![]() |
Business Intelligence Series |
In the context of BI, Analytics and other data-related topics, the various parties usually talk about data ingestion, preparation, storage, analysis and visualization, often ignoring processes like data generation, collection, and interpretation. It’s also true that a broader discussion may shift the attention unnecessarily, though it’s important to increase people’s awareness in respect to data’s full lifecycle. Otherwise, many of the data solutions become a mix of castles built into the air, respectively structures of cards waiting for the next flurry to be blown away.
Data is generated continuously by organizations, their customers, vendors, and third parties, as part of a complex network of processes, systems and integrations that extend beyond their intended boundaries. Independently of their type, scope and various other characteristics, all processes consume and generate data at a rapid pace that steadily exceeds organizations’ capabilities to make good use of it.
There are also scenarios in which the data must be collected via surveys, interviews, forms, measurements or direct observations, and whatever processes are used to elicit some aspect of importance. The volume and other characteristics of data generated in this way may depend on the goals and objectives in scope, respectively the methods, procedures and even the methodologies used.
Data ingestion is the process of importing data from the various sources into a central or intermediary repository for storage, processing, analysis and visualization. The repository can be a data mart, warehouse, lakehouse, data lake or any other destination intended for the intermediary or the final intended destination of data. Moreover, data can have different levels of quality in respect to its intended usage.
Data storage refers to the systems and approaches used to securely retain, organize, and access data throughout its journey within the various layers of the infrastructure. It focuses on where and how data is stored, independently on whether that’s done on-premises, in the cloud or across hybrid environments.
Data preparation is the process of transforming the data into a form close to what is intended for analysis and visualization. It may involve data aggregation, enrichment, transposition and other operations that facilitate further steps. It’s probably the most important step in a data project given that the final outcome can have an important impact on data analysis and visualization, facilitating or impeding the respective processes.
Data analysis consists of a multitude of processes that attempt to harness value from data in its various forms of aggregation. The ultimate purpose is to infer meaningful information, respectively knowledge from the data augmented as insights. The road from raw data to these targeted outcomes is a tedious one, where recipes can help and imped altogether. Expecting value from any pile of data can easily become a costly illusion when data, processes and their usage is poorly understood and harnessed.
Data visualization is the means of presenting data and its characteristics in the form of figures, diagrams and other forms of representation that facilitate data’s navigation, perception and understanding for various purposes. Usually, the final purpose is fact-checking, decision-making, problem-solving, etc., though there is a multitude of steps in between. Especially in these areas there are mixed good and poor practices altogether.
Data interpretation is the attempt of drawing meaningful conclusions from the data, information and knowledge gained mainly from data analysis and visualization. It is often a subjective interpretation as it’s usually regarded from people’s understanding of the various facts as they are considered. The inferences made in the process can be a matter of gut feeling, respectively of mature analysis. It’s about sense-making, contextualization, critical thinking, pattern recognition, internalization and externalization, and other similar cognitive processes.
No comments:
Post a Comment