Showing posts with label data. Show all posts
Showing posts with label data. Show all posts

04 February 2025

🧭Business Intelligence: Perspectives (Part XXVI: Monitoring - A Cockpit View)

Business Intelligence Series
Business Intelligence Series

The monitoring of business imperatives is sometimes compared metaphorically with piloting an airplane, where pilots look at the cockpit instruments to verify whether everything is under control and the flight ensues according to the expectations. The use of a cockpit is supported by the fact that an airplane is an almost "closed" system in which the components were developed under strict requirements and tested thoroughly under specific technical conditions. Many instruments were engineered and evolved over decades to operate as such. The processes are standardized, inputs and outputs are under strict control, otherwise the whole edifice would crumble under its own complexity. 

In organizational setups, a similar approach is attempted for monitoring the most important aspects of a business. A few dashboards and reports are thus built to monitor and control what’s happening in the areas which were identified as critical for the organization. The various gauges and other visuals were designed to provide similar perspectives as the ones provided by an airplane’s cockpit. At first sight the cockpit metaphor makes sense, though at careful analysis, there are major differences. 

Probably, the main difference is that businesses don’t necessarily have standardized processes that were brought under control (and thus have variation). Secondly, the data used doesn’t necessarily have the needed quality and occasionally isn’t fit for use in the business processes, including supporting processes like reporting or decision making. Thirdly, are high the chances that the monitoring within the BI infrastructures doesn’t address the critical aspects of the business, at least not at the needed level of focus, detail or frequency. The interplay between these three main aspects can lead to complex issues and a muddy ground for a business to build a stable edifice upon. 

The comparison with airplanes’ cockpit was chosen because the number of instruments available for monitoring is somewhat comparable with the number of visuals existing in an organization. In contrast, autos have a smaller number of controls simple enough to help the one(s) sitting in the cockpit. A car’s monitoring capabilities can probably reflect the needs of single departments or teams, though each unit needs its own gauges with specific business focus. The parallel is however limited because the areas of focus in organizations can change and shift in other directions, some topics may have a periodic character while others can regain momentum after a long time. 

There are further important aspects. At high level, the expectation is for software products and processes, including the ones related to BI topics, to have the same stability and quality as the mass production of automobiles, airplanes or other artifacts that have similar complexity and manufacturing characteristics. Even if the design process of software and manufacturing may share many characteristics, the similar aspects diverge as soon as the production processes start, respectively progress, and these are the areas where the most differences lie. Starting from the requirements and ending with the overall goals, everything resembles the characteristics of quick shifting sands on which is challenging to build any stabile edifice.

At micro level in manufacturing each piece was carefully designed and produced according to a set of characteristics that were proved to work. Everything must fit perfectly in the grand design and there are many tests and steps to make sure that happens. To some degree the same is attempted when building software products, though the processes break along the way with the many changes attempted, with the many cost, time and quality constraints. At some point the overall complexity kicks back; it might be still manageable though the overall effort is higher than what organizations bargained for. 

26 January 2025

🧭Business Intelligence: Perspectives (Part XXV: Grounding the Roots)

Business Intelligence Series
Business Intelligence Series

When building something that is supposed to last, one needs a solid foundation on which the artifact can be built upon. That’s valid for castles, houses, IT architectures, and probably most important, for BI infrastructures. There are so many tools out there that allow building a dashboard, report or other types of BI artifacts with a few drag-and-drops, moving things around, adding formatting and shiny things. In many cases all these steps are followed to create a prototype for a set of ideas or more formalized requirements keeping the overall process to a minimum. 

Rapid prototyping, the process of building a proof-of-concept by focusing at high level on the most important design and functional aspects, is helpful and sometimes a mandatory step in eliciting and addressing the requirements properly. It provides a fast road from an idea to the actual concept, however the prototype, still in its early stages, can rapidly become the actual solution that unfortunately continues to haunt the dreams of its creator(s). 

Especially in the BI area, there are many solutions that started as a prototype and gained mass until they start to disturb many things around them with implications for security, performance, data quality, and many other aspects. Moreover, the mass becomes in time critical, to the degree that it pulled more attention and effort than intended, with positive and negative impact altogether. It’s like building an artificial sun that suddenly becomes a danger for the nearby planet(s) and other celestial bodies. 

When building such artifacts, it’s important to define what goals the end-result must or would be nice to have, differentiating clearly between them, respectively when is the time to stop and properly address the aspects mandatory in transitioning from the prototype to an actual solution that addresses the best practices in scope. It’s also the point when one should decide upon solution’s feasibility, needed quality acceptance criteria, and broader aspects like supporting processes, human resources, data, and the various aspects that have impact. Unfortunately, many solutions gain inertia without the proper foundation and in extremis succumb under the various forces.

Developing software artifacts of any type is a balancing act between all these aspects, often under suboptimal circumstances. Therefore, one must be able to set priorities right, react and change direction (and gear) according to the changing context. Many wish all this to be a straight sequential road, when in reality it looks more like mountain climbing, with many peaks, valleys and change of scenery. The more exploration is needed, the slower the progress.

All these aspects require additional time, effort, resources and planning, which can easily increase the overall complexity of projects to the degree that it leads to (exponential) effort and more important - waste. Moreover, the complexity pushes back, leading to more effort, and with it to higher costs. On top of this one has the iteration character of BI topics, multiple iterations being needed from the initial concept to the final solution(s), sometimes many steps being discarded in the process, corners are cut, with all the further implications following from this. 

Somewhere in the middle, between minimum and the broad overextending complexity, is the sweet spot that drives the most impact with a minimum of effort. For some organizations, respectively professionals, reaching and remaining in the zone will be quite a challenge, though that’s not impossible. It’s important to be aware of all the aspects that drive and sustain the quality of artefacts, data and processes. There’s a lot to learn from successful as well from failed endeavors, and the various aspects should be reflected in the lessons learned. 

11 October 2024

🧭Business Intelligence: Perspectives (Part XVII: Creating Value for Organizations)

Business Intelligence Series
Business Intelligence Series

How does one create value for an organization in BI area? This should be one of the questions the BI professional should ask himself and eventually his/her colleagues on a periodic basis because the mere act of providing reports and good-looking visualizations doesn’t provide value per se. Therefore, it’s important to identify the critical to success and value drivers within each area!

One can start with the data, BI or IT strategies, when organizations invest the time in their direction, respectively with the considered KPIs and/or OKRs defined, and hopefully the organizations already have something similar in place! However, these are just topics that can be used to get a bird view over the overall landscape and challenges. It’s advisable to dig deeper, especially when the strategic, tactical and operational plans aren’t in sync, and let’s be realistic, this happens probably in many organizations, more often than one wants to admit!

Ideally, the BI professional should be able to talk with the colleagues who could benefit from having a set of reports or dashboards that offer a deeper perspective into their challenges. Talking with each of them can be time consuming and not necessarily value driven. However, giving each team or department the chance to speak their mind, and brainstorm what can be done, could in theory bring more value. Even if their issues and challenges should be reflected in the strategy, there’s always an important gap between the actual business needs and those reflected in formal documents, especially when the latter are not revised periodically. Ideally, such issues should be tracked back to a business goal, though it’s questionable how much such an alignment is possible in practice. Exceptions will always exist, no matter how well structured and thought a strategy is!

Unfortunately, this approach also involves some risks. Despite their local importance, the topics raised might not be aligned with what the organization wants, and there can be a strong case against and even a set of negative aspects related to this. However, talking about the costs involved by losing an opportunity can hopefully change the balance favorably. In general, transposing the perspective of issues into the area of their associated cost for the organization has (hopefully) the power to change people’s minds.

Organizations tend to bring forward the major issues, addressing the minor ones only after that, this having the effect that occasionally some of the small issues increase in impact when not addressed. It makes sense to prioritize with the risks, costs and quick wins in mind while looking at the broader perspective! Quick wins are usually addressed at strategic level, but apparently seldom at tactical and operational level, and at these levels one can create the most important impact, paving the way for other strategic measures and activities.

The question from the title is not limited only to BI professionals - it should be in each manager and every employee’s mind. The user is the closest to the problems and opportunities, while the manager is the one who has a broader view and the authority to push the topic up the waiting list. Unfortunately, the waiting lists in some organizations are quite big, while not having a good set of requests on the list might pinpoint that issues might exist in other areas!  

BI professionals and organizations probably know the theory well but prove to have difficulties in combining it with praxis. It’s challenging to obtain the needed impact (eventually the maximum effect) with a minimum of effort while addressing the different topics. Sooner or later the complexity of the topic kicks in, messing things around!

11 September 2024

🗄️Data Management: Data Culture (Part IV: Quo vadis? [Where are you going?])

Data Management Series

The people working for many years in the fields of BI/Data Analytics, Data and Process Management probably met many reactions that at the first sight seem funny, though they reflect bigger issues existing in organizations: people don’t always understand the data they work with, how data are brought together as part of the processes they support, respectively how data can be used to manage and optimize the respective processes. Moreover, occasionally people torture the data until it confesses something that doesn’t necessarily reflect the reality. It’s even more deplorable when the conclusions are used for decision-making, managing or optimizing the process. In extremis, the result is an iterative process that creates more and bigger issues than whose it was supposed to solve!

Behind each blunder there are probably bigger understanding issues that need to be addressed. Many of the issues revolve around understanding how data are created, how are brought together, how the processes work and what data they need, use and generate. Moreover, few business and IT people look at the full lifecycle of data and try to optimize it, or they optimize it in the wrong direction. Data Management is supposed to help, and it does this occasionally, though a methodology, its processes and practices are as good as people’s understanding about data and its use! No matter how good a data methodology is, it’s as weak as the weakest link in its use, and typically the issues revolving around data and data understanding are the weakest link. 

Besides technical people, few businesspeople understand the full extent of managing data and its lifecycle. Unfortunately, even if some of the topics are treated in the books, they are too dry, need hands on experience and some thought in corroborating practices with theories. Without this, people will do things mechanically, processes being as good as the people using them, their value becoming suboptimal and hinder the business. That’s why training on Data Management is not enough without some hands-on experience!

The most important impact is however in BI/Data Analytics areas - how the various artifacts are created and used as support in decision-making, process optimization and other activities rooted in data. Ideally, some KPIs and other metrics should be enough for managing and directing a business, however just basing the decisions on a set of KPIs without understanding the bigger picture, without having a feeling of the data and their quality, the whole architecture, no matter how splendid, can breakdown as sandcastle on a shore meeting the first powerful wave!

Sometimes it feels like organizations do things from inertia, driven by the forces of the moment, initiatives and business issues for which temporary and later permanent solutions are needed. The best chance for solving many of the issues would have been a long time ago, when the issues were still small to create any powerful waves within the organizations. Therefore, a lot of effort is sometimes spent in solving the consequences of decisions not made at the right time, and that can be painful and costly!

For building a good business one needs also a solid foundation. In the past it was enough to have a good set of products that are profitable. However, during the past decade(s) the rules of the game changed driven by the acerb competition across geographies, inefficiencies, especially in the data and process areas, costing organizations on the short and long term. Data Management in general and Data Quality in particular, even if they’re challenging to quantify, have the power to address by design many of the issues existing in organizations, if given the right chance!

Previous Post <<||>> Next Post

21 August 2024

🧭Business Intelligence: Perspectives (Part XIV: From Data to Storytelling II)

Business Intelligence Series

Being snapshots in people and organizations’ lives, data arrive to tell a story, even if the story might not be worth telling or might be important only in certain contexts. In fact each record in a dataset has the potential of bringing a story to life, though business people are more interested in the hidden patterns and “stories” the data reveal through more or less complex techniques. Therefore, data are usually tortured until they confess something, and unfortunately people stop analyzing the data with the first confession(s). 

Even if it looks like torture, data need to be processed to reveal certain characteristics, trends or patterns that could help us in sense-making, decision-making or similar specific business purposes. Unfortunately, the volume of data increases with an incredible velocity to which further characteristics like variety, veracity, volume, velocity, value, veracity and variability may add up. 

The data in a dashboard, presentation or even a report should ideally tell a story otherwise the data might not be worthy looking at, at least from some people’s perspective. Probably, that’s one of the reason why man dashboards remain unused shortly after they were made available, even if considerable time and money were invested in them. Seeing the same dull numbers gives the illusion that nothing changed, that nothing is worth reviewing, revealing or considering, which might be occasionally true, though one can’t take this as a rule! Lot of important facts could remain hidden or not considered. 

One can suppose that there are businesses in which something important seldom happens and an alert can do a better job than reviewing a dashboard or a report frequently. Probably an alert is a better choice than reporting metrics nobody looks at! 

Organizations usually define a set of KPIs (key performance indicators) and other types of metrics they (intend to) review periodically. Ideally, the numbers collected should define and reflect the critical points (aka pain points) of an organization, if they can be known in advance. Unfortunately, in dynamic businesses the focus can change considerably from one day to another. Moreover, in systemic contexts critical points can remain undiscovered in time if the set of metrics defined doesn’t consider them adequately. 

Typically only one’s experience and current or past issues can tell what one should consider or ignore, which are the critical/pain points or important areas that must be monitored. Ideally, one should implement alerts for the critical points that require a immediate response and use KPIs for the recurring topics (though the two approaches may overlap). 

Following the flow of goods, money and other resources one can look at the processes and identify the areas that must be monitored, prioritize them and identify the metrics that are worth tracking, respectively that reflect strengths, weaknesses, opportunities, threats and the risks associated with them. 

One can start with what changed by how much, what caused the change(s) and what further impact is expected directly or indirectly, by what magnitude, respectively why nothing changed in the considered time unit. Causality diagrams can help in the process even if the representations can become quite complex. 

The deeper one dives and the more questions one attempts to answer, the higher the chances to find a story. However, can we find a story that’s worth telling in any set of data? At least this is the point some adepts of storytelling try to make. Conversely, the data can be dull, especially when one doesn’t track or consider the right data. There are many aspects of a business that may look boring, and many metrics seem to track the boring but probably important aspects. 

18 August 2024

🧭Business Intelligence: Mea Culpa (Part III: Problem Solving)

Business Intelligence Series
Business Intelligence Series

I've been working for more than 20 years in BI and Data Analytics area, in combination with Software Engineering, ERP implementations, Project Management, IT services and several other areas, which allowed me to look at many recurring problems from different perspectives. One of the things I learnt is that problems are more complex and more dynamic than they seem, respectively that they may require tailored dynamic solutions. Unfortunately, people usually focus on one or two immediate perspectives, ignoring the dynamics and the multilayered character of the problems!

Sometimes, a quick fix and limited perspective is what we need to get started and fix the symptoms, and problem-solvers usually stop there. When left unsupervised, the problems tend to kick back, build up momentum and appear under more complex forms in various places. Moreover, the symptoms can remain hidden until is too late. To this also adds the political agendas and the further limitations existing in organizations (people, money, know-how, etc.).

It seems much easier to involve external people (individual experts, consultancy companies) to solve the problem(s), though unless they get a deep understanding of the business and the issues existing in it, the chances are high that they solve the wrong problems and/or implement the wrong solutions. Therefore, it's more advisable to have internal experts, when feasible, and that's the point where business people with technical expertise and/or IT people with business expertise can help. Ideally, one should have a good mix and the so called competency centers can do a great job in handling the challenges of organizations. 

Between business and IT people there's a gap that can be higher or lower depending on resources know-how or the effort made by organizations to reduce it. To this adds the nature of the issues existing in organizations, which can vary considerable across departments, organizations or any other form of establishment. Conversely, the specific skillset can be transmuted where needed, which might happen naturally, though upon case also considerable effort needs to be involved in the process.

Being involved in similar tasks, one may get the impression that one can do whatever the others can do. This can happen in IT as well on the business side. There can be activities that can be done by parties from the other group, though there are also many exceptions in both directions, especially when one considers that one can’t generalize the applicability and/or transmutation of skillset. 

A more concrete example is the know-how needed by a businessperson to use the BI infrastructure for answering business questions, and ideally for doing all or at least most of the activities a BI professional can do. Ideally, as part of the learning path, it would be helpful to have a pursuable path in between the two points. The mastery of tools helps in the process though there are different mindsets involved.

Unfortunately, the data-related fields are full of overconfident people who get the problem-solving process wrong. Data-based problem-solving resumes in gathering the right facts and data, building the right conceptual model, identifying the right questions to ask, collecting more data, refining methods and solutions, etc. There’s aways an easy wrong way to solve a problem!

The mastery of tools doesn’t imply the mastery of business domains! What people from the business side can bring is deeper insight in the business problems, though getting from there to implementing solutions can prove a long way, especially when problems require different approaches, different levels of approximations, etc. No tool alone can bridge such gaps yet! Frankly, this is the most difficult to learn and unfortunately many data professionals seem to get this wrong!

Previous Post <<||>> Next Post

16 August 2024

🧭Business Intelligence: Perspectives (Part XIII: From Data to Storytelling I)

Business Intelligence Series
Business Intelligence Series

Data is an amalgam of signs, words, numbers and other visual or auditory elements used together to memorize, interpret, communicate and do whatever operation may seem appropriate with them. However, the data we use is usually part of one or multiple stories - how something came into being, what it represents, how is used in the various mental and non-mental processes - respectively, the facts, concepts, ideas, contexts places or other physical and nonphysical elements that are brought in connection with.

When we are the active creators of a story, we can in theory easily look at how the story came into being, the data used and its role in the bigger picture, respective the transformative elements considered or left out, etc. However, as soon we deal with a set of data, facts, or any other elements of a story we are not familiar with, we need to extrapolate the hypothetical elements that seem to be connected to the story. We need to make sense of these elements and consider all that seems meaningful, what we considered or left out shaping the story differently. 

As children and maybe even later, all of us dealt with stories in one way or another, we all got fascinated by metaphors' wisdom and felt the energy that kept us awake, focused and even transformed by the words coming from narrator's voice, probably without thinking too much at the whole picture, but letting the words do their magic. Growing up, the stories grew in complexity, probably became richer in meaning and contexts, as we were able to decipher the metaphors and other elements, as we included more knowledge about the world around, about stories and storytelling.

In the professional context, storytelling became associated with our profession - data, information, knowledge and wisdom being created, assimilated and exchanged in more complex processes. From, this perspective, data storytelling is about putting data into a (business) context to seed cultural ground, to promote decision making and better understanding by building a narrative around the data, problems, challenges, opportunities, and further organizational context.

Further on, from a BI's perspective, all these cognitive processes impact on how data, information and knowledge are created, (pre)processed, used and communicated in organizations especially when considering data visualizations and their constituent elements (e.g. data, text, labels, metaphors, visual cues), the narratives that seem compelling and resonate with the auditorium. 

There's no wonder that data storytelling has become something not to neglect in many business contexts. Storytelling has proved that words, images and metaphors can transmit ideas and knowledge, be transformative, make people think, or even act without much thinking. Stories have the power to seed memes, ideas, or more complex constructs into our minds, they can be used (for noble purposes) or misused. 

A story's author usually takes compelling images, metaphors, and further elements, manipulates them to the degree they become interesting to himself/herself, to the auditorium, to the degree they are transformative and become an element of the business vocabulary, respectively culture, without the need to reiterate them when needed to bring more complex concepts, ideas or metaphors into being.  

A story can be seen as a replication of the constituting elements, while storytelling is a set of functions that operate on them and change the initial structure and content into something that might look or not like the initial story. Through retelling and reprocessing in any form, the story changes independently of its initial form and content. Sometimes, the auditorium makes connections not recognized or intended by the storyteller. Other times, the use and manipulation of language makes the story change as seems fit. 

Previous Post <<||>>  Next Post

06 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part I: First Thoughts)

Business Intelligence
Business Intelligence Series

A data project has a set of assumptions and requirements that must be met, otherwise the project has a high chance of failing. It starts with a clear idea of the goals and objectives, and they need to be achievable and feasible, with the involvement of key stakeholders and the executive without which it’s impossible to change the organization’s data culture. Ideally, there should also be a business strategy, respectively a data strategy available to understand the driving forces and the broader requirements. 

An organization’s readiness is important not only in what concerns the data but also the things revolving around the data - processes, systems, decision-making, requirements management, project management, etc. One of the challenges is that the systems and processes available can’t be used as they are for answering important business questions, and many of such questions are quite basic, though unavailability or poor quality of data makes this challenging if not impossible. 

Thus, when starting a data project an organization must be ready to change some of its processes to address a project’s needs, and thus the project can become more expensive as changes need to be made to the systems. For many organizations the best time to have done this was when they implemented the system, respectively the integration(s) between systems. Any changes made after that come in theory with higher costs derived from systems and processes’ redesign.

Many projects start big and data projects are no exception to this. Some of them build a costly infrastructure without first analyzing the feasibility of the investment, or at least whether the data can form a basis for answering the targeted questions. On one side one can torture any dataset and some knowledge will be obtained from it (aka data will confess), though few datasets can produce valuable insights, and this is where probably many data projects oversell their potential. Conversely, some initiatives are worth pursuing even only for the sake of the exposure and experience the employees get. However, trying to build something big only through the perspective of one project can easily become a disaster. 

When building a data infrastructure, the project needs to be an initiative given the transformative potential such an endeavor can have for the organization, and the different aspects must be managed accordingly. It starts with the management of stakeholders’ expectations, with building a data strategy, respectively with addressing the opportunities and risks associated with the broader context.

Organizations recognize that they aren’t capable of planning and executing such a project or initiative, and they search for a partner to lead the way. Becoming overnight such a partner is more than a challenge as a good understanding of the industry and the business is needed. Some service providers have such knowledge, at least in theory, though the leap from knowledge to results can prove to be a challenge even for experienced service providers. 

Many projects follow the pattern: the service provider comes, analyzes the requirements, builds something wonderful, the solution is used for some time and then the business realizes that the result is not what was intended. The causes are multiple and usually form a complex network of causality, though probably the most important aspect is that customers don’t have the in-house technical resources to evaluate the feasibility of requirements, solutions, respectively of the results. Even if organizations involve the best key users, are needed also good data professionals or similar resources who can become the bond between the business and the services provider. Without such an intermediary the disconnect between the business and the service provider can grow with all the implications. 

Previous Post <<||>> Next Post

16 March 2024

🧭Business Intelligence: A Software Engineer's Perspective (Part VII: Think for Yourself!)

Business Intelligence
Business Intelligence Series

After almost a quarter-century of professional experience the best advice I could give to younger professionals is to "gather information and think for themselves", and with this the reader can close the page and move forward! Anyway, everybody seems to be looking for sudden enlightenment with minimal effort, as if the effort has no meaning in the process!

In whatever endeavor you are caught, it makes sense to do upfront a bit of thinking for yourself - what's the task, or more general the problem, which are the main aspects and interpretations, which are the goals, respectively the objectives, how a solution might look like, respectively how can it be solved, how long it could take, etc. This exercise is important for familiarizing yourself with the problem and creating a skeleton on which you can build further. It can be just vague ideas or something more complex, though no matter the overall depth is important to do some thinking for yourself!

Then, you should do some research to identify how others approached and maybe solved the problem, what were the justifications, assumptions, heuristics, strategies, and other tools used in sense-making and problem solving. When doing research, one should not stop with the first answer and go with it. It makes sense to allocate a fair amount of time for information gathering, structuring the findings in a reusable way (e.g. tables, mind maps or other tools used for knowledge mapping), and looking at the problem from the multiple perspectives derived from them. It's important to gather several perspectives, otherwise the decisions have a high chance of being biased. Just because others preferred a certain approach, it doesn't mean one should follow it, at least not blindly!

The purpose of research is multifold. First, one should try not to reinvent the wheel. I know, it can be fun, and a lot can be learned in the process, though when time is an important commodity, it's important to be pragmatic! Secondly, new information can provide new perspectives - one can learn a lot from other people’s thinking. The pragmatism of problem solvers should be combined, when possible, with the idealism of theories. Thus, one can make connections between ideas that aren't connected at first sight.

Once a good share of facts was gathered, you can review the new information in respect to the previous ones and devise from there several approaches worthy of attack. Once the facts are reviewed, there are probably strong arguments made by others to follow one approach over the others. However, one can show that has reached a maturity when is able to evaluate the information and take a decision based on the respective information, even if the decision is not by far perfect.

One should try to develop a feeling for decision making, even if this seems to be more of a gut-feeling and stressful at times. When possible, one should attempt to collect and/or use data, though collecting data is often a luxury that tends to postpone the decision making, respectively be misused by people just to confirm their biases. Conversely, if there's any important benefit associated with it, one can collect data to validate in time one's decision, though that's a more of a scientist’s approach.

I know that's easier to go with the general opinion and do what others advise, especially when some ideas are popular and/or come from experts, though then would mean to also follow others' mistakes and biases. Occasionally, that can be acceptable, especially when the impact is neglectable, however each decision we are confronted with is an opportunity to learn something, to make a difference! 

Previous Post <<||>> Next Post

14 February 2024

🧭Business Intelligence: A One-Man Show (Part VI: The Lakehouse Perspective)

Business Intelligence Suite
Business Intelligence Suite

Continuing the ideas on Christopher Laubenthal's article "Why one person can't do everything in the data space" [1] and why his analogy between a college's functional structure and the core data roles is poorly chosen. In the last post I mentioned as a first argument that the two constructions have different foundations.

Secondly, it's a matter of construction, namely the steps used to arrive from one state to another. Indeed, there's somebody who builds the data warehouse (DWH), somebody who builds the ETL/ELT pipelines for moving the data from the sources to the DWH, somebody who builds the sematic data model that includes business related logic, respectively people who tap into the data for reporting, data visualizations, data science projects, and whatever is still needed in the organization. On top of this, there should be somebody who manages the DWH. I haven't associated any role to them because one of the core roles can be responsible for more than one step. 

In the case of a lakehouse, it is the data engineer who moves the data from the various data sources to the data lake if that doesn't happen already by design or configuration. As per my understanding the data engineers are the ones who design and build the new lakehouse, move transform and manage the data as required. The Data Analysts, Data Scientist and maybe some Information Designers can tap then into the data. However, the DWH and the lakehouse(s) are technologies that facilitate their work. They can still do their work also if the same data are available by other means.

In what concerns the dorm analogy, the verbs were chosen to match the way data warehouses (DWH) or lakehouses are built, though the congruence of the steps is questionable. One could have compared the number of students with the numbers of data entities, but not with the data themselves. Usually, students move by themselves and occupy the places. The story tellers, the assistants and researchers are independent on whether the students are hosted in the dorm or not. Therefore, the analogy seems to be a bit forced. 

Frankly, I covered all the steps except the ones related to Data Science by myself for both described scenarios. It helped that I knew the data from the data sources and the transformations rules I had to apply, respectively the techniques needed for moving and transforming the data, and the volume of data entities was manageable somehow. Conversely, 1-2 more resources in the area of data analysis and visualizations could have helped to bring more value to the business. 

This opens the challenge of scale and it has do to with systems engineering and how the number of components and the interactions between them increase systems' complexity and the demand for managing the respective components. In the simplest linear models, for each multiplier of a certain number of components of the same type from the organization, the number of resources managing the respective layer matches to some degree the multiplier. E.g. if a data engineer can handle x data entities in a unit of time, then for hand n*x components are more likely at least n data engineers required. However, the output of n components is only a fraction of the n*x given the dependencies existing between components and other constraints.

An optimization problem resumes in finding out what data roles to chose to cover an organization's needs. A one man show can be the best solution for small organizations, though unless there's a good division of labor, bringing a second person will make the throughput slower until will become faster.

Previous Post <<|||>> Next Post

Resources:
[1] Christopher Laubenthal (2024) "Why One Person Can’t Do Everything In Data" (link)

12 February 2024

🧭Business Intelligence: A One-Man Show (Part I: Some Personal Background and a Big Thanks!)

Business Intelligence Series
Business Intelligence Series

Over the past 24 years, I found myself often in the position of a "one man show" doing almost everything in the data space from requirements gathering to development, testing, deployment, maintenance/support (including troubleshooting and optimization), and Project Management, respectively from operations to strategic management, when was the case. Of course, different tasks of varying complexity are involved! Developing a SSRS or Power BI report has a smaller complexity than developing in the process also all or parts of the Data Warehouse, or Lakehouse nowadays, respectively of building the whole infrastructure needed for reporting. All I can say is that "I've been there, I've done that!". 

Before SSRS became popular, I even built for a customer a whole reporting solution based on SQL Server, HTML & XML, respectively COM+ objects for database access. UI’s look-and-feel was like SSRS, though there was no wizardry involved besides the creative use of programming and optimization techniques. Once I wrote an SQL query, the volume of work needed to build a report was comparable to the one in SSRS. It was a great opportunity to use my skillset, working previously as a web developer and VB/VBA programmer. I worked for many years as a Software Engineer, applying the knowledge acquired in the field whenever it made sense to do so, working alone or in a team, as the projects required.

During this time, I was involved in other types of projects and activities that had less to do with the building of reports and warehouses. Besides of the development of various desktop, web, and data-processing solutions, I was also involved in 6-8 ERP implementations, being responsible for the migration of data, building the architectures needed in the process, supporting key users in various areas like Data Quality or Data Management. I also did Project Management, Application Management, Release and Change Management, and even IT Management. Thus, there were at times at least two components involved - one component was data-related, while the other component had more diversity. It was a good experience, because the second component often needed knowledge of the first, and vice versa. 

For example, arriving to understand the data model and business processes behind an ERP system by building ad-hoc and standardized reports, allowed me to get a good understanding of what data is needed for a Data Migration, which are the dependencies, or the level of quality needed. Similarly, the knowledge acquired by building ETL-based pipelines and data warehouses allowed me to design and build flexible Data Migration solutions, both architectures being quite similar from many perspectives. Knowledge of the data models and architectures involved can facilitate the overall process and is a premise for building reliable performant solutions. 

Similar examples can also be given in Data Management, Data Operations, Data Governance, during and post-implementation ERP support, etc. Reports and data are needed also in the Management areas - it starts from knowing what data are needed in the supporting processes for providing transparency, of getting insights and bringing the processes under control, if needed.

Working alone, being able to build a solution from the beginning to the end was often a job requirement. This doesn't imply that I was a "lone wolf". The nature of a data professional or software engineer’s job requires you to interact with various businesspeople from report requesters to key users, internal and external consultants, intermediary managers, and even upper management. There was also the knowledge of many data professionals involved indirectly – the resources I used to learn from - books, tutorials, blogs, webcasts, code, and training material. I'm thankful for their help over all these years!

Previous Post <<||>> Next Post

21 March 2021

𖣯Strategic Management: The Impact of New Technologies (Part II - The Technology-oriented Patient)

Strategic Management

Looking at the way data, information and knowledge flow through an organization, with a little imagination one can see the resemblance between an organization and the human body, in which the networks created by the respective flows spread through organization as nervous, circulatory or lymphatic braids do, each with its own role in the good functioning of the organization. Each technology adopted by an organization taps into these flows creating a structure that can be compared with the nerve plexus, as the various flows intersect in such points creating an agglomeration of nerves and braids.

The size of each plexus can be considered as proportional to the importance of the technology in respect to the overall structure. Strategic technologies like ERP, BI or planning systems, given their importance (gravity), resemble with the organs from the human body, with complex networks of braids in their vicinity. Maybe the metaphor is too far-off, though it allows stressing the importance of each technology in respect to its role and the good functioning of the organization. Moreover, each such structure functions as pressure points that can in extremis block any of the flows considered, a long-term block having important effects.

The human organism is a marvelous piece of work reflecting the grand design, however in time, especially when neglected or driven by external agents, diseases can clutch around any of the parts of the human body, with all the consequences deriving from this. On the other side, an organization is a hand-made structure found in continuous expansion as new technologies or resources are added. Even if the technologies are at peripheral side of the system, their good or bad functioning can have a ripple effect trough the various networks.

Replacing any of the above-mentioned strategic systems can be compared with the replacement of an organ in the human body, having a high degree of failure compared with other operations, being complex in nature, the organism needing long periods to recover, while in extreme situations the convalescence prolongs till the end. Fortunately, organizations seem to be more resilient to such operations, though that’s not necessarily a rule. Sometimes all it takes is just a small mistake for making the operation fail.

The general feeling is that ERP and BI implementations are taken too lightly by management, employees and implementers. During the replacement operation one must make sure not only that the organ fits and functions as expected, but also that the vital networks regained their vitality and function as expected, and the latter is a process that spans over the years to come. One needs to check the important (health) signs regularly and take the appropriate countermeasures. There must be an entity having the role of the doctor, who/which has the skills to address adequately the issues.

Moreover, when the physical structure of an organization is affected, a series of micro-operations might be needed to address the deformities. Unfortunately, these areas are seldom seen in time, and can require a sustained effort for fixing, while a total reconstruction might apply. One works also with an amorphous and ever-changing structure that require many attempts until a remedy is found, if a remedy is possible after all.

Even if such operations are pretty well documented, often what organizations lack are the skilled resources needed during and post-implementation, resources that must know as well the patient, and ideally its historical and further health preconditions. Each patient is different and quite often needs its own treatment/medication. With such changes, the organization lands itself on a discovery journey in which the appropriate path can easily deviate from the well-trodden paths.

Previous Post <<||>> Next Post

20 March 2021

🧭Business Intelligence: New Technologies, Old Challenges (Part II - ETL vs. ELT)

 

Business Intelligence

Data lakes and similar cloud-based repositories drove the requirement of loading the raw data before performing any transformations on the data. At least that’s the approach the new wave of ELT (Extract, Load, Transform) technologies use to handle analytical and data integration workloads, which is probably recommendable for the mentioned cloud-based contexts. However, ELT technologies are especially relevant when is needed to handle data with high velocity, variance, validity or different value of truth (aka big data). This because they allow processing the workloads over architectures that can be scaled with workloads’ demands.

This is probably the most important aspect, even if there can be further advantages, like using built-in connectors to a wide range of sources or implementing complex data flow controls. The ETL (Extract, Transform, Load) tools have the same capabilities, maybe reduced to certain data sources, though their newer versions seem to bridge the gap.

One of the most stressed advantages of ELT is the possibility of having all the (business) data in the repository, though these are not technological advantages. The same can be obtained via ETL tools, even if this might involve upon case a bigger effort, effort depending on the functionality existing in each tool. It’s true that ETL solutions have a narrower scope by loading a subset of the available data, or that transformations are made before loading the data, though this depends on the scope considered while building the data warehouse or data mart, respectively the design of ETL packages, and both are a matter of choice, choices that can be traced back to business requirements or technical best practices.

Some of the advantages seen are context-dependent – the context in which the technologies are put, respectively the problems are solved. It is often imputed to ETL solutions that the available data are already prepared (aggregated, converted) and new requirements will drive additional effort. On the other side, in ELT-based solutions all the data are made available and eventually further transformed, but also here the level of transformations made depends on specific requirements. Independently of the approach used, the data are still available if needed, respectively involve certain effort for further processing.

Building usable and reliable data models is dependent on good design, and in the design process reside the most important challenges. In theory, some think that in ETL scenarios the design is done beforehand though that’s not necessarily true. One can pull the raw data from the source and build the data models in the target repositories.

Data conversion and cleaning is needed under both approaches. In some scenarios is ideal to do this upfront, minimizing the effect these processes have on data’s usage, while in other scenarios it’s helpful to address them later in the process, with the risk that each project will address them differently. This can become an issue and should be ideally addressed by design (e.g. by building an intermediate layer) or at least organizationally (e.g. enforcing best practices).

Advancing that ELT is better just because the data are true (being in raw form) can be taken only as a marketing slogan. The degree of truth data has depends on the way data reflects business’ processes and the way data are maintained, while their quality is judged entirely on their intended use. Even if raw data allow more flexibility in handling the various requests, the challenges involved in processing can be neglected only under the consequences that follow from this.

Looking at the analytics and data integration cloud-based technologies, they seem to allow both approaches, thus building optimal solutions relying on professionals’ wisdom of making appropriate choices.

Previous Post <<||>>Next Post

🧭Business Intelligence: New Technologies, Old Challenges (Part I: An Introduction)

Business Intelligence

Each important technology has the potential of creating divides between the specialists from a given field. This aspect is more suggestive in the data-driven fields like BI/Analytics or Data Warehousing. The data professionals (engineers, scientists, analysts, developers) skilled only in the new wave of technologies tend to disregard the role played by the former technologies and their role in the data landscape. The argumentation for such behavior is rooted in the belief that a new technology is better and can solve any problem better than previous technologies did. It’s a kind of mirage professionals and customers can easily fall under.

Being bigger, faster, having new functionality, doesn’t make a tool the best choice by default. The choice must be rooted in the problem to be solved and the set of requirements it comes with. Just because a vibratory rammer is a new technology, is faster and has more power in applying pressure, this doesn’t mean that it will replace a hammer. Where a certain type of power is needed the vibratory rammer might be the best tool, while for situations in which a minimum of power and probably more precision is needed, like driving in a nail, then an adequately sized hammer will prove to be a better choice.

A technology is to be used in certain (business/technological) contexts, and even if contexts often overlap, the further details (aka requirements) should lead to the proper use of tools. It’s in a professional’s duties to be able to differentiate between contexts, requirements and the capabilities of the tools appropriate for each context. In this resides partially a professional’s mastery over its field of work and of providing adequate solutions for customers’ needs. Especially in IT, it’s not enough to master the new tools but also have an understanding about preceding tools, usage contexts, capabilities and challenges.

From an historical perspective each tool appeared to fill a demand, and even if maybe it didn’t manage to fill it adequately, the experience obtained can prove to be valuable in one way or another. Otherwise, one risks reinventing the wheel, or more dangerously, repeating the failures of the past. Each new technology seems to provide a deja-vu from this perspective.

Moreover, a new technology provides new opportunities and requires maybe to change our way of thinking in respect to how the technology is used and the processes or techniques associated with it. Knowledge of the past technologies help identifying such opportunities easier. How a tool is used is also a matter of skills, while its appropriate use and adoption implies an inherent learning curve. Having previous experience with similar tools tends to reduce the learning curve considerably, though hands-on learning is still necessary, and appropriate learning materials or tutoring is upon case needed for a smoother transition.

In what concerns the implementation of mature technologies, most of the challenges were seldom the technologies themselves but of non-technical nature, ranging from the poor understanding/knowledge about the tools, their role and the implications they have for an organization, to an organization’s maturity in leading projects. Even the most-advanced technology can fail in the hands of non-experts. Experience can’t be judged based only on the years spent in the field or the number of projects one worked on, but on the understanding acquired about implementation and usage’s challenges. These latter aspects seem to be widely ignored, even if it can make the difference between success and failure in a technology’s implementation.

Ultimately, each technology is appropriate in certain contexts and a new technology doesn’t necessarily make another obsolete, at least not until the old contexts become obsolete.

Previous Post <<||>>Next Post

01 February 2021

📦Data Migrations (DM): Quality Assurance (Part V: Quality Acceptance Criteria V)

Data Migration

Efficiency 

Efficiency is the degree to which a solution uses the hardware (storage, network) and other organizational resources to fulfill a given task. Data characterized by high volume, velocity, variety and veracity can be challenging to process, requiring upon case more processing power. Therefore, the DM solutions need to consider these aspects as well. However, efficiency refers on whether the available resources are used efficiently – the waste in terms of resource utilization is minimal. 

On the other side the waste of resources can be acceptable when there are other benefits or requirements that need to be considered, respectively when the ratio between resources utilization and effort to built more efficient processes is acceptable.

A DM solution involves iterative and exploratory processes in which knowledge and feedback is integrated in each iteration, therefore it might look like resources are not used efficiently. However, this is a way to handle complexity and uncertainty by breaking the effort in manageable chunks.

Learnability

Learnability is the degree to which a person can become familiar with a solution’s use, the data and the processes associated with it. A DM can be challenging for many technical and non-technical resources as it requires a certain level of skillset and understanding of the requirements, needs and deliverables. The complexity of the data and requirements can be overwhelming, however with appropriate communication and awareness established, the challenges can be overcome. 

Stability

Stability is the degree to which a solution is sensitive to environment changes (e.g. overuse of resource, hardware or software failures, updates), respectively on whether it performs with no performance defects or it does not crash under defined levels of stress. Stability can be monitored during the various phases and countermeasures need to be considered in case the solution is not stable enough (e.g. redesigning the solution, breaking the data in smaller chunks)

Suitability 

Suitability is the degree to which a solutions provides functions that meet the stated and implied needs. No matter how performant and technologically advanced a solution is, it brings less value as long it doesn’t perform what it was intended to do.

Transparency 

Transparency is the degree to which a solution’s stakeholders have access to the requirements, processes, data, documentation, or other information required by them. In a DM transparency is important especially important in respect to the data, logic and rules used in data processing, respectively the number of records processed. 

Trustability

Trustability is the degree to which a solution can be trusted to provide the expected results. Even if the technical team assures that the solution can deliver what was indented, the success of a DM is a matter of perception from stakeholders’ perspective. Providing transparency into the data, rules and processes can improve the level of trust however, special attention need to be given to the issues raised by stakeholders during and after Go-Live, as differences need to be mitigated. 

Understandability 

Understandability is the degree to which the requirements of a solution were understood by the resources involved in terms of what needs to be performed. For the average project resource it might be challenging to understand the implications of a DM, and this can apply to technical as well non-technical resources. Making people aware of the implications is probably one of the most important criteria for success, as the success of a migration is often a matter of perception. 

Usability 

Usability is the degree to which a solution can be used by the targeted users within the agreed context of usage. Ideally DM solutions need to be easy to use, though there are always trade-offs. In the end, a DM must fit the purpose it was built for. 

Previous Post <

📦Data Migrations (DM): Quality Assurance (Part IV: Quality Acceptance Criteria IV)

Data Migration
Data Migrations Series

Reliability

Reliability is the degree to which a solution performs its intended functions under stated conditions without failure. In other words, a DM is reliable if it performs what was intended by design. The data should be migrated only when migration’s reliability was confirmed by the users as part of the sign-off process. The dry-runs as well the final iteration for the UAT have the objective of confirming solution’s reliability.

Reversibility

Reversibility is the degree to which a solution can return to a previous state without starting the process from the beginning. For example, it should be possible to reverse the changes made to a table by returning to the previous state. This can involve having a copy of the data stored respectively deleting and reloading the data when necessary. 

Considering that the sequence in which the various activities is fix, in theory it’s possible to address reversibility by design, e.g. by allowing to repeat individual steps or by creating rollback points. Rollback points are especially important when loading the data into the target system. 

Robustness

Robustness is the degree to which the solution can accommodate invalid input or environmental conditions that might affect data’s processing or other requirements (e,g. performance). If the logic can be stabilized over the various iterations, the variance in data quality can have an important impact on a solutions robustness. One can accommodate erroneous input by relaxing schema’s rules and adding further quality checks.

Security 

Security is the degree to which the DM solution protects the data so that only authorized people have access to the respective data to the defined level of authorization as data are moved through the solution. The security provided by a solution needs to be considered against the standards and further requirements defined within the organization. In case no such standards are available, one can in theory consider the industry best practices.

Scalability

Scalability is the degree to which the solution is able to respond to an increased workload.  Given that the number of data considered during the various iterations vary in volume, a solution’s scalability needs to be considered in respect to the volume of data to be migrated.  

Standardization

Standardization is the degree to which technical standards were implemented for a solution to guarantee certain level of performance or other aspects considered as import. There can be standards for data storage, processing, access, transportation, or other aspects associated with the migration processes. Moreover, especially when multiple DMs are in scope, organizations can define a set of standards and guidelines that should be further considered.  

Testability

Testability is the degree to which a solution can be tested in the respect to the set of functional and data-related requirements. Even if for the success of a migration are important the data in their final form, to achieve that is needed to validate the logic and test thoroughly the transformations performed on the data. As the data go trough the data pipelines, they need to be tested in the critical points – points where the data suffer important transformations. Moreover, one can consider record counters for the records processed in each such critical point, to assure that no record was lost in the process.  

Traceability

Traceability is the degree to which the changes performed on the data can be traced from the target to the source systems as record, respectively at entity level. In theory, it’s enough to document the changes at attribute level, though upon case it might needed to document also the changes performed on individual values. 

Mappings at attribute level allow tracing the data flow, while mappings at value level allow tracing the changes occurrent within values. 

📦Data Migrations (DM): Quality Assurance (Part III: Quality Acceptance Criteria III)

Data Migration
Data Migrations Series

Repeatability

Repeatability is the degree with which a DM can be repeated and obtain consistent results between repetitions. Even if a DM is supposed to be a one-time activity for a project, to guarantee a certain level of quality it’s important to consider several iterations in which the data requirements are refined and made sure that the data can be imported as needed into the target system(s). Considered as a process, as long the data and the rules haven’t changed, the results should be the same or have the expected level of deviation from expectations. 

This requirement is important especially for the data migrated during UAT and Go-Live, time during which the input data and rules need to remain frozen (even if small changes in the data can still occur). In fact, that’s the role of UAT – to assure that the data have the expected quality and when compared to the previous dry-run, that it attains the expected level of consistency. 

Reusability

Reusability is the degree to which the whole solution, parts of the logic or data can be reused for multiple purposes. Master data and the logic associated with them have high reusability potential as they tend to be referenced by multiple entities. 

Modularity

Modularity is the degree to which a solution is composed of discrete components such that a change to one component has minimal impact on other components. It applies to the solution itself but also to the degree to which the logic for the various entities is partitioned so to assure a minimal impact. 

Partitionability

Partitionability is the degree to which data or logic can be partitioned to address the various requirements. Despite the assurance that the data will be migrated only once, in practice this assumption can be easily invalidated. It’s enough to increase the system freeze by a few days and/or to have transaction data that suddenly requires master data not considered. Even if the deltas can be migrated in system manually, it’s probably recommended to migrate them using the same logic. Moreover, the performing of incremental loads can be a project requirement. 

Data might need to be partitioned into batches to improve processing’s performance. Partitioning the logic based on certain parameters (e.g. business unit, categorical values) allows more flexibility in handling other requirements (e.g. reversibility, performance, testability, reusability). 

Performance

Performance refers to the degree a piece of software can process data into an amount of time considered as acceptable for the business. It can vary with the architecture and methods used, respectively data volume, veracity, variance, variability, or quality.

Performance is a critical requirement for a DM, especially when considering the amount of time spent on executing the logic during development, tests and troubleshooting, as well for other activities. Performance is important during dry-runs but more important during Go-Live, as it equates with a period during which the system(s) are not available for the users. Upon case, a few hours of delays can have an important impact on the business. In extremis, the delays can sum up to days. 

Predictability

Predictability is the degree to which the results and behavior of a solution, respectively the processes involve are predictable based on the design, implementation or other factors considered (e.g. best practices, methodology used, experience, procedures and processes). Highly predictable solutions are desirable, though reaching the required level of performance and quality can be challenging. 

The results from the dry-runs can offer an indication on whether the data migrated during UAT and Go-Live provide a certain level of assurance that the DM will be a success. Otherwise, an additional dry-run should be planned during UAT, if the schedule allows it.

Previous Post <> Nest Post 

📦Data Migrations (DM): Quality Assurance (Part II: Quality Acceptance Criteria II)

Data Migration
Data Migrations Series

Auditability

Auditability is the degree to which the solution allows checking the data for their accuracy, or for their quality in general, respectively the degree to which the DM solution and processes allow to be audited regarding compliance, security and other types of requirements. All these aspects are important in case an external sign-off from an auditor is mandatory. 

Automation

Automation is the degree to which the activities within a DM can be automated. Ideally all the processes or activities should be automated, though other requirements might be impacted negatively. Ideally, one needs to find the right balance between the various requirements. 

Cohesion

Cohesion is the degree to which the tasks performed by the solution, respectively during the migration, are related to each other. Given the dependencies existing between data, their processing and further project-related activities, DM imply a high degree of cohesion that need to be addressed by design. 

Complexity 

Complexity is the degree to which a solution is difficult to understand given the various processing layers and dependencies existing within the data. The complexity of DM revolve mainly around the data structures and the transformations needed to translate the data between the various data models. 

Compliance 

Compliance is the degree to which a solution is compliant with internal or external regulations that apply. There should be differentiated between mandatory requirements, respectively recommendations and other requirements.

Consistency 

Consistency is the degree to which data conform to an equivalent set of data, in this case the entities considered for the DM need to be consistent to each other. A record referenced in any entity of the migration need to be considered, respectively made available in the target system(s) either by parametrization or migration. 

During each iteration, the data need to remain consistent, so it can facilitate the troubleshooting. The data are usually reimported between iterations or during same iteration, typically to reflect the changes occurred in the source systems or other purposes. 

Coupling 

Data coupling is the degree to which different processing areas within a DM share the same data, typically a reflection of the dependencies existing between the data. Ideally, the areas should be decoupled as much as possible. 

Extensibility

Extensibility is the degree to which the solution or parts of the logic can be extended to accommodate further requirements. Typically, this involves changes that deviate from the standard functionality. Extensibility impacts positively the flexibility.

Flexibility 

Flexibility is the degree to which a solution can handle new requirements or ad-hoc changes to the logic. No matter how good everything was planned there’s always something forgotten or new information is identified. Having the flexibility to change code or data on the fly can make an important difference. 

Integrity 

Integrity is the degree to which a solution prevents the changes to data besides the ones considered by design. Users and processes should not be able modifying the data besides the agreed procedures. This means that the data need to be processed in the sequence agreed. All aspects related to data integrity need to be documented accordingly. 

Interoperability 

Interoperability is the degree to which a solution’s components can exchange data and use the respective data. The various layers of a DM’s solutions must be able to process the data and this should be possible by design. 

Maintainability

Maintainability is the degree to which a solution can be modified to or add minor features, change existing code, corrects issues, refactor code, improve performance or address changes in environment. The data required and the transformation rules are seldom known in advance. The data requirements are definitized during the various iterations, the changes needing to be implemented as the iterations progress. Thus, maintainability is a critical requirement.

Previous Post - Next Post

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.