Showing posts with label table variable. Show all posts
Showing posts with label table variable. Show all posts

01 February 2023

💎SQL Reloaded: Alternatives for Better Code Maintainability in SQL Server & Azure Synapse I

Introduction

Queries can become quite complex and with the increased complexity they'll be harder to read and/or maintain. Since the early days of SQL Server, views and table-valued user-defined functions (UDFs) are the standard ways of encapsulating logic for reuse in queries, allowing to minimize the duplication of logic. Then came the common table expressions (CTEs), which allow a further layer of structuring the code, independently whether a view or UDF was used. 

These are the main 3 options that can be combined in various ways to better structure the code. On the other side, also a temporary table or table variable could be used for the same purpose, though they have further implications.

To exemplify the various approaches, let's consider a simple query based on two tables from the AdventureWorks database. For the sake of simplicity, further business rules have been left out.

Inline Subqueries

-- products with open purchase orders
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN ( -- cumulated open purchase orders by product
		SELECT POL.ProductId 
		, SUM(POL.OrderQty) PurchQty
		FROM Purchasing.PurchaseOrderDetail POL
		WHERE OrderQty - (ReceivedQty - RejectedQty)>0
		GROUP BY POL.ProductId 
	) POL
	ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

As can be seen, the logic for the "Open purchase orders" result set is built within an inline subquery (aka inline view). As its logic becomes more complex, the simplest way to handle this is to move it into a CTE.

Common Table Expressions (CTEs)

A common table expression can be thought of as a temporary result set defined within the execution scope of a single SELECT, INSERT, UPDATE, DELETE or CREATE VIEW statement [1]. Thus, the CTE can't be reused between queries.

The inline query is moved at the beginning within a WITH statement to which is given a proper name that allows easier identification later:

-- products with open purchase orders (common table expression)
WITH OpenPOs
AS (-- cumulated open purchase orders by product
	SELECT POL.ProductId 
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
	GROUP BY POL.ProductId 
)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Thus, this allows us to rewrite the JOIN as if it were between two tables. Multiple CTEs can be used as well, with or without any dependencies between them. Moreover, CTEs allow building recursive queries (see example).

There is no performance gain or loss by using a CTE. It's important to know that the result set is not cached, therefore, if the same CTE is called multiple times (within a query), it will be also "executed" for the same number of times. Except the cases in which the database engine uses a spool operator to save intermediate query results for a CTE, there will be created no work table in tempdb for CTEs.

If the inline query needs to be reused in several queries, defining a view is a better alternative.

Views

A view is a database object used to encapsulate a query and that can be referenced from other queries much like a table. In fact, it's also referred as a "virtual table". A view can't be execute by itself (as stored procedures do. No data, only the definition of the view is stored, and the various actions that can be performed on database objects can be performed on views as well.

-- creating the view
CREATE VIEW dbo.vOpenPurchaseOrders
AS
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- testing the view
SELECT top 10 *
FROM dbo.vOpenPurchaseOrders

Once the view is created, it can be called from any query:

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN dbo.vOpenPurchaseOrders POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Besides the schema binding, there are no additional costs for using views. However, views have several limitations (see [2]). Moreover, it's not possible to use parameters with views, scenarios in which tabled-valued UDFs can help.

Indexed Views 

Starting with SQL Server 2015, it's possible to materialize the data in a view, storing the results of the view in a clustered index on the disk in same way a table with a clustered index is stored. This type of view is called an indexed view (aka materialized view, though the concept is used slightly different in Azure Synapse) and for long-running queries can provide considerable performance gains. In case the view contains a GROUP BY is present, its definition must contain COUNT_BIG(*) and must not contain HAVING.

-- dropping the view
--DROP VIEW IF EXISTS Purchasing.vOpenPOs

-- create view
CREATE VIEW Purchasing.vOpenPOs
WITH SCHEMABINDING
AS
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
, COUNT_BIG(*) Count
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 
GO

--Create an index on the view.
CREATE UNIQUE CLUSTERED INDEX IDX_vOpenPOs
   ON Purchasing.vOpenPOs (ProductId);

--testing the view
SELECT top 100 *
FROM Purchasing.vOpenPOs

-- products with open purchase orders (indexed view)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN Purchasing.vOpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

When an indexed view is defined on a table, the query optimizer may use it to speed up the query execution even if it wasn't referenced in the query. Besides the restriction of the view to be deterministic, further limitations apply (see [6]).

Table-Valued Functions

A table-valued function is a user-defined function in which returns a table as a result, as opposed to a single data value, as scalar functions do.

Let's support that we need to restrict base the logic based on a time interval. We'd need then to provide the StartDate & EndDate as parameters. Compared with other UDFs table-valued functions, as their name implies, need to return a table:

-- creating the UDF function 
CREATE FUNCTION dbo.tvfOpenPurchaseOrdersByProduct( 
  @StartDate date 
, @EndDate date) 
RETURNS TABLE 
AS RETURN ( 
	SELECT POL.ProductId 
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
	  AND POL.DueDate BETWEEN @StartDate AND @EndDate
	GROUP BY POL.ProductId 
)

-- testing the UDF
SELECT top 10 *
FROM dbo.tvfOpenPurchaseOrdersByProduct('2014-01-01', '2014-12-31')

A table-valued function can be used as a "table with parameters" in JOINs:

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN dbo.tvfOpenPurchaseOrdersByProduct('2014-01-01', '2014-12-31') POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

The parameters are optional, though in such cases using a view might still be a better idea. Table-valued functions used to have poor performance in the past compared with views and in certain scenarios they might still perform poorly. Their benefit resides in allowing to pass and use parameters in the logic, which can make them irreplaceable. Moreover, multi-statement table-valued functions can be built as well (see example)!

Notes:
1) When evaluating table-valued functions for usage consider their limitations as well (see [3])!
2) Scalar UDFs can be used to simplify the code as well, though they apply only to single values, therefore they are not considered in here!

Temporary Tables 

A temporary table is a base table that is stored and managed in tempdb as any other table. It exists only while the database session in which it was created is active. Therefore, it can be called multiple times, behaving much like a standard table:

-- create the temp table
CREATE TABLE dbo.#OpenPOs (
  ProductId int NOT NULL
, PurchQty decimal(8,2) NOT NULL
)

-- insert the cumulated purchase orders
INSERT INTO #OpenPOs
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN dbo.#OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

-- drop the table (cleaning)
-- DROP TABLE IF EXISTS dbo.#OpenPOs;

Being created in the tempdb, system database shared by several databases, temporary table's performance relies on tempdb's configuration and workload. Moreover, the concurrent creation of temporary tables from many sessions can lead to tempdb metadata contention, as each session attempts updating metadata information in the system based tables.

Temporary tables are logged, which adds more burden on the database engine, however being able to create indexes on them and use statistics can help processing result sets more efficiently, especially when called multiple times. 

Also, a temporary table might be cached (see [1]) and not deleted when its purpose ends, which allows operations that drop and create the objects to execute very quickly and reduces page allocation contention.

Table Variables

A table variable is a variable of type TABLE and can be used in functions, stored procedures, and batches. The construct is similar to the temp table and is stored as well in the tempdb and cached under certain scenarios, however they are scoped to the batch or routine in which they are defined and destroyed after that. 

-- create the table variable
DECLARE @OpenPOs TABLE (
  ProductId int NOT NULL
, PurchQty decimal(8,2) NOT NULL
)

-- insert the cumulated purchase orders
INSERT INTO @OpenPOs
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- products with open purchase orders (table variable)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN @OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Table variables don’t participate in transactions or locking, while DML operations done on them are not logged. There are also no statistics maintained and any data changes impacting the table variable will not cause recompilation. Thus, they are usually faster than temporary variables, especially when their size is small, though their performance depends also on how they are used. On the other side, for big result sets and/or when several calls are involved, a temporary table could prove to be more efficient. 

Important!!! Temporary tables and table variables are means of improving the performance of long-running queries. Being able to move pieces of logic around helps in maintaining the code and it also provides a logical structure of the steps, however they shouldn't be used if the performance gain is not the target! Overusing them as technique can considerably decrease the performance of tempdb, which can have impact in other areas!

Azure Synapse

Moving to Azure Synapse there are several important limitations in what concerns the above (see [4]). Even if some features are supported, further limitations might apply. What's important to note is that materialized views act like indexed view in standard SQL Server and that CETAS (Create External Table as SELECT) are available to import/export data to the supported file formats in Hadoop, Azure storage blob or Azure Data Lake Storage Gen2.

FeatureDedicatedServerlessSQL Server
CTEsYesYesYes (2015+)
Recursive CTEsNoNoYes (2015+)
ViewsYesYesYes
Indexed viewsNoNoYes
Materialized viewsYesNoNo
Table-valued functions (single statement)NoYesYes
Table-valued functions (multi-statement)NoNoYes
Scalar UDFs YesNoYes
TablesYesNoYes
Temporary tables (local)YesLimitedYes
Temporary tables (global)NoNoYes
Table variablesYesYesYes
CETASYesLimitedYes (2022+)

Notes:
1) CETAS have two important limitations in serverless SQL Pool
    a) once the data were exported to a file, they can't be overwritten via the same syntax;
    b) logic based on temporary tables can't be exported via pipelines.
2) Temporary tables can be used to replace cursors (see example).

Previous Post  <<||>>  Next Post

Resources:
[1] Microsoft Learn (2012) Capacity Planning for tempdb (link)
[2] Microsoft Learn (2023) CREATE View (link)
[3] Microsoft Learn (2023) CREATE Function (link)
[4] Microsoft Learn (2023) Transact-SQL features supported in Azure Synapse SQL (link)
[5] Redgate (2018) Choosing Between Table Variables and Temporary Tables (ST011, ST012), by Phil Factor (link)
[6] Microsoft Learn (2023) Create indexed views (link)
[7] Microsoft Learn (2023) CREATE MATERIALIZED VIEW AS SELECT (Transact-SQL) (link)
[8] Microsoft Learn (2023) CETAS with Synapse SQL (link)

18 October 2022

💎SQL Reloaded: Successive Price Increases/Discounts via Windowing Functions and CTEs

I was trying today to solve a problem that apparently requires recursive common table expressions, though they are not (yet) available in Azure Synapse serverless SQL pool. The problem can be summarized in the below table definition, in which given a set of Products with an initial Sales price, is needed to apply Price Increases successively for each Cycle. The cumulated increase is simulated in the last column for each line. 

Unfortunately, there is no SQL Server windowing function that allows multiplying incrementally the values of a column (similar as the running total works). However, there’s a mathematical trick that can be used to transform a product into a sum of elements by applying the Exp (exponential) and Log (logarithm) functions (see Solution 1), and which frankly is more elegant than applying CTEs (see Solution 2). 

-- create table with test data
SELECT *
INTO dbo.ItemPrices
FROM (VALUES ('ID001', 1000, 1, 1.02, '1.02')
, ('ID001', 1000, 2, 1.03, '1.02*1.03')
, ('ID001', 1000, 3, 1.03, '1.02*1.03*1.03')
, ('ID001', 1000, 4, 1.04, '1.02*1.03*1.03*1.04')
, ('ID002', 100, 1, 1.02, '1.02')
, ('ID002', 100, 2, 1.03, '1.02*1.03')
, ('ID002', 100, 3, 1.04, '1.02*1.03*1.04')
, ('ID002', 100, 4, 1.05, '1.02*1.03*1.04*1.05')
) DAT (ItemId, SalesPrice, Cycle, PriceIncrease, CumulatedIncrease)

-- reviewing the data
SELECT *
FROM dbo.ItemPrices

-- Solution 1: new sales prices with log & exp
SELECT ItemId
, SalesPrice
, Cycle
, PriceIncrease
, EXP(SUM(Log(PriceIncrease)) OVER(PARTITION BY Itemid ORDER BY Cycle)) CumulatedIncrease
, SalesPrice * EXP(SUM(Log(PriceIncrease)) OVER(PARTITION BY Itemid ORDER BY Cycle)) NewSalesPrice
FROM dbo.ItemPrices

-- Solution 2: new sales prices with recursive CTE
;WITH CTE 
AS (
-- initial record
SELECT ITP.ItemId
, ITP.SalesPrice
, ITP.Cycle
, ITP.PriceIncrease
, cast(ITP.PriceIncrease as decimal(38,6)) CumulatedIncrease
FROM dbo.ItemPrices ITP
WHERE ITP.Cycle = 1
UNION ALL
-- recursice part
SELECT ITP.ItemId
, ITP.SalesPrice
, ITP.Cycle
, ITP.PriceIncrease
, Cast(ITP.PriceIncrease * ITO.CumulatedIncrease as decimal(38,6))  CumulatedIncrease
FROM dbo.ItemPrices ITP
    JOIN CTE ITO
	  ON ITP.ItemId = ITO.ItemId
	 AND ITP.Cycle-1 = ITO.Cycle
)
-- final result
SELECT ItemId
, SalesPrice
, Cycle
, PriceIncrease
, CumulatedIncrease
, SalesPrice * CumulatedIncrease NewSalesPrice
FROM CTE
ORDER BY ItemId
, Cycle


-- validating the cumulated price increases (only last ones)
SELECT 1.02*1.03*1.03*1.04 
, 1.02*1.03*1.04*1.05

-- cleaning up
DROP TABLE IF EXISTS dbo.ItemPrices

Notes:
1. The logarithm in SQL Server’s implementation works only with positive numbers!
2. For simplification I transformed percentages (e.g. 1%) in values that are easier to multitply with (e.g. 1.01). The solution can be easily modified to consider discounts.
3. When CTEs are not available, one is forced to return to the methods used in SQL Server 2000 (I've been there) and thus use temporary tables or table variables with loops. Moreover, the logic can be encapsulated in multi-statement table-valued functions (see example), unfortunately, another feature not (yet) supported by serverless SQL pools. 
4. Unfortunately, STRING_AGG, which concatenates values across rows, works only with a GROUP BY clause. Anyway, its result is useless without the availability of a Eval function in SQL (see example), however the Expr function available in data flows could be used as workaround.
4. Even if I thought about the use of logarithms for transforming the product into a sum, I initially ignored the idea, thinking that the solution would be too complex to implement. So, the credit goes to another blogpost. Kudos!
5. The queries work also in a SQL databases in Microsoft Fabric. Just replace the Sales with SalesLT schema (see post, respectively GitHub repository with the changed code).

Happy coding!

13 August 2010

💎SQL Reloaded: Temporary Tables vs. Table Variables and TempDB

Yesterday, I started to read Ken Henderson’s book, SQL Server 2005 Practical Troubleshooting: The Database Engine, diving directly into tempdb topic (Chapter 9, Tempdb issues). He mentions that metadata are created in system tables when a temporary table is created (see p.415). This means that when a temporary table is created, a record must be created in tempdb’s sys.tables and sys.columns system table, the respective records being deleted when the table is dropped. As I never looked at how the metadata of a temporary table look like, I thought is the case to do something in this direction, and here’s the code created for this purpose:

-- creating the temporary tables 
CREATE TABLE #temp ( 
   id int NOT NULL 
, value nvarchar(50) NOT NULL) 

-- retrieving the metadata 
SELECT t.name table_name 
, s.name column_name 
, t.type  
, t.type_desc  
, t.create_date  
FROM tempdb.sys.tables t 
    JOIN tempdb.sys.columns s 
      ON t.object_id = s.object_id 
WHERE t.name LIKE '%temp%' 

-- dropping the temporary table 
-- DROP TABLE #temp  -- see the 2nd note!

temp vs variable tables - temporary example 

Note:
By changing the width of table_name column could be seen that object’s name corresponding to the temporary tables is a combination from table’s name and, according to K. Henderson, the number designating the connection that owns the table.

If the temporary table is stored in tempdb and metadata are stored about it, what’s happening with a temporary table? Here’s the answer:

-- creating the table variable 
DECLARE @temp TABLE( 
  id int NOT NULL  
, value nvarchar(50) NOT NULL) 


-- retrieving the metadata 
SELECT t.name table_name 
, s.name column_name 
, t.type  
, t.type_desc  
, t.create_date  
FROM tempdb.sys.tables t 
     JOIN tempdb.sys.columns s 
      ON t.object_id = s.object_id 
WHERE t.name LIKE '%#%' 
   AND DateDiff(ss, t.create_date, GetDate()) BETWEEN -2 AND 2

temp vs variable tables - table variable example

As can be seen I had to put a little more effort in order to see a table variable’s metadata. As there is no name that could be used in order to identify the table, as object’s name is stored as a hex number, I had to restrain the list of tables by using the timestamp. Excepting the name, the metadata stored about the two types of tables are identical for the same table definition. Actually their definition is similar with the one of a “standard” table:

-- creating a "standard" table 
CREATE TABLE temp( 
  id int NOT NULL 
, value nvarchar(50) NOT NULL) 

-- retrieving the metadata 
SELECT t.name table_name 
, s.name column_name 
, t.type  
, t.type_desc  
, t.create_date  
FROM sys.tables t 
     JOIN sys.columns s 
      ON t.object_id = s.object_id 
WHERE t.name LIKE '%temp%' 

-- dropping the table 
-- DROP TABLE temp -- see the 2nd note!

temp vs variable tables - standard table example

Notes: 
(1) For exemplification I used a restrained list of attributes, when comparing the various table’s metadata could be used instead a SELECT * statement. The above examples reflect also the differences in declaring the three types of tables.
(2) Microsoft recommends not to drop the temporary tables explicitly, but let SQL Server handle this cleanup automatically and take thus advantage of the Optimistic Latching Algorithm, which helps prevent contention on TempDB [1].

Last updated: Oct-2024

References:
[1] Haripriya SB (2024) Do NOT drop #temp tables (link)

19 November 2005

💠🛠️SQL Server: Administration (Part I: Troubleshooting Problems in SQL Server 2000 DTS Packages)

    There are cases in which a problem can not be solved with a query, additional data processing being requested. In this category of cases can be useful to use a temporary table or the table data type. Once the logic built you want to export the data using a simple DTS project having as Source the built query.

    While playing with SQL Server 2005 (Beta 2) I observed that the DTS Packages have problem in handling temporary tables as well table data types.

1. Temporary table Sample:

CREATE PROCEDURE dbo.pTemporaryTable
AS
CREATE TABLE #Temp(ID int, Country varchar(10)) -- create a temporary table

-- insert a few records
INSERT #Temp VALUES (1, 'US')
INSERT #Temp VALUES (2, 'UK')
INSERT #Temp VALUES (3, 'Germany')
INSERT #Temp VALUES (4, 'France')   

SELECT * FROM #Temp -- select records

DROP TABLE #Temp  drop the temporary table
 
-- testing the stored procedure
EXEC dbo.pTemporaryTable
Output:
ID Country
    ----------- ----------
1 US
2 UK
3 Germany
4 France
(4 row(s) affected)

Trying to use the stored procedure as Source in a DTS package brought the following error message: Error Source: Microsoft OLE DB Provider for SQL Server Error Description: Invalid object name ‘#Temp’   

 I hoped this has been fixed in SQL Server 2005 (Beta 3) version, but when I tried to use the stored procedure as a Source I got the error:
Error at Data Flow Task [OLE DB Source [1]]: An OLE DB error has occurred. Error code: 0x80004005 An OLE DB record is available. Source: "Microsoft OLE DB Provider for SQL Server" Hresult: 0x80004005 Description: "Invalid object name '#Temp'."
Error at Data Flow Task [OLE DB Source [1]]: Unable to retrieve column information from the data source. Make sure your target table in the database is available. ADDITIONAL INFORMATION: Exception from HRESULT: 0xC020204A (Microsoft.SqlServer.DTSPipelineWrap)

2. Table data type sample:

CREATE PROCEDURE dbo.pTableDataType
AS
DECLARE @Temp TABLE (ID int, Country varchar(10)) -- create table

-- insert a few records
INSERT @Temp VALUES (1, 'US')
INSERT @Temp VALUES (2, 'UK')
INSERT @Temp VALUES (3, 'Germany')
INSERT @Temp VALUES (4, 'France')   

SELECT * FROM @Temp -- select records

-- testing the stored procedure
EXEC dbo.pTableDataType

Output:
ID Country
   ----------- ----------
1 US
2 UK
3 Germany
4 France
(4 row(s) affected)    

This time the error didn't appear when the Source was provided, but when the package was run: Error message: Invalid Pointer    

In Server 2005 (Beta 3) it raised a similar error:
SSIS package "Package6.dtsx" starting. Information: 0x4004300A at Data Flow Task, DTS.Pipeline: Validation phase is beginning Information: 0x4004300A at Data Flow Task, DTS.Pipeline: Validation phase is beginning Information: 0x40043006 at Data Flow Task, DTS.Pipeline: Prepare for Execute phase is beginning Information: 0x40043007 at Data Flow Task, DTS.Pipeline: Pre-Execute phase is beginning SSIS package "Package6.dtsx" finished: Canceled.    

 I saw there will be problems because in Flat File Connection Manager’s Preview no data were returned. I hope these problems were solved in the last SQL Server Release, if not we are in troubles!

Possible Solutions:    
If the Stored Procedures provided above are run in SQL Query Analyzer or using ADO, they will work without problems. This behavior is frustrating, especially when the logic is really complicated and you put lot of effort in it; however there are two possible solutions, both involving affordable drawbacks:
1. Create a physical table manually or at runtime, save the data in it and later remove the table. This will not work for concurrent use (it works maybe if the name of the table will be time stamped), but for ad-hoc reports might be acceptable.
2. Built an ADO based component which exports the data to a file in the format you want. The component is not difficult to implement, but additional coding might be requested for each destination type. The component can be run from a UI or from a DTS package.
3. In SQL Server Yukon is possible to use the CLR and implement the logic in a managed stored procedure or table valued function.

Happy Coding!
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.