Showing posts with label behavior. Show all posts
Showing posts with label behavior. Show all posts

06 March 2024

Business Intelligence: Data Culture (Part II: Leadership, Necessary but not Sufficient)

Business Intelligence
Business Intelligence Series

Continuing the idea from the previous post on Brent Dykes’ article on data culture and Generative AI [1], it’s worth discussing about the relationship between data culture and leadership. Leadership belongs to a list of select words everybody knows about but fails to define them precisely, especially when many traits are associated with leadership, respectively when most of the issues existing in organizations ca be associated with it directly or indirectly.

Take for example McKinsey’s definition: "Leadership is a set of behaviors used to help people align their collective direction, to execute strategic plans, and to continually renew an organization." [2] It gives an idea of what leadership is about, though it lacks precision, which frankly is difficult to accomplish. Using modifiers like strong or weak with the word leadership doesn’t increase the precision of its usage. Several words stand out though: direction, strategy, behavior, alignment, renewal.

Leadership is about identifying and challenging the status quo, defining how the future will or could look like for the organization in terms of a vision, a mission and a destination, translating them into a set of goals and objectives. Then, it’s about defining a set of strategies, focusing on transformation and what it takes to execute it, adjusting the strategic bridge between goals and objectives, or, reading between the lines, identifying and doing the right things, being able to introduce a new order of things, reinventing the organization, adapting the organization to circumstances.

Aligning resumes in aligning the various strategies, aligning people with the vision and mission, while renewal is about changing course in response to new information or business context, identifying and transforming weaknesses into strengths, risks into opportunities, respectively opportunities into certitudes, seeing possibilities and multiplying them.

Leadership is also about working on the system, addressing the systemic failure, addressing structural and organizational issues, making sure that the preconditions and enablers for organizational change are in place, that no barriers exist or other factors impact negatively the change, that the positive aspects of complex systems like emergence or exponential growth do happen in time.

And leadership is about much more - interpersonal influence, inspiring people, Inspiring change, changing mindsets, assisting, motivating, mobilizing, connecting, knocking people out of their comfort zones, conviction, consistency, authority, competence, wisdom, etc. Leadership seems to be an idealistic concept where too many traits are considered, traits that ideally should apply to the average knowledge worker as well.

An organization’s culture is created, managed, nourished, and destroyed through leadership, and that’s a strong statement and constraint. By extension this statement applies to the data culture as well. It’s about leading by example and not by words or preaching, and many love to preach, even when no quire is around. It’s about demanding the same from the managers as managers demand from their subalterns, it’s about pushing the edges of culture. As Dykes mentions, it should be about participating in the data culture initiatives, making expectations explicit, and sharing mental models.

Leadership is a condition necessary but not sufficient for an organizations culture to mature. Financial and other type of resources are needed, though once a set of behaviors is seeded, they have the potential to grow and multiply when the proper conditions are met. Growth occurs also by being aware of what needs to be done and doing it day by day consciously, through self-mastery. Nowadays there are so many ways to learn and search for support, one just needs a bit of curiosity and drive to learn anything. Blaming in general the lack of leadership is just a way of passing the blame one level above on the command chain.

Resources:
[1] Forbes (2024) Why AI Isn’t Going To Solve All Your Data Culture Problems, by Brent Dykes (link)
[2] McKinsey (2022) What is leadership? (link)

Previous Post <<||>> Next Post

05 March 2024

Business Intelligence: Data Culture (Part I: Generative AI - No Silver Bullet)

Business Intelligence
Business Intelligence Series

Talking about holy grails in Data Analytics, another topic of major importance for an organization’s "infrastructure" is data culture, that can be defined as the collective beliefs, values, behaviors, and practices of an organization’s employees in harnessing the value of data for decision-making, operations, or insight. Rooted in data literacy, data culture is an extension of an organization’s culture in respect to data that acts as enabler in harnessing the value of data. It’s about thinking critically about data and how data is used to create value. 

The current topic was suggested by PowerBI.tips’s webcast from today [3] and is based on Brent Dykes’ article from Forbes ‘Why AI Isn’t Going to Solve All Your Data Culture Problems’ [1]. Dykes’ starting point for the discussion is Wavestone's annual data executive survey based on which the number of companies that reported they had "created a data-driven organization" rose sharply from 23.9 percent in 2023 to 48.1 percent in 2024 [2]. The report’s authors concluded that the result is driven by the adoption of Generative AI, the capabilities of OpenAI-like tools to generate context-dependent meaningful text, images, and other content in response to prompts. 

I agree with Dykes that AI technologies can’t be a silver bullet for an organization data culture given that AI either replaces people’s behaviors or augments existing ones, being thus a substitute and not a cure [1]. Even for a disruptive technology like Generative AI, it’s impossible to change so much employees’ mindset in a so short period of time. Typically, a data culture matures over years with sustained effort. Therefore, the argument that the increase is due to respondent’s false perception is more than plausible. There’s indeed a big difference between thinking about an organization as being data-driven and being data-driven. 

The three questions-based evaluation considered in the article addresses this difference, thinking vs. being. Changes in data culture don’t occur just because some people or metrics say so, but when people change their mental models based on data, when the interpersonal relations change, when the whole dynamics within the organization changes (positively). If people continue the same behavior and practices, then there are high chances that no change occurred besides the Brownian movement in a confined space of employees, that’s just chaotic motion.  

Indeed, a data culture should encourage the discovery, exploration, collaboration, discussions [1] respectively knowledge sharing and make people more receptive and responsive about environmental or circumstance changes. However, just involving leadership and having things prioritized and funded is not enough, no matter how powerful the drive. These can act as enablers, though more important is to awaken and guide people’s interest, working on people’s motivation and supporting the learning process through mentoring. No amount of brute force can make a mind move and evolve freely unless the mind is driven by an inborn curiosity!

Driving a self-driving car doesn’t make one a better driver. Technology should challenge people and expand their understanding of how data can be used in different contexts rather than give solutions based on a mass of texts available as input. This is how people grow meaningfully and how an organization’s culture expands. Readily available answers make people become dull and dependent on technology, which in the long-term can create more problems. Technology can solve problems when used creatively, when problems and their context are properly understood, and the solutions customized accordingly.

Unfortunately, for many organizations data culture will be just a topic to philosophy about. Data culture implies a change of mindset, perception, mental models, behavior, and practices based on data and not only consulting the data to confirm one’s biases on how the business operates!

Resources:
[1] Forbes (2024) Why AI Isn’t Going To Solve All Your Data Culture Problems, by Brent Dykes (link)
[2] Wavestone (2024) 2024 Data and AI Leadership Executive Survey (link)
[3] Power BI tips (2024) Ep.299: AI & Data Culture Problems (link)

06 May 2018

Data Science: Swarm Intelligence (Definitions)

"Swarm systems generate novelty for three reasons: (1) They are 'sensitive to initial conditions' - a scientific shorthand for saying that the size of the effect is not proportional to the size of the cause - so they can make a surprising mountain out of a molehill. (2) They hide countless novel possibilities in the exponential combinations of many interlinked individuals. (3) They don’t reckon individuals, so therefore individual variation and imperfection can be allowed. In swarm systems with heritability, individual variation and imperfection will lead to perpetual novelty, or what we call evolution." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Dumb parts, properly connected into a swarm, yield smart results." (Kevin Kelly, "New Rules for the New Economy", 1999)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"Just what valuable insights do ants, bees, and other social insects hold? Consider termites. Individually, they have meager intelligence. And they work with no supervision. Yet collectively they build mounds that are engineering marvels, able to maintain ambient temperature and comfortable levels of oxygen and carbon dioxide even as the nest grows. Indeed, for social insects teamwork is largely self-organized, coordinated primarily through the interactions of individual colony members. Together they can solve difficult problems (like choosing the shortest route to a food source from myriad possible pathways) even though each interaction might be very simple (one ant merely following the trail left by another). The collective behavior that emerges from a group of social insects has been dubbed 'swarm intelligence'." (Eric Bonabeau & Christopher Meyer, Swarm Intelligence: A Whole New Way to Think About Business, Harvard Business Review, 2001)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." (Ajith Abraham et al, "Swarm Intelligence in Data Mining", 2006)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach discussed later in this chapter. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

[swarm intelligence] "Refers to a class of algorithms inspired by the collective behaviour of insect swarms, ant colonies, the flocking behaviour of some bird species, or the herding behaviour of some mammals, such that the behaviour of the whole can be considered as exhibiting a rudimentary form of 'intelligence'." (John Fulcher, "Intelligent Information Systems", 2009)

"The property of a system whereby the collective behaviors of unsophisticated agents interacting locally with their environment cause coherent functional global patterns to emerge." (M L Gavrilova, "Adaptive Algorithms for Intelligent Geometric Computing", 2009) 

[swarm intelligence] "Is a discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, SI focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment." (Elina Pacini et al, "Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments", 2013). 

"Swarm intelligence (SI) is a branch of computational intelligence that discusses the collective behavior emerging within self-organizing societies of agents. SI was inspired by the observation of the collective behavior in societies in nature such as the movement of birds and fish. The collective behavior of such ecosystems, and their artificial counterpart of SI, is not encoded within the set of rules that determines the movement of each isolated agent, but it emerges through the interaction of multiple agents." (Maximos A Kaliakatsos-Papakostas et al, "Intelligent Music Composition", 2013)

"Collective intelligence of societies of biological (social animals) or artificial (robots, computer agents) individuals. In artificial intelligence, it gave rise to a computational paradigm based on decentralisation, self-organisation, local interactions, and collective emergent behaviours." (D T Pham & M Castellani, "The Bees Algorithm as a Biologically Inspired Optimisation Method", 2015)

"It is the field of artificial intelligence in which the population is in the form of agents which search in a parallel fashion with multiple initialization points. The swarm intelligence-based algorithms mimic the physical and natural processes for mathematical modeling of the optimization algorithm. They have the properties of information interchange and non-centralized control structure." (Sajad A Rather & P Shanthi Bala, "Analysis of Gravitation-Based Optimization Algorithms for Clustering and Classification", 2020)

"It [swarm intelligence] is the discipline dealing with natural and artificial systems consisting of many individuals who coordinate through decentralized monitoring and self-organization." (Mehmet A Cifci, "Optimizing WSNs for CPS Using Machine Learning Techniques", 2021)

Resources:
More quotes on "Swarm Intelligence" at the-web-of-knowledge.blogspot.com.

22 December 2014

Systems Engineering: Complex Systems (Just the Quotes)

 "The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"Cybernetics is likely to reveal a great number of interesting and suggestive parallelisms between machine and brain and society. And it can provide the common language by which discoveries in one branch can readily be made use of in the others. [...] [There are] two peculiar scientific virtues of cybernetics that are worth explicit mention. One is that it offers a single vocabulary and a single set of concepts suitable for representing the most diverse types of system. [...] The second peculiar virtue of cybernetics is that it offers a method for the scientific treatment of the system in which complexity is outstanding and too important to be ignored. Such systems are, as we well know, only too common in the biological world!" (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society, Vol. 106 (6), 1962)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"[…] as a model of a complex system becomes more complete, it becomes less understandable. Alternatively, as a model grows more realistic, it also becomes just as difficult to understand as the real world processes it represents." (Jay M Dutton & William H Starbuck," Computer simulation models of human behavior: A history of an intellectual technology", IEEE Transactions on Systems, 1971)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"The impossibility of constructing a complete, accurate quantitative description of a complex system forces observers to pick which aspects of the system they most wish to understand." (Thomas Levenson, "Measure for Measure: A musical history of science", 1994)

"Artificial complex systems will be deliberately infused with organic principles simply to keep them going." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...] A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Complexity must be grown from simple systems that already work." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003) 

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"In complexity thinking the darkness principle is covered by the concept of incompressibility [...] The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"If an emerging system is born complex, there is neither leeway to abandon it when it fails, nor the means to join another, successful one. Such a system would be caught in an immovable grip, congested at the top, and prevented, by a set of confusing but locked–in precepts, from changing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"The problem of complexity is at the heart of mankind's inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

More quotes on "Complex Systems" at the-web-of-knowledge.blogspot.com.

04 December 2014

Systems Engineering: Behavior (Just the Quotes)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"Every organism represents a system, by which term we mean a complex of elements in mutual interaction. From this obvious statement the limitations of the analytical and summative conceptions must follow. First, it is impossible to resolve the phenomena of life completely into elementary units; for each individual part and each individual event depends not only on conditions within itself, but also to a greater or lesser extent on the conditions within the whole, or within superordinate units of which it is a part. Hence the behavior of an isolated part is, in general, different from its behavior within the context of the whole. [...] Secondly, the actual whole shows properties that are absent from its isolated parts." (Ludwig von Bertalanffy, "Problems of Life", 1952)

"In our definition of system we noted that all systems have interrelationships between objects and between their attributes. If every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system, the system is said to behave as a whole or coherently. At the other extreme is a set of parts that are completely unrelated: that is, a change in each part depends only on that part alone. The variation in the set is the physical sum of the variations of the parts. Such behavior is called independent or physical summativity." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"Systems engineering is the name given to engineering activity which considers the overall behavior of a system, or more generally which considers all factors bearing on a problem, and the systems approach to control engineering problems is correspondingly that approach which examines the total dynamic behavior of an integrated system. It is concerned more with quality of performance than with sizes, capacities, or efficiencies, although in the most general sense systems engineering is concerned with overall, comprehensive appraisal." (Ernest F Johnson, "Automatic process control", 1958)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]" (W Ross Ashby, "Principles of the self-organizing system", 1962)

"Synergy is the only word in our language that means behavior of whole systems unpredicted by the separately observed behaviors of any of the system's separate parts or any subassembly of the system's parts." (R Buckminster Fuller, "Operating Manual for Spaceship Earth", 1963)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"We've seen that even in the simplest situations nonlinearities can interfere with a linear approach to aggregates. That point holds in general: nonlinear interactions almost always make the behavior of the aggregate more complicated than would be predicted by summing or averaging." (Lewis Mumford, "The Myth of the Machine" Vol 1, 1967)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"When a mess, which is a system of problems, is taken apart, it loses its essential properties and so does each of its parts. The behavior of a mess depends more on how the treatment of its parts interact than how they act independently of each other. A partial solution to a whole system of problems is better than whole solutions of each of its parts taken separately." (Russell L Ackoff, "The future of operational research is past", The Journal of the Operational Research Society Vol. 30 (2), 1979)

"Given an approximate knowledge of a system's initial conditions and an understanding of natural law, one can calculate the approximate behavior of the system. This assumption lay at the philosophical heart of science." (James Gleick, Chaos: Making a New Science, 1987)

"Linear relationships are easy to think about: the more the merrier. Linear equations are solvable, which makes them suitable for textbooks. Linear systems have an important modular virtue: you can take them apart and put them together again - the pieces add up. Nonlinear systems generally cannot be solved and cannot be added together. [...] Nonlinearity means that the act of playing the game has a way of changing the rules. [...] That twisted changeability makes nonlinearity hard to calculate, but it also creates rich kinds of behavior that never occur in linear systems." (James Gleick, "Chaos: Making a New Science", 1987)

"Systems thinking is a special form of holistic thinking - dealing with wholes rather than parts. One way of thinking about this is in terms of a hierarchy of levels of biological organization and of the different 'emergent' properties that are evident in say, the whole plant (e.g. wilting) that are not evident at the level of the cell (loss of turgor). It is also possible to bring different perspectives to bear on these different levels of organization. Holistic thinking starts by looking at the nature and behaviour of the whole system that those participating have agreed to be worthy of study. This involves: (i) taking multiple partial views of 'reality' […] (ii) placing conceptual boundaries around the whole, or system of interest and (iii) devising ways of representing systems of interest." (C J Pearson and R L Ison, "Agronomy of Grassland Systems", 1987) 

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"Unfortunately, recognizing a system as chaotic will not tell us all that we might like to know. It will not provide us with a means of predicting the future course of the system. It will tell us that there is a limit to how far ahead we can predict, but it may not tell us what this limit is. Perhaps the best advice that chaos 'theory' can give us is not to jump at conclusions; unexpected occurrences may constitute perfectly normal behavior." (Edward N Lorenz, "Chaos, spontaneous climatic variations and detection of the greenhouse effect", 1991)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Modelling techniques on powerful computers allow us to simulate the behaviour of complex systems without having to understand them.  We can do with technology what we cannot do with science.  […] The rise of powerful technology is not an unconditional blessing.  We have  to deal with what we do not understand, and that demands new  ways of thinking." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"It is, however, fair to say that very few applications of swarm intelligence have been developed. One of the main reasons for this relative lack of success resides in the fact that swarm-intelligent systems are hard to 'program', because the paths to problem solving are not predefined but emergent in these systems and result from interactions among individuals and between individuals and their environment as much as from the behaviors of the individuals themselves. Therefore, using a swarm-intelligent system to solve a problem requires a thorough knowledge not only of what individual behaviors must be implemented but also of what interactions are needed to produce such or such global behavior." (Eric Bonabeau et al, "Swarm Intelligence: From Natural to Artificial Systems", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of “collective intelligence” is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"The tipping point is that magic moment when an idea, trend, or social behavior crosses a threshold, tips, and spreads like wildfire." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"In principle, a self-organising system cannot be constructed, since its organisation and behaviour cannot be prescribed and created by an external source. It emerges autonomously in certain conditions (which cannot be prescribed either). The task of the researcher is to investigate in what kind of systems and under what kind of conditions self-organisation emerges." (Rein Vihalemm, "Chemistry as an Interesting Subject for the Philosophy of Science", 2001)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"Emergence is not really mysterious, although it may be complex. Emergence is brought about by the interactions between the parts of a system. The galloping horse illusion depends upon the persistence of the human retina/brain combination, for instance. Elemental gases bond in combination by sharing outer electrons, thereby altering the appearance and behavior of the combination. In every case of emergence, the source is interaction between the parts - sometimes, as with the brain, very many parts - so that the phenomenon defies simple explanation." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"The existence of equilibria or steady periodic solutions is not sufficient to determine if a system will actually behave that way. The stability of these solutions must also be checked. As parameters are changed, a stable motion can become unstable and new solutions may appear. The study of the changes in the dynamic behavior of systems as parameters are varied is the subject of bifurcation theory. Values of the parameters at which the qualitative or topological nature of the motion changes are known as critical or bifurcation values." (Francis C Moona, "Nonlinear Dynamics", 2003)

"This reduction principle - the reduction of the behavior of a complex system to the behavior of its parts - is valid only if the level of complexity of the system is rather low." (Andrzej P Wierzbicki & Yoshiteru Nakamori, "Creative Space: Models of Creative Processes for the Knowledge Civilization Age", Studies in Computational Intelligence Vol.10, 2006)

"How is it that an ant colony can organize itself to carry out the complex tasks of food gathering and nest building and at the same time exhibit an enormous degree of resilience if disrupted and forced to adapt to changing situations? Natural systems are able not only to survive, but also to adapt and become better suited to their environment, in effect optimizing their behavior over time. They seemingly exhibit collective intelligence, or swarm intelligence as it is called, even without the existence of or the direction provided by a central authority." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"Complexity theory can be defined broadly as the study of how order, structure, pattern, and novelty arise from extremely complicated, apparently chaotic systems and conversely, how complex behavior and structure emerges from simple underlying rules. As such, it includes those other areas of study that are collectively known as chaos theory, and nonlinear dynamical theory." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini," Chaos: From Simple Models to Complex Systems", 2010)

"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the "theory" of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"Swarm intelligence (SI) is a branch of computational intelligence that discusses the collective behavior emerging within self-organizing societies of agents. SI was inspired by the observation of the collective behavior in societies in nature such as the movement of birds and fish. The collective behavior of such ecosystems, and their artificial counterpart of SI, is not encoded within the set of rules that determines the movement of each isolated agent, but it emerges through the interaction of multiple agents." (Maximos A Kaliakatsos-Papakostas et al, "Intelligent Music Composition", 2013)

"The problem of complexity is at the heart of mankind’s inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", LewRockwell.com, August 1, 2014)

"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"System dynamics [...] uses models and computer simulations to understand behavior of an entire system, and has been applied to the behavior of large and complex national issues. It portrays the relationships in systems as feedback loops, lags, and other descriptors to explain dynamics, that is, how a system behaves over time. Its quantitative methodology relies on what are called 'stock-and-flow diagrams' that reflect how levels of specific elements accumulate over time and the rate at which they change. Qualitative systems thinking constructs evolved from this quantitative discipline." (Karen L Higgins, "Economic Growth and Sustainability: Systems Thinking for a Complex World", 2015)

"A complex system means a system whose perceived complicated behaviors can be attributed to one or more of the following characteristics: large number of element, large number of relationships among elements, non-linear and discontinuous relationship, and uncertain characteristics of elements." (Chunfang Zhou, "Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies", Handbook of Research on Creative Problem-Solving Skill Development in Higher Education, 2017)

More quotes on "Behavior" at the-web-of-knowledge.blogspot.com

24 January 2014

Systems Engineering: Chaos Theory (Definitions)

"A scientific approach – research effort which is based on examining behaviors of nonlinear dynamical systems, which are highly sensitive to their initial conditions." (Utku Köse & Ahmet Arslan, "Chaotic Systems and Their Recent Implementations on Improving Intelligent Systems", 2014)

"Study of deterministic behaviours that depend on initial conditions in physical, natural and social sciences." (Ayşe G Gözüm, "Evaluating HRM Functions within the Context of Chaos and Complexity Theory", 2016)

"The mathematical framework for understanding irregular and erratic fluctuations in economic cycles, financial markets, weather, other complex phenomenon, or non-linear systems with many variables." (Kijpokin Kasemsap, "Utilizing Complexity Theory and Complex Adaptive Systems in Global Business", 2016)

"The study of the behavior of dynamical systems that are highly sensitive to initial conditions." (Rohnn B Sanderson, "Understanding Chaos as an Indicator of Economic Stability", 2016)

"The theory that emerged from mathematics and used widely by other disciplines which concentrates on the dynamical systems." (Çağlar Doğru, "Leader-Member Exchange and Transformational Leadership in Chaos and Complexity", 2016)

"A field of study that explains nonlinear or dynamical systems." (Sharon E Norris, "Examining the Strategic Leadership of Organizations Using Metaphor: Brains and Flux-Interconnected and Interlocked", 2017)

"Chaos theory is the branch of mathematics deals with complicated linear dynamic systems." (Anandkumar R &  Kalpana R, "A Review on Chaos-Based Image Encryption Using Fractal Function", 2020)

"Suggests a randomness of understanding around complex patterns. These may be described as dynamic systems that reflect irregularities and is extremely sensitive to negligible fluctuations or moderations in situation." (Caroline M Crawford et al, "Social Learning Through a Participative Storytelling Framework: Rethinking the Essence of Course Engagement", 2021)

"Chaos theory is a branch of mathematics focusing on the study of chaos - dynamical systems whose random states of disorder and irregularities are governed by underlying patterns and deterministic laws that are highly sensitive to initial conditions." (Nima Norouzi, "Criminal Policy, Security, and Justice in the Time of COVID-19", 2022)

30 June 2006

Jay W Forrester - Collected Quotes

"[System dynamics] is an approach that should help in important top-management problems [...] The solutions to small problems yield small rewards. Very often the most important problems are but little more difficult to handle than the unimportant. Many [people] predetermine mediocre results by setting initial goals too low. The attitude must be one of enterprise design. The expectation should be for major improvement [...] The attitude that the goal is to explain behavior; which is fairly common in academic circles, is not sufficient. The goal should be to find management policies and organizational structures that lead to greater success." (Jay W Forrester, "Industrial Dynamics", 1961)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"Like all systems, the complex system is an interlocking structure of feedback loops [...] This loop structure surrounds all decisions public or private, conscious or unconscious. The processes of man and nature, of psychology and physics, of medicine and engineering all fall within this structure [...]" (Jay W Forrester, "Urban Dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non-linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"First, social systems are inherently insensitive to most policy changes that people choose in an effort to alter the behavior of systems. In fact, social systems draw attention to the very points at which an attempt to intervene will fail. Human intuition develops from exposure to simple systems. In simple systems, the cause of a trouble is close in both time and space to symptoms of the trouble. If one touches a hot stove, the burn occurs here and now; the cause is obvious. However, in complex dynamic systems, causes are often far removed in both time and space from the symptoms. True causes may lie far back in time and arise from an entirely different part of the system from when and where the symptoms occur. However, the complex system can mislead in devious ways by presenting an apparent cause that meets the expectations derived from simple systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Second, social systems seem to have a few sensitive influence points through which behavior can be changed. These high-influence points are not where most people expect. Furthermore, when a high-influence policy is identified, the chances are great that a person guided by intuition and judgment will alter the system in the wrong direction." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"System dynamics models are not derived statistically from time-series data. Instead, they are statements about system structure and the policies that guide decisions. Models contain the assumptions being made about a system. A model is only as good as the expertise which lies behind its formulation. A good computer model is distinguished from a poor one by the degree to which it captures the essence of a system that it represents. Many other kinds of mathematical models are limited because they will not accept the multiple-feedback-loop and nonlinear nature of real systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Third, social systems exhibit a conflict between short-term and long-term consequences of a policy change. A policy that produces improvement in the short run is usually one that degrades a system in the long run. Likewise, policies that produce long-run improvement may initially depress behavior of a system. This is especially treacherous. The short run is more visible and more compelling. Short-run pressures speak loudly for immediate attention. However, sequences of actions all aimed at short-run improvement can eventually burden a system with long-run depressants so severe that even heroic short-run measures no longer suffice. Many problems being faced today are the cumulative result of short-run measures taken in prior decades." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"No plea about inadequacy of our understanding of the decision-making processes can excuse us from estimating decision making criteria. To omit a decision point is to deny its presence - a mistake of far greater magnitude than any errors in our best estimate of the process." (Jay W Forrester, "Perspectives on the modelling process", 2000)

03 June 2006

W Ross Ashby - Collected Quotes

"Every stable system has the property that if displaced from a state of equilibrium and released, the subsequent movement is so matched to the initial displacement that the system is brought back to the state of equilibrium. A variety of disturbances will therefore evoke a variety of matched reactions." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"The primary fact is that all isolated state-determined dynamic systems are selective: from whatever state they have initially, they go towards states of equilibrium. These states of equilibrium are always characterised, in their relation to the change-inducing laws of the system, by being exceptionally resistant." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"A common and very powerful constraint is that of continuity. It is a constraint because whereas the function that changes arbitrarily can undergo any change, the continuous function can change, at each step, only to a neighbouring value." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"A most important concept […] is that of constraint. It is a relation between two sets, and occurs when the variety that exists under one condition is less than the variety that exists under another. [...] Constraints are of high importance in cybernetics […] because when a constraint exists advantage can usually be taken of it." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[…] as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint. […] Science looks for laws; it is therefore much concerned with looking for constraints. […] the world around us is extremely rich in constraints. We are so familiar with them that we take most of them for granted, and are often not even aware that they exist. […] A world without constraints would be totally chaotic." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Cybernetics is likely to reveal a great number of interesting and suggestive parallelisms between machine and brain and society. And it can provide the common language by which discoveries in one branch can readily be made use of in the others. [...] [There are] two peculiar scientific virtues of cybernetics that are worth explicit mention. One is that it offers a single vocabulary and a single set of concepts suitable for representing the most diverse types of system. [...] The second peculiar virtue of cybernetics is that it offers a method for the scientific treatment of the system in which complexity is outstanding and too important to be ignored. Such systems are, as we well know, only too common in the biological world!" (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[…] information theory is characterised essentially by its dealing always with a set of possibilities; both its primary data and its final statements are almost always about the set as such, and not about some individual element in the set." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Stability is commonly thought of as desirable, for its presence enables the system to combine of flexibility and activity in performance with something of permanence. Behaviour that is goal-seeking is an example of behaviour that is stable around a state of equilibrium. Nevertheless, stability is not always good, for a system may persist in returning to some state that, for other reasons, is considered undesirable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[...] the concept of 'feedback', so simple and natural in certain elementary cases, becomes artificial and of little use when the interconnexions between the parts become more complex. When there are only two parts joined so that each affects the other, the properties of the feedback give important and useful information about the properties of the whole. But when the parts rise to even as few as four, if every one affects the other three, then twenty circuits can be traced through them; and knowing the properties of all the twenty circuits does not give complete information about the system. Such complex systems cannot be treated as an interlaced set of more or less independent feedback circuits, but only as a whole. For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"There comes a stage, however, as the system becomes larger and larger, when the reception of all the information is impossible by reason of its sheer bulk. Either the recording channels cannot carry all the information, or the observer, presented with it all, is overwhelmed. When this occurs, what is he to do? The answer is clear: he must give up any ambition to know the whole system. His aim must be to achieve a partial knowledge that, though partial over the whole, is none the less complete within itself, and is sufficient for his ultimate practical purpose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"This 'statistical' method of specifying a system - by specification of distributions with sampling methods - should not be thought of as essentially different from other methods. It includes the case of the system that is exactly specified, for the exact specification is simply one in which each distribution has shrunk till its scatter is zero, and in which, therefore, 'sampling' leads to one inevitable result. What is new about the statistical system is that the specification allows a number of machines, not identical, to qualify for inclusion. The statistical 'machine' should therefore be thought of as a set of machines rather than as one machine." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Every isolated determinate dynamic system, obeying unchanging laws, will ultimately develop some sort of organisms that are adapted to their environments." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]" (W Ross Ashby, "Principles of the self-organizing system", 1962)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.