Showing posts with label symmetry. Show all posts
Showing posts with label symmetry. Show all posts

17 August 2019

Information Security: Asymmetric Encryption (Definitions)

"Requires a pair of keys to encode and decode information. One key is used to encrypt the plain text, and a second key, which is part of the matched pair, is used to decrypt that cipher text." (Marilyn Miller-White et al, "MCITP Administrator: Microsoft® SQL Server™ 2005 Optimization and Maintenance 70-444", 2007)

"Asymmetric encryption is an encryption model in which the encryption and decryption processes use different keys. Modern asymmetric encryption algorithms are based on the public key/private key pairs, in which the encryption and decryption keys are different but nontrivially related. The public key is widely known and distributed for encryption while the private key is kept secret and used for decryption. Although the keys are related, it is considered infeasible to try to derive the private key from the public key." (Michael Coles & Rodney Landrum, , "Expert SQL Server 2008 Encryption", 2008)

"Asymmetric encryption is encryption that requires two different keys: one to encrypt data and another to decrypt it. The most common form of asymmetric encryption is public key encryption, in which the two keys are mathematically related." (Michael Coles, "Pro T-SQL 2008 Programmer's Guide", 2008)

"Asymmetric encryption, also known as public-key encryption, is a form of data encryption where the encryption key (also called the public key) and the corresponding decryption key (also called the private key) are different. A message encrypted with the public key can be decrypted only with the corresponding private key. The public key and the private key are related mathematically, but it is computationally infeasible to derive the private key from the public key. Therefore, a recipient could distribute the public key widely." (Ninghui Li, "Asymmetric Encryption", 2009)

"Encryption that requires two different keys: one to encrypt data and another to decrypt it. The most common form of asymmetric encryption is public key encryption, in which the two keys are mathematically related." (Miguel Cebollero et al, "Pro T-SQL Programmer’s Guide" 4th Ed., 2015)

"Public-key cryptography refers to a cryptographic system requiring two separate keys, one of which is secret and one of which is public. Although different, the two parts of the key pair are mathematically linked. One key locks or encrypts the plaintext, and the other unlocks or decrypts the cipher text. Neither key can perform both functions by itself. The public key may be published without compromising security, while the private key must not be revealed to anyone not authorized to read the messages." (Addepalli V N Krishna & M Balamurugan, "Security Mechanisms in Cloud Computing-Based Big Data", 2019)

29 November 2018

Data Science: Invariance (Just the Quotes)

"[…] as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint. […] Science looks for laws; it is therefore much concerned with looking for constraints. […] the world around us is extremely rich in constraints. We are so familiar with them that we take most of them for granted, and are often not even aware that they exist. […] A world without constraints would be totally chaotic." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[...] the existence of any invariant over a set of phenomena implies a constraint, for its existence implies that the full range of variety does not occur. The general theory of invariants is thus a part of the theory of constraints. Further, as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Through all the meanings runs the basic idea of an 'invariant': that although the system is passing through a series of changes, there is some aspect that is unchanging; so some statement can be made that, in spite of the incessant changing, is true unchangingly." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"We know many laws of nature and we hope and expect to discover more. Nobody can foresee the next such law that will be discovered. Nevertheless, there is a structure in laws of nature which we call the laws of invariance. This structure is so far-reaching in some cases that laws of nature were guessed on the basis of the postulate that they fit into the invariance structure." (Eugene P Wigner, "The Role of Invariance Principles in Natural Philosophy", 1963)

"[..] principle of equipresence: A quantity present as an independent variable in one constitutive equation is so present in all, to the extent that its appearance is not forbidden by the general laws of Physics or rules of invariance. […] The principle of equipresence states, in effect, that no division of phenomena is to be laid down by constitutive equations." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"It is now natural for us to try to derive the laws of nature and to test their validity by means of the laws of invariance, rather than to derive the laws of invariance from what we believe to be the laws of nature." (Eugene P Wigner, "Symmetries and Reflections", 1967)

"As a metaphor - and I stress that it is intended as a metaphor - the concept of an invariant that arises out of mutually or cyclically balancing changes may help us to approach the concept of self. In cybernetics this metaphor is implemented in the ‘closed loop’, the circular arrangement of feedback mechanisms that maintain a given value within certain limits. They work toward an invariant, but the invariant is achieved not by a steady resistance, the way a rock stands unmoved in the wind, but by compensation over time. Whenever we happen to look in a feedback loop, we find the present act pitted against the immediate past, but already on the way to being compensated itself by the immediate future. The invariant the system achieves can, therefore, never be found or frozen in a single element because, by its very nature, it consists in one or more relationships - and relationships are not in things but between them."  (Ernst von Glasersfeld German, "Cybernetics, Experience and the Concept of Self", 1970)

"An essential condition for a theory of choice that claims normative status is the principle of invariance: different representations of the same choice problem should yield the same preference. That is, the preference between options should be independent of their description. Two characterizations that the decision maker, on reflection, would view as alternative descriptions of the same problem should lead to the same choice-even without the benefit of such reflection." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"Axiomatic theories of choice introduce preference as a primitive relation, which is interpreted through specific empirical procedures such as choice or pricing. Models of rational choice assume a principle of procedure invariance, which requires strategically equivalent methods of elicitation to yield the same preference order." (Amos Tversky et al, "The Causes of Preference Reversal", The American Economic Review Vol. 80 (1), 1990)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ‎K Nishijima ," Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation… discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"The concept of symmetry (invariance) with its rigorous mathematical formulation and generalization has guided us to know the most fundamental of physical laws. Symmetry as a concept has helped mankind not only to define ‘beauty’ but also to express the ‘truth’. Physical laws tries to quantify the truth that appears to be ‘transient’ at the level of phenomena but symmetry promotes that truth to the level of ‘eternity’." (Vladimir G Ivancevic & Tijana T Ivancevic,"Quantum Leap", 2008)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Gregory Faye, "An introduction to bifurcation theory",  2011)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

More quotes on "Invariance" at the-web-of-knowledge.blogspot.com.

13 November 2018

Data Science: Symmetry (Just the Quotes)

"The framing of hypotheses is, for the enquirer after truth, not the end, but the beginning of his work. Each of his systems is invented, not that he may admire it and follow it into all its consistent consequences, but that he may make it the occasion of a course of active experiment and observation. And if the results of this process contradict his fundamental assumptions, however ingenious, however symmetrical, however elegant his system may be, he rejects it without hesitation. He allows no natural yearning for the offspring of his own mind to draw him aside from the higher duty of loyalty to his sovereign, Truth, to her he not only gives his affections and his wishes, but strenuous labour and scrupulous minuteness of attention." (William Whewell, "Philosophy of the Inductive Sciences" Vol. 2, 1847)

"Rule 2. Any summary of a distribution of numbers in terms of symmetric functions should not give an objective degree of belief in any one of the inferences or predictions to be made therefrom that would cause human action significantly different from what this action would be if the original distributions had been taken as evidence." (Walter A Shewhart, "Economic Control of Quality of Manufactured Product", 1931)

"Logging size transforms the original skewed distribution into a more symmetrical one by pulling in the long right tail of the distribution toward the mean. The short left tail is, in addition, stretched. The shift toward symmetrical distribution produced by the log transform is not, of course, merely for convenience. Symmetrical distributions, especially those that resemble the normal distribution, fulfill statistical assumptions that form the basis of statistical significance testing in the regression model." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Symmetry is also important because it can simplify our thinking about the distribution of a set of data. If we can establish that the data are (approximately) symmetric, then we no longer need to describe the  shapes of both the right and left halves. (We might even combine the information from the two sides and have effectively twice as much data for viewing the distributional shape.) Finally, symmetry is important because many statistical procedures are designed for, and work best on, symmetric data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"There are several reasons why symmetry is an important concept in data analysis. First, the most important single summary of a set of data is the location of the center, and when data meaning of 'center' is unambiguous. We can take center to mean any of the following things, since they all coincide exactly for symmetric data, and they are together for nearly symmetric data: (l) the Center Of symmetry. (2) the arithmetic average or center Of gravity, (3) the median or 50%. Furthermore, if data a single point of highest concentration instead of several (that is, they are unimodal), then we can add to the list (4) point of highest concentration. When data are far from symmetric, we may have trouble even agreeing on what we mean by center; in fact, the center may become an inappropriate summary for the data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"If a distribution were perfectly symmetrical, all symmetry-plot points would be on the diagonal line. Off-line points indicate asymmetry. Points fall above the line when distance above the median is greater than corresponding distance below the median. A consistent run of above-the-line points indicates positive skew; a run of below-the-line points indicates negative skew." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Remember that normality and symmetry are not the same thing. All normal distributions are symmetrical, but not all symmetrical distributions are normal. With water use we were able to transform the distribution to be approximately symmetrical and normal, but often symmetry is the most we can hope for. For practical purposes, symmetry (with no severe outliers) may be sufficient. Transformations are not a magic wand, however. Many distributions cannot even be made symmetrical." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry", 1992)

"Data that are skewed toward large values occur commonly. Any set of positive measurements is a candidate. Nature just works like that. In fact, if data consisting of positive numbers range over several powers of ten, it is almost a guarantee that they will be skewed. Skewness creates many problems. There are visualization problems. A large fraction of the data are squashed into small regions of graphs, and visual assessment of the data degrades. There are characterization problems. Skewed distributions tend to be more complicated than symmetric ones; for example, there is no unique notion of location and the median and mean measure different aspects of the distribution. There are problems in carrying out probabilistic methods. The distribution of skewed data is not well approximated by the normal, so the many probabilistic methods based on an assumption of a normal distribution cannot be applied." (William S Cleveland, "Visualizing Data", 1993)

"A normal distribution is most unlikely, although not impossible, when the observations are dependent upon one another - that is, when the probability of one event is determined by a preceding event. The observations will fail to distribute themselves symmetrically around the mean." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ‎K Nishijima ," Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Symmetry and skewness can be judged, but boxplots are not entirely useful for judging shape. It is not possible to use a boxplot to judge whether or not a dataset is bell-shaped, nor is it possible to judge whether or not a dataset may be bimodal." (Jessica M Utts & Robert F Heckard, "Mind on Statistics", 2007)

"The concept of symmetry (invariance) with its rigorous mathematical formulation and generalization has guided us to know the most fundamental of physical laws. Symmetry as a concept has helped mankind not only to define ‘beauty’ but also to express the ‘truth’. Physical laws tries to quantify the truth that appears to be ‘transient’ at the level of phenomena but symmetry promotes that truth to the level of ‘eternity’." (Vladimir G Ivancevic & Tijana T Ivancevic,"Quantum Leap", 2008)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

"A pattern is a design or model that helps grasp something. Patterns help connect things that may not appear to be connected. Patterns help cut through complexity and reveal simpler understandable trends. […] Patterns can be temporal, which is something that regularly occurs over time. Patterns can also be spatial, such as things being organized in a certain way. Patterns can be functional, in that doing certain things leads to certain effects. Good patterns are often symmetric. They echo basic structures and patterns that we are already aware of." (Anil K. Maheshwari, "Business Intelligence and Data Mining", 2015)

"One kind of probability - classic probability - is based on the idea of symmetry and equal likelihood […] In the classic case, we know the parameters of the system and thus can calculate the probabilities for the events each system will generate. […] A second kind of probability arises because in daily life we often want to know something about the likelihood of other events occurring […]. In this second case, we need to estimate the parameters of the system because we don’t know what those parameters are. […] A third kind of probability differs from these first two because it’s not obtained from an experiment or a replicable event - rather, it expresses an opinion or degree of belief about how likely a particular event is to occur. This is called subjective probability […]." (Daniel J Levitin, "Weaponized Lies", 2017)

"Variables which follow symmetric, bell-shaped distributions tend to be nice as features in models. They show substantial variation, so they can be used to discriminate between things, but not over such a wide range that outliers are overwhelming." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

"It is not enough to give a single summary for a distribution - we need to have an idea of the spread, sometimes known as the variability. [...] The range is a natural choice, but is clearly very sensitive to extreme values [...] In contrast the inter-quartile range (IQR) is unaffected by extremes. This is the distance between the 25th and 75th percentiles of the data and so contains the ‘central half’ of the numbers [...] Finally the standard deviation is a widely used measure of spread. It is the most technically complex measure, but is only really appropriate for well-behaved symmetric data since it is also unduly influenced by outlying values." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Many statistical procedures perform more effectively on data that are normally distributed, or at least are symmetric and not excessively kurtotic (fat-tailed), and where the mean and variance are approximately constant. Observed time series frequently require some form of transformation before they exhibit these distributional properties, for in their 'raw' form they are often asymmetric." (Terence C Mills, "Applied Time Series Analysis: A practical guide to modeling and forecasting", 2019)

"Mean-averages can be highly misleading when the raw data do not form a symmetric pattern around a central value but instead are skewed towards one side [...], typically with a large group of standard cases but with a tail of a few either very high (for example, income) or low (for example, legs) values." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

15 December 2014

Systems Engineering: Symmetry (Just the Quotes)

"In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry." (Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"Symmetry is evidently a kind of unity in variety, where a whole is determined by the rhythmic repetition of similar." (George Santayana, "The Sense of Beauty", 1896)

"It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details." (Henri Poincaré, "The Future of Mathematics", Monist, Vol. 20 (1), 1910)

"But seldom is asymmetry merely the absence of symmetry. Even in asymmetric designs one feels symmetry as the norm from which one deviates under the influence of forces of non-formal character." (Hermann Weyl, "Symmetry", 1952)

"[…] nature, at the fundamental level, does not just prefer symmetry in a physical theory; nature demands it." (Jennifer T Thompson, "Beyond Einstein: The Cosmic Quest for the Theory of the Universe", 1987)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"A symmetry is a set of transformations applied to a structure, such that the transformations preserve the properties of the structure." (Philip Dorrell, "What is Music?: Solving a Scientific Mystery", 2004)

"A graph enables us to visualize a relation over a set, which makes the characteristics of relations such as transitivity and symmetry easier to understand. […] Notions such as paths and cycles are key to understanding the more complex and powerful concepts of graph theory. There are many degrees of connectedness that apply to a graph; understanding these types of connectedness enables the engineer to understand the basic properties that can be defined for the graph representing some aspect of his or her system. The concepts of adjacency and reachability are the first steps to understanding the ability of an allocated architecture of a system to execute properly." (Dennis M Buede, "The Engineering Design of Systems: Models and methods", 2009)

More quotes on "Symmetry" at the-web-of-knowledge.blogspot.com.

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.