Business Intelligence Series |
When writing a Business Case, besides the problem and solution(s) high-level descriptions, is important to roughly estimate how much it costs, how long it takes, respectively how many resources are needed and for what activities. A proof-of-concept (PoC) might not need an explicit business case, though the same high-level information is needed at least for the planning of resources and a formal approval.
Given that there are several analytical experiences in Microsoft Fabric (MF), it’s clear that can’t be anymore a reference architecture that can be recommended for customers. Frankly, that ship has sailed even since the introduction of Microsoft Synapse, if not earlier, with the movement to the cloud. Also, there’s no one size fits all as certain building blocks make sense only in certain scenarios (e.g. organization scale, data volume or source’s type). Moreover, even if MF has been generally available for quite some time, customers and service providers ask themselves whether the available features are enough for building analytics solutions based on it.
“Is Fabric Ready?” was the topic of today’s Explicit Measures webcast [1]. Probably the answer is as usual “it depends” and the general recommendation is to do a PoC to check solution's feasibility. Conversely, MF may be the best approach to consider if integration with other systems (e.g. Dynamics 365, Dataverse) is needed.
What the customers need are some rough realistic estimates they can base any planning upon (at least for a PoC if not for the whole project) in terms of making the data available into OneLake, building a semantic model, respectively processing and making the data available for consumption. Ideally, one needs a translation of the various steps as done earlier. For example, how long it takes to make the data available in OneLake, how long it takes to move the data physically or logically though the various layers, to build semantic models, etc.
Probably, some things can be achieved in a matter of days, at least if one knows what one’s doing. However, we are talking here about a new architecture that may resemble for some of an unknow territory. Even if old and new techniques can be mixed, there are further implications or improvements that can be considered. There are many webcasts, blog posts and other material on how to do things, on what’s possible, though building a functioning solution from beginning to the end, even as PoC, requires more than putting all this together.
Just making the data flow from point A to B or C is not enough - data security, data governance and a few other topics like scalability and availability need to be considered as well. Security and governance are also the areas in which probably more features must be considered. For many customers starting now with MF, the hope is that most of these features will be available during the time the solutions are ready for production.
From a cost perspective, there’s the cost of data at rest, in transit, the licensing for MF and the other components involved. Ideally, one should start small and increase capacities as needed, though small can vary from case to case, while it’s important to find out the optimum. Starting in the middle could be an alternative approach even if may involve higher costs. If one starts small, the costs for PoC can be neglectable, though sooner or later a compromise is needed to provide an acceptable performance.
In terms of human resources, the topic is more complex (see [2]), and it depends largely on the nature of the project. The pool of skillsets is the most important constraint or enabler such projects can have.
Previous Post <<||>> Next Post
References:
[1] Explicit Measures (2024) Power BI tips Ep.327: Is Fabric Ready? (link)
[2] Explicit Measures (2024) Power BI tips Ep.321: Building and BI Team (link)