26 September 2014

Systems Engineering: Information Processing (Just the Quotes)

"The term 'systems engineering' is a term with an air of romance and of mystery. The romance and the mystery come from its use in the field of guided missiles, rockets, artificial satellites, and space flight. Much of the work being done in these areas is classified and hence much of it is not known to the general public or to this writer. […] From a business point of view, systems engineering is the creation of a deliberate combination of human services, material services, and machine service to accomplish an information processing job. But this is also very nearly a definition of business system analysis. The difference, from a business point of view, therefore, between business system analysis and systems engineering is only one of degree. In general, systems engineering is more total and more goal-oriented in its approach [...]." ("Computers and People" Vol. 5, 1956)

"Cybernetics is the science of the process of transmission, processing and storage of information." (Sergei Sobolew, Woprosy Psychology, 1958)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The great difference between the graphic representation of yesterday, which was poorly dissociated from the figurative image, and the graphics of tomorrow, is the disappearance of the congential fixity of the image. […] When one can superimpose, juxtapose, transpose, and permute graphic images in ways that lead to groupings and classings, the graphic image passes from the dead image, the 'illustration,' to the living image, the widely accessible research instrument it is now becoming. The graphic is no longer only the 'representation' of a final simplification, it is a point of departure for the discovery of these simplifications and the means for their justification. The graphic has become, by its manageability, an instrument for information processing." (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"The greater the uncertainty, the greater the amount of decision making and information processing. It is hypothesized that organizations have limited capacities to process information and adopt different organizing modes to deal with task uncertainty. Therefore, variations in organizing modes are actually variations in the capacity of organizations to process information and make decisions about events which cannot be anticipated in advance." (John K Galbraith, "Organization Design", 1977)

"The effective communication of information in visual form, whether it be text, tables, graphs, charts or diagrams, requires an understanding of those factors which determine the 'legibility', 'readability' and 'comprehensibility', of the information being presented. By legibility we mean: can the data be clearly seen and easily read? By readability we mean: is the information set out in a logical way so that its structure is clear and it can be easily scanned? By comprehensibility we mean: does the data make sense to the audience for whom it is intended? Is the presentation appropriate for their previous knowledge, their present information needs and their information processing capacities?" (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Cybernetics is concerned with scientific investigation of systemic processes of a highly varied nature, including such phenomena as regulation, information processing, information storage, adaptation, self-organization, self-reproduction, and strategic behavior. Within the general cybernetic approach, the following theoretical fields have developed: systems theory (system), communication theory, game theory, and decision theory." (Fritz B Simon et al, "Language of Family Therapy: A Systemic Vocabulary and Source Book", 1985)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"Reliable information processing requires the existence of a good code or language, i.e., a set of rules that generate information at a given hierarchical level, and then compress it for use at a higher cognitive level. To accomplish this, a language should strike an optimum balance between variety (stochasticity) and the ability to detect and correct errors (memory)."(John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"An artificial neural network is an information-processing system that has certain performance characteristics in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that: (1) Information processing occurs at many simple elements called neurons. (2) Signals are passed between neurons over connection links. (3) Each connection link has an associated weight, which, in a typical neural net, multiplies the signal transmitted. (4) Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal." (Laurene Fausett, "Fundamentals of Neural Networks", 1994)

"In spite of the insurmountable computational limits, we continue to pursue the many problems that possess the characteristics of organized complexity. These problems are too important for our well being to give up on them. The main challenge in pursuing these problems narrows down fundamentally to one question: how to deal with systems and associated problems whose complexities are beyond our information processing limits? That is, how can we deal with these problems if no computational power alone is sufficient?"  (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"The robustness of the misperceptions of feedback and the poor performance they cause are due to two basic and related deficiencies in our mental model. First, our cognitive maps of the causal structure of systems are vastly simplified compared to the complexity of the systems themselves. Second, we are unable to infer correctly the dynamics of all but the simplest causal maps. Both are direct consequences of bounded rationality, that is, the many limitations of attention, memory, recall, information processing capability, and time that constrain human decision making." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"It is not only a metaphor to transform the Internet to a superbrain with self-organizing features of learning and adapting. Information retrieval is already realized by neural networks adapting to the information preferences of a human user with synaptic plasticity. In sociobiology, we can 1 earn from populations of ants and termites how to organize traffic and information processing by swarm intelligence. From a technical point of view, we need intelligent programs distributed in the nets. There are already more or less intelligent virtual organisms {'agents'), learning, self-organizing and adapting to our individual preferences of information, to select our e-mails, to prepare economic transactions or to defend the attacks of hostile computer viruses, like the immune system of our body." (Klaus Mainzer, "Complexity Management in the Age of Globalization", 2006)

"An artificial neural network, often just called a 'neural network' (NN), is an interconnected group of artificial neurons that uses a mathematical model or computational model for information processing based on a connectionist approach to computation. Knowledge is acquired by the network from its environment through a learning process, and interneuron connection strengths (synaptic weighs) are used to store the acquired knowledge." (Larbi Esmahi et al, "Adaptive Neuro-Fuzzy Systems", 2009)

"Many AI systems employ heuristic decision making, which uses a strategy to find the most likely correct decision to avoid the high cost (time) of processing lots of information. We can think of those heuristics as shortcuts or rules of thumb that we would use to make fast decisions." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

20 September 2014

Systems Engineering: Ecology (Just the Quotes)

"The general study of the equilibria and dynamics of populations seems to have no name; but as it has probably reached its highest development in the biological study known as 'ecology,' this name may well be given to it." (Kenneth E Boulding, "A Reconstruction of Economics", 1950)

"Can any of us fix anything? No. None of us can do that. We're specialized. Each one of us has his own line, his own work. I understand my work, you understand yours. The tendency in evolution is toward greater and greater specialization. Man's society is an ecology that forces adaptation to it. Continued complexity makes it impossible for us to know anything outside our own personal field - I can't follow the work of the man sitting at the next desk over from me. Too much knowledge has piled up in each field. And there are too many fields." (Philip K. Dick, "The Variable Man", 1952)

"The thing the ecologically illiterate don't realize about an ecosystem is that it's a system. A system! A system maintains a certain fluid stability that can be destroyed by a misstep in just one niche. A system has order, a flowing from point to point. If something dams the flow, order collapses. The untrained miss the collapse until too late. That's why the highest function of ecology is the understanding of consequences." (Frank Herbert, "Dune", 1965)

"Evolution cannot be understood except in the frame of ecosystems." (Ramón Margalef, "Perspectives in Ecological Theory", 1968)

"For some years now the activity of the artist in our society has been trending more toward the function of the ecologist: one who deals with environmental relationships. Ecology is defined as the totality or pattern of relations between organisms and their environment. Thus the act of creation for the new artist is not so much the invention of new objects as the revelation of previously unrecognized relationships between existing phenomena, both physical and metaphysical. So we find that ecology is art in the most fundamental and pragmatic sense, expanding our apprehension of reality." (Gene Youngblood, "Expanded Cinema", 1970) 

"Ecology is the scientific study of the interactions that determine the distribution and abundance of organisms." (Charles J Krebs, "Ecology", 1972)

"It is the intertwined and interacting mechanisms of evolution and ecology, each of which is at the same time a product and a process, that are responsible for life as we see it, and as it has been." (James W. Valentine, "Evolutionary Paleoecology of the Marine Biosphere", 1973)

"This paper introduces a concept of organizational ecology. This refers to the organizational field created by a number of organizations, whose interrelations compose a system at the level of the field as a whole. The overall field becomes the object of inquiry, not the single organization as related to its organization-set. The emergence of organizational ecology from earlier organization theory is traced and illustrated from empirical studies. Its relevance to the task of institution-building, in a world in which the environment has become exceedingly complex and more interdependent, is argued." (Eric Trist , "A concept of organizational eecolog", Australian journal of management 2 (2), 1977)

"We argue that in order to deal with the various inertial pressures the adaptation perspective must be supplemented with a selection orientation. We consider first two broad issues that are preliminary to ecological modelling. The first concerns appropriate units of analysis. Typical analyses of the relation of organizations to environments take the point of view of a single organization facing an environment." (Michael T Hannan, "The Population Ecology of Organizations", 1977)

"The world is a complex, interconnected, finite, ecological–social–psychological–economic system. We treat it as if it were not, as if it were divisible, separable, simple, and infinite. Our persistent, intractable global problems arise directly from this mismatch." (Donella Meadows,"Whole Earth Models and Systems", 1982)

"Ultimately, uncontrolled escalation destroys a system. However, change in the direction of learning, adaptation, and evolution arises from the control of control, rather than unchecked change per se. In general, for the survival and co-evolution of any ecology of systems, feedback processes must be embodied by a recursive hierarchy of control circuits." (Bradford P Keeney, "Aesthetics of Change", 1983)

"To halt the decline of an ecosystem, it is necessary to think like an ecosystem." (Douglas P Wheeler, EPA Journal, 1990)

"Ecological Economics studies the ecology of humans and the economy of nature, the web of interconnections uniting the economic subsystem to the global ecosystem of which it is a part." (Robert Costanza, "Ecological Economics: the science and management of sustainability", 1992)

"The new paradigm may be called a holistic world view, seeing the world as an integrated whole rather than a dissociated collection of parts. It may also be called an ecological view, if the term 'ecological' is used in a much broader and deeper sense than usual. Deep ecological awareness recognizes the fundamental interdependence of all phenomena and the fact that, as individuals and societies we are all embedded in (and ultimately dependent on) the cyclical process of nature." (Fritjof Capra & Gunter A. Pauli," Steering business toward sustainability", 1995)

"Economics emphasizes competition, expansion, and domination; ecology emphasizes cooperation, conservation, and partnership. (Fritjof Capra, "The Web of Life", 1996)

"A major clash between economics and ecology derives from the fact that nature is cyclical, whereas our industrial systems are linear. Our businesses take resources, transform them into products plus waste, and sell the products to consumers, who discard more waste […]" (Fritjof Capra, "The Web of Life", 1996)

"These, then, are some of the basic principles of ecology - interdependence, recycling, partnership, flexibility, diversity, and, as a consequence of all those, sustainability... the survival of humanity will depend on our ecological literacy, on our ability to understand these principles of ecology and live accordingly."(Fritjof Capra, "The Web of Life", 1996)

"Understanding ecological interdependence means understanding relationships. It requires the shifts of perception that are characteristic of systems thinking - from the parts to the whole, from objects to relationships, from contents to patterns. [...] Nourishing the community means nourishing those relationships. (Fritjof Capra, "The Web of Life", 1996)

"Organizations need to undergo fundamental changes, both in order to adapt to the new business environment and to become ecologically sustainable." (Fritjof Capra, "The Hidden Connections", 2002)

"Limiting factors in population dynamics play the role in ecology that friction does in physics. They stop exponential growth, not unlike the way in which friction stops uniform motion. Whether or not ecology is more like physics in a viscous liquid, when the growth-rate-based traditional view is sufficient, is an open question. We argue that this limit is an oversimplification, that populations do exhibit inertial properties that are noticeable. Note that the inclusion of inertia is a generalization—it does not exclude the regular rate-based, first-order theories. They may still be widely applicable under a strong immediate density dependence, acting like friction in physics." (Lev Ginzburg & Mark Colyvan, "Ecological Orbits: How Planets Move and Populations Grow", 2004)

"It is science that brings us an understanding of the true complexity of natural systems. The insights from the science of ecology are teaching us how to work with the checks and balances of nature, and encouraging a new, rational, limited-input, environmentally sound means of vineyard management that offers a third way between the ideologically driven approach of Biodynamics and conventional chemical-based agricultural systems." (Jamie Goode," The Science of Wine: From Vine to Glass", 2005)

"An ecology provides the special formations needed by organizations. Ecologies are: loose, free, dynamic, adaptable, messy, and chaotic. Innovation does not arise through hierarchies. As a function of creativity, innovation requires trust, openness, and a spirit of experimentation - where random ideas and thoughts can collide for re-creation." (George Siemens, "Knowing Knowledge", 2006)

"Knowledge flow can be likened to a river that meanders through the ecology of an organization. In certain areas, the river pools and in other areas it ebbs. The health of the learning ecology of the organization depends on effective nurturing of flow." (George Siemens, "Knowing Knowledge", 2006)

"Nodes and connectors comprise the structure of a network. In contrast, an ecology is a living organism. It influences the formation of the network itself." (George Siemens, "Knowing Knowledge", 2006)

"When we focus on designing ecologies in which people can forage for knowledge, we are less concerned about communicating the minutiae of changing knowledge. Instead, we are creating the conduit through which knowledge will flow." (George Siemens, "Knowing Knowledge", 2006)

"Any new dominant communications medium leads to a new information ecology in society that inevitably changes the way ideas, feelings, wealth, power and influence are distributed and the way collective decisions are made." (Al Gore, "The Assault on Reason", 2007)

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"This new model of development would be based clearly on the goal of sustainable human well-being. It would use measures of progress that clearly acknowledge this goal. It would acknowledge the importance of ecological sustainability, social fairness, and real economic efficiency. Ecological sustainability implies recognizing that natural and social capital are not infinitely substitutable for built and human capital, and that real biophysical limits exist to the expansion of the market economy." (Robert Costanza, "Toward a New Sustainable Economy", 2008)

"Ecology is] the science of relations between organisms and their environment." (Ernst Haeckel)

More quotes on "Ecology" at the-web-of-knowledge.blogspot.com.

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.