being explorative and time-consuming, establishing common ground can be challenging when addressing to an imaginary audience, which is quite often the situation. The practice shows however that progress can be made by starting with a set of well-formulated definitions, simple models, principles, and heuristics that have the potential of helping in sense-making.

The goal is thus to identify first the definitions that reflect the basic concepts that need to be considered. Once the concepts defined, they can be related to each other with the help of a few models. Even if fictitious, as simplifications of the reality, the models should allow playing with the concepts, facilitating concepts’ understanding. Principles (set of rules for reasoning) can be used together with heuristics (rules of thumb methods or techniques) for explaining the ‘known’ and approaching the ‘unknown’. Even maybe not perfect, these tools can help building theories or explanatory constructs.

||>>Next Post

03 February 2021

📦Data Migrations (DM): Conceptualization (Part II: Plan vs. Concept vs. Strategy)

Data Migration
Data Migrations Series

A concept is a document that describes at high level the set of necessary steps and their implications to achieve a desired result, typically making the object of a project. A concept is usually needed to provide more technical and nontechnical information about the desired solution, the context in which a set of steps are conducted, respectively the changes considered, how the changes will be implemented and the further aspects that need to be considered. It can include a high-level plan and sometimes also information that typically belong in a Business Case – goals,objectives, required resources, estimated effort and costs, risks and opportunities.

A concept is used primarily as basis for sign-off as well for establishing common ground and understanding. When approved, it’s used for the actual implementation and solution’s validation. The concept should be updated as the project progresses, respectively as new information are discovered.

Creating a concept for a DM can be considered as best practice because it allows documenting the context, the technical and organizational requirements and dependencies existing between the DM and other projects, how they will be addressed. The concept can include also a high-level plan of the main activities (following to be detailed in a separate document).

Especially when the concept has an exploratory nature (due to incomplete knowledge or other considerations), it can be validated with the help of a proof-of-concept (PoC), the realization of a high-level-design prototype that focuses on the main characteristics of the solution and allows thus identifying the challenges. Once the PoC implemented, the feedback can be used to round out the concept.

Building a PoC for a DM should be considered as objective even when the project doesn’t seem to meet any major challenges. The PoC should resume in addressing the most important DM requirements, ideally by implementing the whole or most important aspects of functionality (e.g. data extraction, data transformations, integrity validation, respectively the import into the target system) for one or two data entities. Once the PoC built, the team can use it as basis for the evolutive development of the solution during the iterations considered.

A strategy is a set of coordinated and sustainable actions following a set of well-defined goals, actions devised into a plan and designed to create value and overcome further challenges. A strategy has the character of a concept though it has a broader scope being usually considered when multiple projects or initiatives compete for the same resources to provide a broader context and handle the challenges, risks and opportunities. Moreover, the strategy takes an inventory of the current issues and architecture – the 'AS-IS' perspective and sketches the to 'TO-BE' perspective by devising a roadmap that bridges the gap between the two.

In the case of a DM a strategy might be required when multiple DM projects need to be performed in parallel or sequentially, as it can help the organization to better manage the migrations.

A plan is a high-level document that describes the tasks, schedule and resources required to carry on an activity. Even if it typically refers to the work or product breakdown structure, it can cover other information usually available in a Business Case. A project plan is used to guide both project execution and project control, while in the context of Strategic Management the (strategic) plan provides a high-level roadmap on how the defined goals and objectives will be achieved during the period covered by the strategy.

For small DM projects a plan can be in theory enough. As both a strategy and a concept can include a high-level plan, the names are in praxis interchangeable.

Previous Post <<||>> Next Post

09 January 2021

🧮ERP: Planning (Part I: It’s all about Partnership - An Introduction)

ERP Implementation
ERP Implementations Series

Unless the organization (customer) implementing an ERP system has a strong IT team and the knowledge required for the implementation is available already in-house, the resources need to be acquired from the market, and probably the right thing to do is to identify a certified implementer (partner) which can fill the knowledge and skillset gaps, respectively which can help splitting the risks associated with such an implementation.

In theory, the customer provides knowledge about its processes, while the partner comes with expertise about the system to be implemented and further technologies, industry best practices, project methodologies, etc. Further on, the mix is leveraged to harness the knowledge and reach project’s objectives. 

In praxis however finding an implementer which can act as partner might be more challenging than expected. This because the implementer needs to understand customer’s business and where it’s heading, bridge the gap between functional requirements and system’s functionality, advise on areas of improvement, prepare the customer for the project and lead the customer through the changes, respectively establish a basis for the future. Some of the implications are seldom made explicit even if they are implied by what is needed by the project. 

Technology is seldom the issue in an ERP implementation, the challenges residing in handing the change and the logistics required. There are so many aspects to be considered and handled, and this can be challenging for any implementer no matter how long has been on the market or how experienced the resources are. Somebody needs to lead the change and the customer seldom has the knowledge to handle the change. In some cases, the implementer must make the customer aware of the implications, while in others needs to take the initiative and lead the change, though the customer needs to play along, which can be challenging also. 

Many aspects need to be handled at management level from a strategical point of view on customer’s side. It starts with assuring that the most important aspects of the business where considered, that the goals and objectives are clear, that the proper environment is created, and ends with the timely decision-making, with assuring that the resources are available when needed, that the needed organization structures and roles are in place, that the required knowledge is available before, during and after implementation, that the potential brought by the ERP system is harnessed for the years to come. 

A partnership allows in theory splitting the implementation risks as ERP implementations have a high rate of failure. Quite often the outcomes of such projects don’t meet the expectations, the systems being in extremis unusable or a bottleneck for the organization. Ideally one should work with the partner(s) and attempt solving the issues, split eventually the incurred cost overruns, find a middle way. Most of the times it’s recommended to find a solution together rather than coming to a litigation. 

Given the complex dependencies existing between the various parts of the project, the causes that lead to poor implementations are difficult to prove, as there are almost always grey areas. Moreover, the litigations can require a considerable time and resources to settle. These can be just extreme situations, and as long one has a good partner, there’s no need to think that far. On the other side, even if undesirable, one must be prepared also for such outcomes, even if the countermeasures may involve an additional effort. Therefore, one must address such issues in contracts by establishing the areas of accountability/responsibilities for each party, document adequately the requirements and further (important) communication, make sure that the deliverables have the expected quality, etc.

Previous Post <<||>> Next Post

27 September 2020

𖣯Strategic Management: Strategy Design (Part IV: Designing for Simplicity)


More than two centuries ago, in his course on the importance of Style in Literature, George Lewes wisely remarked that 'the first obligation of Simplicity is that of using the simplest means to secure the fullest effect' [1]. This is probably the most important aspect the adopters of the KISS mantra seem to ignore – solutions need to be simple while covering all or most important aspects to assure the maximum benefit. The challenge for many resides in defining what the maximum benefit is about. This state of art is typically poorly understood, especially when people don’t understand what’s possible, respectively of what’s necessary to make things work smoothly. 

To make the simplicity principle work, one must envision the desired state of a product or solution and trace back what’s needed to achieve that vision. One can aim for the maximum or for the minimum possible, respectively for anything in between. That’s at least true in theory, in praxis there are constraints that limit the range of achievement, constraints ranging from the availability of resources, their maturity or the available time, respectively to the limits for growth - the learning capacity of individuals and organization as a whole. 

On the other side following the 80/20 principle, one could achieve in theory 80% of a working solution with 20% of the effort needed in achieving the full 100%. This principle comes with a trick too because one needs to focus on the important components or aspects of the solution for this to work. Otherwise, one is forced to do exploratory work in which the learning is gradually assimilated into the solution. This implies continuous feedback, respectively changing the targets as one progresses in multiple iterations. The approach is typically common to ERP implementations, BI and Data Management initiatives, or similar transformative projects which attempt changing an organization’s data, information, or knowledge flows - the backbones organizations are built upon.     

These two principles can be used together to shape an organization. While simplicity sets a target or compass for quality, the 80/20 principle provides the means of splitting the roadmap and effort into manageable targets while allowing to identify and prioritize the critical components, and they seldom resume only to technology. While technologies provide a potential for transformation, in the end is an organization’s setup that has the transformative role. 

For transformational synergies to happen, each person involved in the process must have a minimum of necessary skillset, knowledge and awareness of what’s required and how a solution can be harnessed. This minimum can be initially addressed through training and self-learning, however without certain mechanisms in place, the magic will not happen by itself. Change needs to be managed from within as part of an organization’s culture, by the people close to the flow, and when necessary, also from the outside, by the ones who can provide guiding direction. Ideally, a strategic approach is needed the vision, mission, goals, objectives, and roadmap are sketched, where intermediary targets are adequately mapped and pursued, and the progress is adequately tracked.

Thus, besides the technological components is needed to consider the required organizational components to support and manage change. These components form a structure which needs to adhere by design to the same principle of simplicity. According to Lewes, the 'simplicity of structure means organic unity' [1], which can imply harmony, robustness, variety, balance, economy or proportion. Without these qualities the structure of the resulting edifice can break under its own weight. Moreover, paraphrasing Eric Hoffer, simplicity marks the end of a continuous process of designing, building, and refining, while complexity marks a primitive stage.

Previous Post <<||>> Next Post

Written: Sep-2020, Last Reviewed: Mar-2024

References:
[1] George H Lewes (1865) "The Principles of Success in Literature"

Considered quotes:
"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)
"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect. But although the mind instinctively rejects all needless complexity, we shall greatly err if we fail to recognise the fact, that what the mind recoils from is not the complexity, but the needlessness." (George H Lewes, "The Principles of Success in Literature", 1865)
"In products of the human mind, simplicity marks the end of a process of refining, while complexity marks a primitive stage." (Eric Hoffer, 1954)

16 June 2020

💼Project Management: Project Planning (Part IV: Planning Correctly Misunderstood IV)

Mismanagement

The relatively big number of Project Management (PM) methodologies considered nowadays makes it more and more difficult to understand the world of PM and make oneself understood, in the context in which terminology is used in explanations that defy the logic, in which people are stubborn in persisting that their understanding is the ultimate truth and, that between white and black there are no degrees of gray. Between all PM concepts project planning seems to be the most misunderstood, and this probably because all the activities revolve around it, while each methodology brings its own planning philosophy. Each methodology comes with its own story, its own imaginative description of what a perfect plan is about.

Independently of the methodology used there are three levels of planning. At highest level, the strategic one, the project is put in the context of other strategic activities – other projects and initiatives, as well business operations, competing altogether for the same financial and human resources.  At this level are the goals identified and put the basis for the successful execution of the project, including establishing the ground and integrating the main aspects of a project – risk, quality and communication. Here is decided which projects will be considered, in which sequence, how and when resources will be assigned. 

A project plan is typically written and further executed by having the tactical horizon in mind – the individual engagement of resources and actions, the actual means to reach the objectives set at strategic level. It’s the level where the actual project plan is detailed, where activities are sequenced and prioritized. Here each methodology has its own approach – whether the planning is done per deliverable, work package or any other approach used to partition the activities. It’s the level at which the various teams are coordinated toward specific targets. Thus the manageable unit is the team and not the individual, the deliverables or the work packages and not the individual tasks.

The operational level equates with the execution of a project’s activities. Even if the project manager oversights the activities, it’s in team’s duties to plan the activities having the set deliveries in mind. The project manager doesn’t need to know all the details, though he should be updated on a timely manner on the progress, the eventual risks and opportunities that arise in each area. This requires continuous coordination on vertical as well horizontal level.

The project manager typically oscillates between the strategic and tactical views of a project, while the operational level appears in the view only when operational themes are escalated or further coordination is needed. Even if this delimitation is clear in big projects, in the small projects the three levels melt into each other. Therefore the sprung from small to big projects and vice-versa can create issues when the approach is not tailored to project’s size and its further characteristics.

Attempting to plan each activity in the project at the lowest level of detail obscures the view, the complexity of the project kicking back sooner or later. Maintaining such a detailed plan can become a waste of time on the long term. In extremis a resource is used to update a plan, which easily can become obsolete by the time all activities were reviewed. This doesn’t mean that the project plan doesn’t need to be updated regularly, though the pace can be decided on each project’s specifics.

Therefore, one of the most important challenges in projects is finding the appropriate level of detail for planning, and there’s no general rule that works for all projects. Typically the choices alternate between work packages and deliverables. 

09 July 2019

💻IT: Resilience (Definitions)

"The ability to cope with adversity and recover quickly from setbacks." (PMI, "Navigating Complexity: A Practice Guide", 2014)

"System resilience is an ability of the system to withstand a major disruption within acceptable degradation parameters and to recover within an acceptable time." (Denis Čaleta, "Cyber Threats to Critical Infrastructure Protection: Public Private Aspects of Resilience", 2016)

"The ability of an information system to continue to (1) operate under adverse conditions or stress, even if in a degraded or debilitated state, while maintaining essential operational capabilities; and (2) recover to an effective operational posture in a time frame consistent with mission needs." (William Stallings, "Effective Cybersecurity: A Guide to Using Best Practices and Standards", 2018)

"The ability of a project to readily resume from unexpected events, threats or actions." (Phil Crosby, "Shaping Mega-Science Projects and Practical Steps for Success", 2019)

"The ability of an infrastructure to resist, respond and overcome adverse events" (Konstantinos Apostolou et al, "Business Continuity of Critical Infrastructures for Safety and Security Incidents", 2020)

"The word resilience refers to the ability to overcome critical moments and adapt after experiencing some unusual and unexpected situation. It also indicates return to normal." (José G Vargas-Hernández, "Urban Socio-Ecosystems Green Resilience", 2021)

"Adaptive capacity of an organisation in a complex and changing environment’ (ISO Guide 73:2009)

"The ability to resist failure or to recover quickly following a failure" (ITIL)

"The ability of an information system to continue to: (i) operate under adverse conditions or stress, even if in a degraded or debilitated state, while maintaining essential operational capabilities; and (ii) recover to an effective operational posture in a time frame consistent with mission needs." (NIST SP 800-39)

"The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and recover from deliberate attacks, accidents, or naturally occurring threats or incidents." (NIST SP 800-37)

"The ability to quickly adapt and recover from any known or unknown changes to the environment through holistic implementation of risk management, contingency, and continuity planning." (NIST SP 800-34 Rev. 1)

24 April 2019

💼Project Management: Project Execution (Part V: The Butterflies of Project Management)

Mismanagement

Expressed metaphorically as "the flap of a butterfly’s wings in Brazil set off a tornado in Texas”, in Chaos Theory the “butterfly effect” is a hypothesis rooted in Edward N Lorenz’s work on weather forecasting and used to depict the sensitive dependence on initial conditions in nonlinear processes, systems in which the change in input is not proportional to the change in output.  

Even if overstated, the flapping of wings advances the idea that a small change (the flap of wings) in the initial conditions of a system cascades to a large-scale chain of events leading to large-scale phenomena (the tornado) . The chain of events is known as the domino effect and represents the cumulative effect produced when one event sets off a chain of similar events. If the butterfly metaphor doesn’t catch up maybe it’s easier to visualize the impact as a big surfing wave – it starts small and increases in size to the degree that it can bring a boat to the shore or make an armada drown under its force. 

Projects start as narrow activities however the longer they take and the broader they become tend to accumulate force and behave like a wave, having the force to push or drawn an organization in the flood that comes with it. A project is not only a system but a complex ecosystem - aggregations of living organisms and nonliving components with complex interactions forming a unified whole with emergent behavior deriving from the structure rather than its components - groups of people tend to  self-organize, to swarm in one direction or another, much like birds do, while knowledge seems to converge from unrelated sources (aka consilience). 

 Quite often ignored, the context in which a project starts is very important, especially because these initial factors or conditions can have a considerable impact reflected in people’s perception regarding the state or outcomes of the project, perception reflected eventually also in the decisions made during the later phases of the project. The positive or negative auspices can be easily reinforced by similar events. Given the complex correlations and implications, aspects not always correct perceived and understood can have a domino effect. 

The preparations for the project start – the Business Case, setting up the project structure, communicating project’s expectation and addressing stakeholders’ expectations, the kick-off meeting, the approval of the needed resources, the knowledge available in the team, all these have a certain influence on the project. A bad start can haunt a project long time after its start, even if the project is on the right track and makes a positive impact. In reverse, a good start can shade away some mishaps on the way, however there’s also the danger that the mishaps are ignored and have greater negative impact on the project. It may look as common sense however the first image often counts and is kept in people’s memory for a long time. 

As people are higher perceptive to negative as to positive events, there are higher the chances that a multitude of negative aspects will have bigger impact on the project. It’s again something that one can address as the project progresses. It’s not necessarily about control but about being receptive to the messages around and of allowing people to give (constructive) feedback early in the project. It’s about using the positive force of a wave and turning negative flow into a positive one. 

Being aware of the importance of the initial context is just a first step toward harnessing waves or winds’ power, it takes action and leadership to pull the project in the right direction.

22 April 2019

💼Project Management: Tools (Part I: The Choice of Tools in Project Management)

Mismanagement

Beware the man of one book” (in Latin, “homo unius libri”), a warning generally attributed to Thomas Aquinas and having a twofold meaning. In its original interpretation it was referring to the people mastering a single chosen discipline, however the meaning degenerated in expressing the limitations of people who master just one book, and thus having a limited toolset of perspectives, mental models or heuristics. This later meaning is better reflected in Abraham Maslow adage: “If the only tool you have is a hammer, you tend to see every problem as a nail”, as people tend to use the tools they are used to also in situations in which other tools are more appropriate.

It’s sometimes admirable people and even organizations’ stubbornness in using the same tools in totally different scenarios, expecting though the same results, as well in similar scenarios expecting different results. It’s true, Mathematics has proven that the same techniques can be used successfully in different areas, however a mathematician’s universe and models are idealistically fractionalized to a certain degree from reality, full of simplified patterns and never-ending approximations. In contrast, the universe of Software Development and Project Management has a texture of complex patterns with multiple levels of dependencies and constraints, constraints highly sensitive to the initial conditions.

Project Management has managed to successfully derive tools like methodologies, processes, procedures, best practices and guidelines to address the realities of projects, however their use in praxis seems to be quite challenging. Probably, the challenge resides in stubbornness of not adapting the tools to the difficulties and tasks met. Even if the same phases and multiple similarities seems to exist, the process of building a house or other tangible artefact is quite different than the approaches used in development and implementation of software.

Software projects have high variability and are often explorative in nature. The end-product looks totally different than the initial scaffold. The technologies used come with opportunities and limitations that are difficult to predict in the planning phase. What on paper seems to work often doesn’t work in praxis as the devil lies typically in details. The challenges and limitations vary between industries, businesses and even projects within the same organization.

Even if for each project type there’s a methodology more suitable than another, in the end project particularities might pull the choice in one direction or another. Business Intelligence projects for example can benefit from agile approaches as they enable to better manage and deliver value by adapting the requirements to business needs as the project progresses. An agile approach works almost always better than a waterfall process. In contrast, ERP implementations seldom benefit from agile methodologies given the complexity of the project which makes from planning a real challenge, however this depends also on an organization’s dynamicity.
Especially when an organization has good experience with a methodology there’s the tendency to use the same methodology across all the projects run within the organization. This results in chopping down a project to fit an ideal form, which might be fine as long the particularities of each project are adequately addressed. Even if one methodology is not appropriate for a given scenario it doesn’t mean it can’t be used for it, however in the final equation enter also the cost, time, effort, and the quality of the end-results.
In general, one can cope with complexity by leveraging a broader set of mental models, heuristics and set of tools, and this can be done only though experimentation, through training and exposing employees to new types of experiences, through openness, through adapting the tools to the challenges ahead.

21 April 2019

💼Project Management: Project Planning (Part II: Planning Correctly Misunderstood II)

Mismanagement

Even if planning is the most critical activity in Project Management it seems to be also one of the most misunderstood concepts. Planning is critical because it charters the road ahead in terms of what, when, why and who, being used as a basis for action, communication, for determining the current status in respect to the initial plan, as well the critical activities ahead.

The misunderstandings derive maybe also from the fact that each methodology introduces its own approach to planning. PMI as traditional approach talks about baseline planning with respect to scope schedule and costs, about management plans, which besides the theme covered in the baseline, focus also on quality, human resources, risks, communication and procurement, and separate plans can be developed for requirements, change and configuration management, respectively process improvement. To them one can consider also action and contingency planning.

In Prince2 the product-based planning is done at three levels – at project, stage, respectively team level – while separate plans are done for exceptions in case of deviations from any of these plans; in addition there are plans for communication, quality and risk management. Scrum uses an agile approach looking at the product and sprint backlog, the progress being reviewed in stand-up meetings with the help of a burn-down chart. There are also other favors of planning like rapid application planning considered in Extreme Programming (XP), with an open, elastic and undeterministic approach. In Lean planning the focus is on maximizing the value while minimizing the waste, this being done by focusing on the value stream, the complete list of activities involved in delivering the end-product, value stream's flow being mapped with the help of visualization techniques such as Kanban, flowcharts or spaghetti diagrams.

With so many types of planning nothing can go wrong, isn’t it? However, just imagine customers' confusion when dealing with a change of methodology, especially when the concepts sound fuzzy and cryptic! Unfortunately, also the programmers and consultants seem to be bewildered by the various approaches and the philosophies supporting the methodologies used, their insecurity bringing no service for the project and customers’ peace of mind. A military strategist will more likely look puzzled at the whole unnecessary plethora of techniques. On the field an army has to act with the utmost concentration and speed, to which add principles like directedness, maneuver, unity, economy of effort, collaboration, flexibility, simplicity and sustainability. It’s what Project Management fails to deliver.

Similarly to projects, the plan made before the battle seldom matches the reality in the field. Planning is an exercise needed to divide the strategy in steps, echelon and prioritize them, evaluate the needed resources and coordinate them, understand the possible outcomes and risks, evaluate solutions and devise actions for them. With a good training, planning and coordination, each combatant knows his role in the battle, has a rough idea about difficulties, targets and possible ways to achieve them; while a good combatant knows always the next action. At the same time, the leader must have visibility over fight’s unfold, know the situation in the field and how much it diverged from the initial plan, thus when the variation is considerable he must change the plan by changing the priorities and make better use the resources available.

Even if there are multiple differences between the two battlefields, the projects follow the same patterns of engagement at different scales. Probably, Project Managers can learn quite of a deal by studying the classical combat strategists, and hopefully the management of projects would be more effective and efficient if the imperatives of planning, respectively management, were better understood and addressed.

10 April 2016

♜Strategic Management: Contingency Plan (Definitions)

"An identification of alternative strategies to be used to ensure project success if specified risk events occur." (Timothy J  Kloppenborg et al, "Project Leadership", 2003)

[contingency planning:] "A management process that analyses disaster risks and establishes arrangements in advance to enable timely, effective and appropriate responses." (ISDR, 2009)

"Specific planning designed to create a quick response after the occurrence of a risk event." (Annetta Cortez & Bob Yehling, "The Complete Idiot's Guide® To Risk Management", 2010)

"A plan that identifies alternative approaches to be used if the corresponding risk events occur." (Bonnie Biafore, "Successful Project Management: Applying Best Practices and Real-World Techniques with Microsoft® Project", 2011)

"A plan developed to mitigate the outcome of a risk, once the risk has materialised." (Mike Clayton, "Brilliant Project Leader", 2012)

"Mitigation plan alternative course(s) of action devised to cope with project risks." (Chartered Institute of Building, "Code of Practice for Project Management for Construction and Development" 5th Ed., 2014)

"A plan that allows an organization to respond appropriately to a specific type of unplanned event."(Rebecca Hamilton & Diane Brown, "Disaster Management and Continuity Planning in Libraries: Changes since the Year 2000", 2016)

"A plan for continued operation and execution of the most essential functions of a mission in the event of a disruptive failure, such as a natural disaster or a major cyberattack." (O Sami Saydjari, "Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time", 2018)

"A plan put in place before any potential emergencies, with the mission of dealing with possible future emergencies. It pertains to training personnel, performing backups, preparing critical facilities, and recovering from an emergency or disaster so that business operations can continue." (Shon Harris & Fernando Maymi, "CISSP All-in-One Exam Guide" 8th Ed., 2018)

[contingency planning:] "Management policies and procedures designed to maintain or restore business operations, including computer operations, possibly at an alternate location, in the event of emergencies, system failures, or disasters." (William Stallings, "Effective Cybersecurity: A Guide to Using Best Practices and Standards", 2018)

"A plan that is maintained for disaster response, backup operations, and post-disaster recovery to ensure the availability of critical resources and to facilitate the continuity of operations in an emergency situation." (NIST SP 800-57 Part 1)

"Management policy and procedures used to guide an enterprise response to a perceived loss of mission capability. The Contingency Plan is the first plan used by the enterprise risk managers to determine what happened, why, and what to do. It may point to the continuity of operations plan (COOP) or disaster recovery plan (DRP) for major disruptions." (CNSSI 4009-2015)

09 February 2016

♜Strategic Management: Critical Success Factor [CSF] (Definitions)

"A brief listing of what should be monitored closely on an ongoing basis to ensure that the project is proceeding adequately. Also known as the project vital signs or metrics." (Timothy J  Kloppenborg et al, "Project Leadership", 2003)

"Those things which must go right for the organization to achieve its mission." (Tilak Mitra et al, "SOA Governance", 2008)

[success criteria:] "According to cybernetic theory, in a feedback loop the set point that determines the extent to which a system process meets its process objective. This must be expressed in terms of either a 'Minimum value' or a 'Maximum value' of an attribute." (David C Hay, "Data Model Patterns: A Metadata Map", 2010)

"An element that is necessary for an organization or project to achieve its mission." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

[success criteria:] "A measurable result the project has to deliver in order for the customer to say the project is a success." (Bonnie Biafore, "Successful Project Management: Applying Best Practices and Real-World Techniques with Microsoft® Project", 2011)

"Activities that your business undertakes with the aim of meeting strategic long-term goals. CSFs are measured with performance indicators." (Gina Abudi & Brandon Toropov, "The Complete Idiot's Guide to Best Practices for Small Business", 2011)

"One of the few most important prerequisite conditions necessary for an enterprise to reach its goals." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The most essential factors that must go right or be closely tracked in order to ensure an organization's survival and success." (Linda Volonino & Efraim Turban, "Information Technology for Management" 8th Ed., 2011)

[success criteria:] "Specific and unequivocal statements that indicate how the project manager or project sponsor will know that a project achieved its goal, often reflecting strategic business goals." (Bonnie Biafore & Teresa Stover, "Your Project Management Coach: Best Practices for Managing Projects in the Real World", 2012)

"The requirements for strategic success in a particular industry at a particular point in time." (Duncan Angwin & Stephen Cummings, "The Strategy Pathfinder" 3rd Ed., 2017)

"Sources of competitive advantage within an industry." (Robert M Grant, "Contemporary Strategy Analysis"10th Ed., 2018)

"The key things that the organization must do extremely well to overcome today’s problems and the roadblocks to meeting the Mission and Vision Statements." (H James Harrington & William S Ruggles, "Project Management for Performance Improvement Teams", 2018)

"An element necessary for an organization or project to achieve its mission. Critical success factors are the critical factors or activities required for ensuring the success." (ISTQB)

"something that must happen if a process, project, plan or service is to succeed" (ITIL)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.