Showing posts with label autonomy. Show all posts
Showing posts with label autonomy. Show all posts

17 March 2024

🧭Business Intelligence: Data Products (Part I: A Lego Exercise)

Business Intelligence
Business Intelligence Series

One can define a data product as the smallest unit of data-driven architecture that can be independently deployed and managed (aka product quantum) [1]. In other terms one can think of a data product like a box (or Lego piece) which takes data as inputs, performs several transformations on the data from which result several output data (or even data visualizations or a hybrid between data, visualizations and other content). 

At high-level each Data Analytics solution can be regarded as a set of inputs, a set of outputs and the transformations that must be performed on the inputs to generate the outputs. The inputs are the data from the operational systems, while the outputs are analytics data that can be anything from data to KPIs and other metrics. A data mart, data warehouse, lakehouse and data mesh can be abstracted in this way, though different scales apply. 

For creating data products within a data mesh, given a set of inputs, outputs and transformations, the challenge is to find horizontal and vertical partitions within these areas to create something that looks like a Lego structure, in which each piece of Lego represents a data product, while its color represents the membership to a business domain. Each such piece is self-contained and contains a set of transformations, respectively intermediary inputs and outputs. Multiple such pieces can be combined in a linear or hierarchical fashion to transform the initial inputs into the final outputs. 

Data Products with a Data Mesh
Data Products with a Data Mesh

Finding such a partition is possible though it involves a considerable effort, especially in designing the whole thing - identifying each Lego piece uniquely. When each department is on its own and develops its own Lego pieces, there's no guarantee that the pieces from the various domains will fit together to built something cohesive, performant, secure or well-structured. Is like building a house from modules, the pieces must fit together. That would be the role of governance (federated computational governance) - to align and coordinate the effort. 

Conversely, there are transformations that need to be replicated for obtaining autonomous data products, and the volume of such overlapping can be considerable high. Consider for example the logic available in reports and how often it needs to be replicated. Alternatively, one can create intermediary data products, when that's feasible. 

It's challenging to define the inputs and outputs for a Lego piece. Now imagine in doing the same for a whole set of such pieces depending on each other! This might work for small pieces of data and entities quite stable in their lifetime (e.g. playlists, artists, songs), but with complex information systems the effort can increase by a few factors. Moreover, the complexity of the structure increases as soon the Lego pieces expand beyond their initial design. It's like the real Lego pieces would grow within the available space but still keep the initial structure - strange constructs may result, which even if they work, change the gravity center of the edifice in other directions. There will be thus limits to grow that can easily lead to duplication of functionality to overcome such challenges.

Each new output or change in the initial input for this magic boxes involves a change of all the intermediary Lego pieces from input to output. Just recollect the last experience of defining the inputs and the outputs for an important complex report, how many iterations and how much effort was involved. This might have been an extreme case, though how realistic is the assumption that with data products everything will go smoother? No matter of the effort involved in design, there will be always changes and further iterations involved.

Previous Post <<||>> Next Post

References:
[1] Zhamak Dehghani (2021) Data Mesh: Delivering Data-Driven Value at Scale (book review

13 March 2024

🔖Book Review: Zhamak Dehghani's Data Mesh: Delivering Data-Driven Value at Scale (2021)

Zhamak Dehghani's "Data Mesh: Delivering Data-Driven Value at Scale" (2021)

Zhamak Dehghani's "Data Mesh: Delivering Data-Driven Value at Scale" (2021) is a must read book for the data professional. So, here I am, finally managing to read it and give it some thought, even if it will probably take more time and a few more reads for the ideas to grow. Working in the fields of Business Intelligence and Software Engineering for almost a quarter-century, I think I can understand the historical background and the direction of the ideas presented in the book. There are many good ideas but also formulations that make me circumspect about the applicability of some assumptions and requirements considered. 

So, after data marts, warehouses, lakes and lakehouses, the data mesh paradigm seems to be the new shiny thing that will bring organizations beyond the inflection point with tipping potential from where organization's growth will have an exponential effect. At least this seems to be the first impression when reading the first chapters. 

The book follows to some degree the advocative tone of promoting that "our shiny thing is much better than previous thing", or "how bad the previous architectures or paradigms were and how good the new ones are" (see [2]). Architectures and paradigms evolve with the available technologies and our perception of what is important for businesses. Old and new have their place in the order of things, and the old will continue to exist, at least until the new proves its feasibility.  

The definition of the data mash as "a sociotechnical approach to share, access and manage analytical data in complex and large-scale environments - within or across organizations" [1] is too abstract even if it reflects at high level what the concept is about. Compared to other material I read on the topic, the book succeeds in explaining the related concepts as well the goals (called definitions) and benefits (called motivations) associated with the principles behind the data mesh, making the book approachable also by non-professionals. 

Built around four principles "data as a product", "domain-oriented ownership", "self-serve data platform" and "federated governance", the data mesh is the paradigm on which data as products are developed; where the products are "the smallest unit of architecture that can be independently deployed and managed", providing by design the information necessary to be discovered, understood, debugged, and audited.

It's possible to create Lego-like data products, data contracts and/or manifests that address product's usability characteristics, though unless the latter are generated automatically, put in the context of ERP and other complex systems, everything becomes quite an endeavor that requires time and adequate testing, increasing the overall timeframe until a data product becomes available. 

The data mesh describes data products in terms of microservices that structure architectures in terms of a collection of services that are independently deployable and loosely coupled. Asking from data products to behave in this way is probably too hard a constraint, given the complexity and interdependency of the data models behind business processes and their needs. Does all the effort make sense? Is this the "agility" the data mesh solutions are looking for?

Many pioneering organizations are still fighting with the concept of data mesh as it proves to be challenging to implement. At a high level everything makes sense, but the way data products are expected to function makes the concept challenging to implement to the full extent. Moreover, as occasionally implied, the data mesh is about scaling data analytics solutions with the size and complexity of organizations. The effort makes sense when the organizations have a certain size and the departments have a certain autonomy, therefore, it might not apply to small to medium businesses.

Previous Post <<||>>  Next Post

References:
[1] Zhamak Dehghani (2021) "Data Mesh: Delivering Data-Driven Value at Scale" (link)
[2] SQL-troubles (2024) Zhamak Dehghani's Data Mesh - Monolithic Warehouses and Lakes (link)

02 December 2016

♟️Strategic Management: Autonomy (Just the Quotes)

"Essential to organization planning, then, is the search for an ideal form of organization to reflect the basic goals of the enterprise. This entails not only charting the main lines of organization and reflecting the organizational philosophy of the enterprise leaders (e.g., shall authority be as centralized as possible, or should the company try to break its operations down into semiautonomous product or territorial divisions?), but also a sketching out of authority relationships throughout the structure." (Harold Koontz & Cyril O Donnell, "Principles of Management", 1955)

"Rather than allowing them [subordinates] the autonomy to get involved and do the work in their own ways, what happens all too often is the manager wants the workers to do it the manager's way." (Edward L Deci, Nation's Business, 1988)

"Creativity, no matter how elementally miniscule or broad in scope, is what differentiates human beings as superior to any material value, and also empowers the achievement of excellence beyond personal flaws." (Vanna Bonta, "State of the Art", 2000)

"Good leadership is not just a matter of making things happen; it is a matter of making essential things happen, making important and productive things happen, and helping people feel good about what is happening. Leaders need to have a vision, but they also need to know how to convince others that their vision can manifest, and how to empower them to participate in the mission of bringing the vision about." (Bhakti Tirtha Swami, "Leadership for an Age of Higher Consciousness" Vol. II: "Ancient Wisdom for Modern Times", 2001)

"The key element of an organization is not a building or a set of policies and procedures; organizations are made up of people and their relationships with one another. An organization exists when people interact with one another to perform essential functions that help attain goals. Recent trends in management recognize the importance of human resources, with most new approaches designed to empower employees with greater opportunities to learn and contribute as they work together toward common goals." (Richard L Daft, "Organization Theory and Design", 2007-2010) 

"Those three things - autonomy, complexity, and a connection between effort and reward - are, most people will agree, the three qualities that work has to have if it is to be satisfying." (Malcolm Gladwell, "Outliers: The Story of Success", 2008)

"A software team can get severely constrained when a velocity target is imposed on it. Velocity works well as a measurement, not as a target. Targets limit choice of actions. A team may find itself unable to address technical debt if it is constrained by velocity targets. At a certain threshold of constraints, team members lose the sense of empowerment (autonomy)." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Although essential, governance is an activity, not an outcome. This makes it risky to grant autonomy to a pure governance team. Instead, it is better to constitute each area of governance as a community of practice consisting of practitioners from various capability teams." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"In the context of an organization, to have autonomy is to be empowered, not just feel empowered. […] But it does not mean being a lone wolf or being siloed or cut off from the rest of the organization." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Efficiency' has come to mean vesting more and more power to managers, supervisors, and presumed 'efficiency experts,' so that actual producers have almost zero autonomy." (David Graeber, "Bullshit Jobs: A Theory", 2018)

"Control leads to compliance; autonomy leads to engagement." (Daniel H Pink)

"The vision is really about empowering workers giving them all the information about what’s going on so they can do a lot more than they’ve done in the past." (Bill Gates) 

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.