Showing posts with label endpoints. Show all posts
Showing posts with label endpoints. Show all posts

13 February 2025

🏭💠🗒️Microsoft Fabric: SQL Analytics Endpoint [Notes]

Disclaimer: This is work in progress intended to consolidate information from various sources for learning purposes. For the latest information please consult the documentation (see the links below)! 

Last updated: 12-Feb-2024

[Microsoft Fabric] SQL Analytics Endpoint

  • {def} a service that listens actively for requests providing a SQL-based experience for lakehouse Delta tables [1]
    • enables to query data in the lakehouse using T-SQL language and TDS protocol [1]
    • created by default for each lakehouses and mirrored databases provisioned in a workspace
      • every lakehouse has one SQL analytics endpoint [1]
    • manages the automatically generated tables so the workspace users can't modify them [1]
  • {feature} a background process is responsible for 
    • scanning lakehouse for changes [1]
      • automatically generates a table in the appropriate schema for every Delta table in the Lakehouse
        • tables are created with a minor delay [1]
        • data is refreshed automatically
          • the amount of time it takes to refresh the table is related to how optimized the Delta tables are [1]
        • {alternative} one can manually force a refresh of the automatic metadata scanning in the Fabric portal [1]
    • keeping SQL analytics endpoint up-to-date for all the changes committed to lakehouses in a workspace [1]
      • {characteristic} transparently managed
        • ⇐ the sync process is transparently managed by Microsoft Fabric platform [1]
        • when a change is detected in the lakehouse
          • a background process updates metadata [1]
          • the SQL analytics endpoint reflects the changes committed to lakehouse tables [1]
      • {characteristic} low latency
        • under normal operating conditions, the lag between a lakehouse and SQL analytics endpoint is less than one minute [1]
        • the actual length of time can vary from a few seconds to minutes [1]
      • the metadata synchronization is automatically triggered when the SQL Endpoint is opened [3]
        • ensures the SQL Analytics Endpoint remains up to date without the need for manual syncs [3]
          •  ⇐ provides a seamless experience [3]
  • {feature} can be enriched by adding database objects
    • schemas
    • views
    • procedures
    • other database objects
  • {feature} automatic metadata discovery
    • tracks changes committed to lakehouses [1]
      • is a single instance per Fabric workspace [1]
      • {issue} increased latency for changes to sync between lakehouses and SQL analytics endpoint, it could be due to large number of lakehouses in one workspace [1]
        • {resolution} migrate each lakehouse to a separate workspace [1]
          • allows automatic metadata discovery to scale [1]
      • {issue} changes committed to a lakehouse are not visible in the associated SQL analytics endpoint
        • create a new table in the  [1]
        • many committed rows may not be visible in the endpoint [1]
        • ⇐ may be impacted by ETL processing that generate large volumes of changes
        • {recommendation} initiate an on-demand metadata sync, triggered from the SQL query editor Refresh ribbon option [1]
          • forces an on-demand metadata sync, rather than waiting on the background metadata sync to finish [1]
      • {issue} if there's no maintenance scheduled for the parquet files, this can result in read overhead and this impacts time it takes to sync changes to SQL analytics endpoint [1]
        • {recommendation}schedule regular lakehouse table maintenance operations [1]
      • {limitation} not all Delta features are understood by the automatic sync process [1]
  • {feature} endpoint reprovisioning
    • if the initial provisioning attempt fails, users have the option to try again [2]
      • ⇐ without the need to create an entirely new lakehouse [2]
      • {benefit} empowers users to self-mitigate provisioning issues in convenient way in the UI avoiding the need for complete lakehouse re-creation [2]

References:
[1] Microsoft Learn (2024) Microsoft Fabric: SQL analytics endpoint performance considerations [link]
[2] Microsoft Learn (2024) Microsoft Fabric: What is the SQL analytics endpoint for a lakehouse? [link]
[3] Microsoft Learn (2024) Microsoft Fabric: What’s new in the Fabric SQL Analytics Endpoint? [link]
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.