03 February 2021

Data Migrations (DM): Conceptualization (Part III: Heuristics)

Data Migration

Probably one of the most difficult things to learn as a technical person is using the right technology for a given purpose, this mainly because one’s inclined using the tools one knows best. Moreover, technologies’ overlapping makes the task more and more challenging, the difference between competing technologies often residing in the details. Thus, identifying the gaps resumes in understanding the details of the problem(s) or need(s), respectively the advantages or disadvantages of a technology over the other. This is true especially about competing technologies, including the ones that replace other technologies.

There are simple heuristics, that can allow approaching such challenges. For example, heavy data processing belongs usually in databases, while import/export functionality belongs in an ETL tool.  Therefore, one can start looking at the problems from these two perspectives. Would the solution benefit from these two approaches or are there more appropriate technologies (e.g. data streaming, ELT, non-relational databases)? How much effort would involve building the solution? 

Commercial Off-The-Shelf (COTS) tools provided by third-party vendors usually offer specialized functionality in each area. Gartner and Forrester provide regular analyses of the main players in the important areas, analyses which can be used in theory as basis for further research. Even if COTS tend to be more expensive and can have some important functionality gaps, as long they are extensible, they can prove a good starting point for developing a solution. 

Sometimes it helps researching on the web what other people or organizations did, how they approached the same aspects, what technologies, techniques and best practices they used to overcome the challenges. One doesn’t need to reinvent the wheel even if it’s sometimes fun to do so. Moreover, a few hours of research can give one a basis of useful information and a better understanding over the work ahead.

On the other side sometimes it’s advisable to use the tools one knows best, however this can lead also to unusable and less performant solutions. For example, MS Excel and Access have been for years the tools of choice for building personal solutions that later grew into maintenance nightmares for the IT team. Ideally, they can still be used for data entry or data cleaning, though building solutions exclusively based on (one of) them can prove to be far than optimal. 

When one doesn’t know whether a technology or mix of technologies can be used to provide a solution, it’s recommended to start a proof-of-concept (PoC) that would allow addressing most important aspects of the needed solution. One can start small by focusing on the minimal functionality needed to check the main aspects and evolve the PoC during several iterations as needed.

For example, in the case of a Data Migration (DM) this would involve building the data extraction layer for an entity, implement several data transformations based on the defined mappings, consider building a few integrity rules for validation, respectively attempt importing the data into the target system. Once this accomplished, one can start increasing the volume of data to check how the solution behaves under stress. The volume of data can be increased incrementally or by considering all the data available. 

As soon the skeleton was built one can consider all the mappings, respectively add several entities to build the dependencies existing between them and other functionality. The prototype might not address all the requirements from the beginning, therefore consider the problems as they arise. For example, if the volume of data seems to cause problems then attempt splitting the data during processing in batches or considering specific optimization techniques like indexing or scaling techniques like increasing computing resources. 

Previous Post <<||>> Next Post

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.