Showing posts with label strings. Show all posts
Showing posts with label strings. Show all posts

21 May 2020

💎SQL Reloaded: Functions Useful in Data Migrations

Left and Right-Padding

Oracle has the LPAD and RPAD functions which return and expression, left-padded, respectively right-padded with the specified characters. The functions are useful in formatting unique identifiers to fit a certain format (eg. 0000012345 instead of 12345). Here’re similar implementations of the respective functions:

-- left padding function 
CREATE FUNCTION dbo.LeftPadding( 
  @str varchar(50) 
, @length int  
, @padchar varchar(1))
RETURNS varchar(50)
AS 
BEGIN 
  RETURN CASE  
    WHEN LEN(@str)<@length THEN Replicate(@padchar, @length-LEN(@str)) + @str       
    ELSE @str  
    END 
END  

-- example left padding 
SELECT dbo.LeftPadding('12345', '10', '0')

-- right padding function 
CREATE FUNCTION dbo.RightPadding( 
  @str varchar(50) 
, @length int  
, @padchar varchar(1))
RETURNS varchar(50)
AS 
BEGIN 
  RETURN CASE  
    WHEN LEN(@str)<@length THEN @str + Replicate(@padchar, @length-LEN(@str))      
	ELSE @str  
  END
END  

-- example right padding 
SELECT dbo.RightPadding('12345', '10', '0')

Left and Right Side

When multiple pieces of data are stored within same same attribute, it’s helpful to get the left, respectively the right part of the string based on a given delimiter, where the reverse flag tells the directions in which the left is applied:

-- left part function 
CREATE FUNCTION dbo.CutLeft( 
  @str varchar(max) 
, @delimiter varchar(1)
, @reverse bit = 0)
RETURNS varchar(max)
AS 
BEGIN 
  RETURN CASE  
     WHEN CharIndex(@delimiter, @str)>0 THEN 
       CASE @reverse 
         WHEN 0 THEN Left(@str, CharIndex(@delimiter, @str)-1)    
         ELSE Left(@str, Len(@str)-CharIndex(@delimiter, Reverse(@str))) 
       END
	 ELSE @str  
  END
END  

-- example left part 
SELECT dbo.CutLeft('12345,045,000', ',', 0)
, dbo.CutLeft('12345,045,000', ',', 1)



-- right part function 
CREATE FUNCTION dbo.CutRight( 
  @str varchar(max) 
, @delimiter varchar(1)
, @reverse bit = 0)
RETURNS varchar(max)
AS 
BEGIN 
  RETURN CASE  
    WHEN CharIndex(@delimiter, @str)>0 THEN 
      CASE @reverse 
        WHEN 0 THEN Right(@str, CharIndex(@delimiter, Reverse(@str))-1) 
        ELSE Right(@str, Len(@str)-CharIndex(@delimiter, @str)) 
      END
   ELSE @str  
  END
END  

-- example right part 
SELECT dbo.CutRight('12345,045,000', ',', 0)
, dbo.CutRight('12345,045,000', ',', 1)

Replacing Special Characters

Special characters can prove to be undesirable in certain scenarios (e.g. matching values, searching). Until a “Replace from” function will be made available, the solution is to include the replacements in a user-defined function similar with the one below:

DROP FUNCTION IF EXISTS [dbo].[ReplaceSpecialChars]

CREATE FUNCTION [dbo].[ReplaceSpecialChars](
@string nvarchar(max)
, @replacer as nvarchar(1) = '-'
) RETURNS nvarchar(max)
-- replaces special characters with a given character (e.g. an empty string, space)
AS
BEGIN   
  IF CharIndex('*', @string) > 0  
     SET @string = replace(@string, '*', @replacer)	
    
  IF CharIndex('#', @string) > 0  
     SET @string = replace(@string, '#', @replacer)	
    
  IF CharIndex('$', @string) > 0  
     SET @string = replace(@string, '$', @replacer)	
    
  IF CharIndex('%', @string) > 0  
     SET @string = replace(@string, '%', @replacer)	
    
  IF CharIndex('&', @string) > 0  
     SET @string = replace(@string, '&', @replacer)	
    
  IF CharIndex(';', @string) > 0  
     SET @string = replace(@string, ';', @replacer)	
    
  IF CharIndex('/', @string) > 0  
     SET @string = replace(@string, '/', @replacer)	
    
  IF CharIndex('?', @string) > 0  
     SET @string = replace(@string, '?', @replacer)	
    
  IF CharIndex('\', @string) > 0  
     SET @string = replace(@string, '\', @replacer)	
    
  IF CharIndex('(', @string) > 0  
     SET @string = replace(@string, '(', @replacer)	
    
  IF CharIndex(')', @string) > 0  
     SET @string = replace(@string, ')', @replacer)	
    
  IF CharIndex('|', @string) > 0  
     SET @string = replace(@string, '|', @replacer)	
    
  IF CharIndex('{', @string) > 0  
     SET @string = replace(@string, '{', @replacer)	
    
  IF CharIndex('}', @string) > 0  
     SET @string = replace(@string, '}', @replacer)	
    
  IF CharIndex('[', @string) > 0  
     SET @string = replace(@string, '[', @replacer)	
    
  IF CharIndex(']', @string) > 0  
     SET @string = replace(@string, ']', @replacer)	
                                
  RETURN (LTrim(RTrim(@string)))
END

SELECT [dbo].[ReplaceSpecialChars]('1*2#3$4%5&6;7/8?9\10(11)12|13{14}15[16]', '')
SELECT [dbo].[ReplaceSpecialChars]('1*2#3$4%5&6;7/8?9\10(11)12|13{14}15[16]', ' ')

Other type of special characters are the umlauts (e.g. ä, ß, ö, ü from German language):

DROP FUNCTION IF EXISTS [dbo].[ReplaceUmlauts]

CREATE FUNCTION [dbo].[ReplaceUmlauts](
@string nvarchar(max)
) RETURNS nvarchar(max)
-- replaces umlauts with their equivalent
AS
BEGIN   
  IF CharIndex('ä', @string) > 0  
     SET @string = replace(@string, 'ä', 'ae')	
    
  IF CharIndex('ö', @string) > 0  
     SET @string = replace(@string, 'ö', 'oe')	
    
  IF CharIndex('ß', @string) > 0  
     SET @string = replace(@string, 'ß', 'ss')	
    
  IF CharIndex('%', @string) > 0  
     SET @string = replace(@string, 'ü', 'ue')	
    
                                
  RETURN Trim(@string)
END

SELECT [dbo].[ReplaceUmlauts]('Hr Schrötter trinkt ein heißes Getränk')

Handling Umlauts

Another type of specials characters are the letter specific to certain languages that deviate from the Latin characters (e.g. umlauts in German, accents in French), the usage of such characters introducing further challenges in handling the characters, especially when converting the data between characters sets. A common scenario is the one in which umlauts in ISO-8891-1 are encoded using two character sets. Probably the easiest way to handle such characters is to write a function as follows:

-- create the function 
CREATE FUNCTION [dbo].[ReplaceCodes2Umlauts](
  @string nvarchar(max)
) RETURNS nvarchar(max)
-- replaces ISO 8859-1 characters with the corresponding encoding 
AS
BEGIN   
  IF CharIndex('ß', @string) > 0  
     SET @string = replace(@string, 'ß', 'ß')	

  IF CharIndex('ö', @string) > 0  
     SET @string = replace(@string, 'ö', 'ö')	

  IF CharIndex('Ö', @string) > 0  
     SET @string = replace(@string, 'Ö', 'Ö')	
    
  IF CharIndex('ü', @string) > 0  
     SET @string = replace(@string, 'ü', 'ü')	

  IF CharIndex('Ü', @string) > 0  
     SET @string = replace(@string, 'Ãœ', 'Ü')	

  IF CharIndex('ä', @string) > 0  
     SET @string = replace(@string, 'ä', 'ä')

  IF CharIndex('Ä', @string) > 0  
     SET @string = replace(@string, 'Ä', 'Ä')
                                
  RETURN (LTrim(RTrim(@string)))
END


--test the function 
SELECT [dbo].[ReplaceCodes2Umlauts]('Falsches Ãœben von Xylophonmusik quält jeden größeren Zwerg')

In the inverse scenario, at least for the German language is possible to replace the umlauts with a set the corresponding transliterations:

-- drop the function 
DROP FUNCTION IF EXISTS [dbo].[ReplaceUmlauts]

-- create the function 
CREATE FUNCTION [dbo].[ReplaceUmlauts](
  @string nvarchar(max)
) RETURNS nvarchar(max)
-- replaces umlauts with corresponding transliterations 
AS
BEGIN   
  IF CharIndex('ß', @string) > 0  
     SET @string = replace(@string, 'ß', 'ss')	

  IF CharIndex('ü', @string) > 0  
     SET @string = replace(@string, 'ü', 'ue')	

  IF CharIndex('ä', @string) > 0  
     SET @string = replace(@string, 'ä', 'ae')	
    
  IF CharIndex('ö', @string) > 0  
     SET @string = replace(@string, 'ö', 'oe')	
                                
  RETURN (LTrim(RTrim(@string)))
END

--test the function 
SELECT [dbo].[ReplaceUmlauts]('Falsches üben von Xylophonmusik quält jeden größeren Zwerg')

Happy coding!

💎SQL Reloaded: Splitting a String (Before and After)

Starting with SQL Server 2016 Microsoft introduced the STRING_SPLIT table-valued function, which splits a string into rows of substrings, based on a specified separator character (e.g. “:”).


-- splitting a string (SQL Server 2016+)
SELECT *
FROM STRING_SPLIT('100001::M:black:', ':') 

The table-valued function object allowed also earlier to implement the same functionality, either by looping through the string or by using a common table expression. Here’s the implementation based on a loop (it was modified from a previous version to include an index):


-- split table-valued function with an index
CREATE FUNCTION [dbo].[SplitListWithIndex]( 
  @ListValues varchar(500) 
, @Delimiter char(1)) 
RETURNS @Temp TABLE(
  Ind int
, Value varchar(50)) 
AS 
BEGIN 
 DECLARE @Index int 
 DECLARE @Length int 
 DECLARE @Ind int 

 SET @Index = CharIndex(@Delimiter, @ListValues) 
 SET @Length = Len(@ListValues) - @Index 
 SET @Ind = 1
   
 WHILE @Index > 0 --if the fatch was successful
 BEGIN 
  INSERT @Temp 
  VALUES(@Ind, Substring(@ListValues, 0, @Index)) 

  SET @ListValues = Substring(@ListValues, @Index+1, @Length) 
  SET @Index = CharIndex(@Delimiter, @ListValues) 
  SET @Length = @Length - @Index 
  SET @Ind = @Ind + 1
 END  
   
 INSERT @Temp 
 VALUES(@Ind, @ListValues) 
RETURN 
END  
GO

The function could be called in code same as the STRING_SPLIT:

-- splitting a string (SQL Server 2000+)
SELECT *
FROM dbo.SplitListWithIndex('100001::M:black:', ':') 

The two functions are helpful when a column stores delimited values. It’s the case of Dynamics 365 which stores a SKU (Stock Keeping Unit) – the Product Numbers together with its Dimensions (ItemId, Configid, InventSizeId, InventColorId, StyleId) delimited by “:”, like in the above examples. Therefore, to parse the records one could write such code:


-- parsing delimited values (SQL Server 2000+)
SELECT DAT.ProductNumber
, Max(CASE WHEN LV.Ind = 1 THEN LV.Value END) ItemId
, Max(CASE WHEN LV.Ind = 2 THEN LV.Value END) Configid
, Max(CASE WHEN LV.Ind = 3 THEN LV.Value END) InventSizeId
, Max(CASE WHEN LV.Ind = 4 THEN LV.Value END) InventColorId
, Max(CASE WHEN LV.Ind = 5 THEN LV.Value END) StyleId
FROM ( VALUES ('100001::S:black:')
 , ('100001::M:black:')
 , ('100001::L:black:')
 , ('100001::XL:black:')
 , ('100001::S:white:')
 , ('100001::M:white:')
 , ('100001::L:white:')
 , ('100001::XL:white:')
) DAT (ProductNumber)
CROSS APPLY dbo.SplitListWithIndex(DAT.ProductNumber, ':') LV
GROUP BY DAT.ProductNumber
ORDER BY DAT.ProductNumber
 Similar output can be obtained via the STRING_SPLIT with the help of row_number() ranking window function introduced with SQL Server 2005:
-- parsing delimited values (SQL Server 2016+)
SELECT LV.ProductNumber
, Max(CASE WHEN LV.Ind = 1 THEN LV.Value END) ItemId
, Max(CASE WHEN LV.Ind = 2 THEN LV.Value END) Configid
, Max(CASE WHEN LV.Ind = 3 THEN LV.Value END) InventSizeId
, Max(CASE WHEN LV.Ind = 4 THEN LV.Value END) InventColorId
, Max(CASE WHEN LV.Ind = 5 THEN LV.Value END) StyleId
FROM (
 SELECT DAT.ProductNumber
 , XT.VALUE
 , ROW_NUMBER() OVER (PARTITION BY DAT.ProductNumber ORDER BY DAT.ProductNumber) Ind
 FROM ( VALUES ('100001::S:black:')
  , ('100001::M:black:')
  , ('100001::L:black:')
  , ('100001::XL:black:')
  , ('100001::S:white:')
  , ('100001::M:white:')
  , ('100001::L:white:')
  , ('100001::XL:white:')
 ) DAT (ProductNumber)
 CROSS APPLY STRING_SPLIT(DAT.ProductNumber, ':') XT
) LV
GROUP BY LV.ProductNumber
ORDER BY LV.ProductNumber

As can be seen the introduction of an index into the dbo.SplitListWithIndex function simplified the code, making the use of a ranking window function unnecessary. It would be useful for the STRING_SPLIT to provide the same, as this time of processing is pretty common.  
Here’s another example based on the PIVOT clause introduced also in SQL 2005:


-- parsing delimited values (SQL Server 2016+)
SELECT P.ProductNumber
, Cast(Trim([1]) as nvarchar(20)) ItemId
, Cast(Trim([2]) as nvarchar(20)) ConfigId
, Cast(Trim([3]) as nvarchar(20)) InventSizeid
, Cast(Trim([4]) as nvarchar(20)) InventColorId
, Cast(Trim([5]) as nvarchar(20)) StyleId
FROM (
 SELECT DAT.ProductNumber
 , XT.VALUE
 , ROW_NUMBER() OVER (PARTITION BY DAT.ProductNumber ORDER BY DAT.ProductNumber) Ranking
 FROM ( VALUES ('100001::S:black:')
  , ('100001::M:black:')
  , ('100001::L:black:')
  , ('100001::XL:black:')
  , ('100001::S:white:')
  , ('100001::M:white:')
  , ('100001::L:white:')
  , ('100001::XL:white:')
 ) DAT (ProductNumber)
 CROSS APPLY STRING_SPLIT(DAT.ProductNumber, ':') XT
) DAT
PIVOT (MAX(DAT.[VALUE]) FOR DAT.Ranking IN ([1],[2],[3],[4],[5])) P

Happy coding!

18 October 2018

💎SQL Reloaded: String_Split Function

    Today, as I was playing with a data model – although simplistic, the simplicity kicked back when I had to deal with fields in which several values were encoded within the same column. The “challenge” resided in the fact that the respective attributes were quintessential in analyzing and matching the data with other datasets. Therefore, was needed a mix between flexibility and performance. It was the point where the String_Split did its magic. Introduced with SQL Server 2016 and available only under compatibility level 130 and above, the function splits a character expression using specified separator.
Here’s a simplified example of the code I had to write:

-- cleaning up
-- DROP TABLE dbo.ItemList

-- test data 
SELECT A.*
INTO dbo.ItemList 
FROM (
VALUES (1, '1001:a:blue')
, (2, '1001:b:white')
, (3, '1002:a:blue')
, (4, '1002:b:white')
, (5, '1002:c:red')
, (6, '1003:b:white')
, (7, '1003:c:red')) A(Id, List)

-- checking the data
SELECT *
FROM dbo.ItemList 

-- prepared data
SELECT ITM.Id 
, ITM.List 
, DAT.ItemId
, DAT.Size
, DAT.Country
FROM dbo.ItemList ITM
   LEFT JOIN (-- transformed data 
 SELECT DAT.id
 , [1] AS ItemId
 , [2] AS Size
 , [3] AS Country
 FROM(
  SELECT ITM.id
  , TX.Value
  , ROW_NUMBER() OVER (PARTITION BY ITM.id ORDER BY ITM.id) Ranking
  FROM dbo.ItemList ITM
  CROSS APPLY STRING_SPLIT(ITM.List, ':') TX
  ) DAT
 PIVOT (MAX(DAT.Value) FOR DAT.Ranking IN ([1],[2],[3])) 
 DAT
  ) DAT
   ON ITM.Id = DAT.Id 


And, here’s the output:

image_thumb[2]

   For those dealing with former versions of SQL Server the functionality provided by the String_Split can be implemented with the help of user-defined functions, either by using the old fashioned loops (see this), cursors (see this) or more modern common table expressions (see this). In fact, these implementations are similar to the String_Split function, the difference being made mainly by the performance.

Happy coding!

02 March 2018

🔬Data Science: Hash Function (Definition)

"A function that maps a set of keys onto a set of addresses." (S. Sumathi & S. Esakkirajan, "Fundamentals of Relational Database Management Systems", 2007)

"A function that maps a string of arbitrary length to a fixed size value in a deterministic manner. Such a function may or may not have cryptographic applications." (Mark S Merkow & Lakshmikanth Raghavan, "Secure and Resilient Software Development", 2010)

[cryptographic hash function:] "A function that takes an input string of arbitrary length and produces a fixed-size output for which it is unfeasible to find two inputs that map to the same output, and it is unfeasible to learn anything about the input from the output." (Mark S Merkow & Lakshmikanth Raghavan, "Secure and Resilient Software Development", 2010)

[one-way hash function:] "A hash function for which it is computationally unfeasible to determine anything about the input from the output." (Mark S Merkow & Lakshmikanth Raghavan, "Secure and Resilient Software Development", 2010)

"A function that operates on an arbitrary-length input value and returns a fixed-length hash value." (Oracle, "Database SQL Tuning Guide Glossary", 2013)

[one-way hash:] "A one-way hash is an algorithm that transforms one string into another string (a fixed-length sequence of seemingly random characters) in such a way that the original string cannot be calculated by operations on the one-way hash value (i.e., the calculation is one way only). One-way hash values can be calculated for any string, including a person’s name, a document, or an image. For any input string, the resultant one-way hash will always be the same. If a single byte of the input string is modified, the resulting one-way hash will be changed and will have a totally different sequence than the one-way hash sequence calculated for the unmodified string. One-way hash values can be made sufficiently long (e.g., 256 bits) that a hash string collision (i.e., the occurrence of two different input strings with the same one-way hash output value) is negligible." (Jules H Berman, "Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information", 2013)

"A hash function is an algorithm that maps from an input, for example, a string of characters, to an output string. The size of the input can vary, but the size of the output is always the same." (Dan Sullivan, "NoSQL for Mere Mortals®", 2015)

[one-way hash:] "Cryptographic process that takes an arbitrary amount of data and generates a fixed-length value. Used for integrity protection." (Adam Gordon, "Official (ISC)2 Guide to the CISSP CBK" 4th Ed., 2015)

"A function that takes as input the key of an element and produces an integer as output" (Nell Dale et al, "Object-Oriented Data Structures Using Java" 4th Ed., 2016)

"encryption methods that use no keys." (Manish Agrawal, "Information Security and IT Risk Management", 2014)

"A function that operates on an arbitrary-length input value and returns a fixed-length hash value." (Oracle, "Oracle Database Concepts")

03 May 2017

⛏️Data Management: Hashing (Definitions)

"A technique for providing fast access to data based on a key value by determining the physical storage location of that data." (Jan L Harrington, "Relational Database Dessign: Clearly Explained" 2nd Ed., 2002)

"A mathematical technique for assigning a unique number to each record in a file." (S. Sumathi & S. Esakkirajan, "Fundamentals of Relational Database Management Systems", 2007)

"A technique that transforms a key value via an algorithm to a physical storage location to enable quick direct access to data. The algorithm is typically referred to as a randomizer, because the goal of the hashing routine is to spread the key values evenly throughout the physical storage." (Craig S Mullins, "Database Administration", 2012)

"A mathematical technique in which an infinite set of input values is mapped to a finite set of output values, called hash values. Hashing is useful for rapid lookups of data in a hash table." (Oracle, "Database SQL Tuning Guide Glossary", 2013)

"An algorithm converts data values into an address" (Daniel Linstedt & W H Inmon, "Data Architecture: A Primer for the Data Scientist", 2014)

"The technique used for ordering and accessing elements in a collection in a relatively constant amount of time by manipulating the element’s key to identify the element’s location in the collection" (Nell Dale et al, "Object-Oriented Data Structures Using Java" 4th Ed., 2016)

"The application of an algorithm to a search key to derive a physical storage location." (George Tillmann, "Usage-Driven Database Design: From Logical Data Modeling through Physical Schmea Definition", 2017)

"Hashing is the process of mapping data values to fixed-size hash values (hashes). Common hashing algorithms are Message Digest 5 (MD5) and Secure Hashing Algorithm (SHA). It’s impossible to turn a hash value back into the original data value." (Piethein Strengholt, "Data Management at Scale", 2020)

"A mathematical technique in which an infinite set of input values is mapped to a finite set of output values, called hash values. Hashing is useful for rapid lookups of data in a hash table." (Oracle, "Oracle Database Concepts")

"A process used to convert data into a string of numbers and letters." (AICPA)

"A technique for arranging a set of items, in which a hash function is applied to the key of each item to determine its hash value. The hash value identifies each item's primary position in a hash table, and if this position is already occupied, the item is inserted either in an overflow table or in another available position in the table." (IEEE 610.5-1990)

01 May 2017

⛏️Data Management: Hash (Definitions)

"A number (often a 32-bit integer) that is derived from column values using a lossy compression algorithm. DBMSs occasionally use hashing to speed up access, but indexes are a more common mechanism." (Peter Gulutzan & Trudy Pelzer, "SQL Performance Tuning", 2002)

"A set of characters generated by running text data through certain algorithms. Often used to create digital signatures and compare changes in content." (Tom Petrocelli, "Data Protection and Information Lifecycle Management", 2005)

"Hash, a mathematical method for creating a numeric signature based on content; these days, often unique and based on public key encryption technology." (Bo Leuf, "The Semantic Web: Crafting infrastructure for agency", 2006)

[hash code:] "An integer calculated from an object. Identical objects have the same hash code. Generated by a hash method." (Michael Fitzgerald, "Learning Ruby", 2007)

"An unordered collection of data where keys and values are mapped. Compare with array." (Michael Fitzgerald, "Learning Ruby", 2007)

"A cryptographic hash is a fixed-size bit string that is generated by applying a hash function to a block of data. Secure cryptographic hash functions are collision-free, meaning there is a very small possibility of generating the same hash for two different blocks of data. A secure cryptographic hash function should also be one-way, meaning it is infeasible to retrieve the original text from the hash." (Michael Coles & Rodney Landrum, "Expert SQL Server 2008 Encryption", 2008)

"A hash is the result of applying a mathematical function or transformation on data to generate a smaller 'fingerprint' of the data. Generally, the most useful hash functions are one-way collision-free hashes that guarantee a high level of uniqueness in their results." (Michael Coles, "Pro T-SQL 2008 Programmer's Guide", 2008)

"The output of a hash function." (Mark S Merkow & Lakshmikanth Raghavan, "Secure and Resilient Software Development", 2010)

"A number based on the hash value of a string." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"1.Data allocated in an algorithmically randomized fashion in an attempt to evenly distribute data and smooth access patterns. 2.Verb. To calculate a hash key for data." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A hash is the result of applying a mathematical function or transformation on data to generate a smaller 'fingerprint' of the data. Generally, the most useful hash functions are one-way collision-free hashes that guarantee a high level of uniqueness in their results." (Jay Natarajan et al, "Pro T-SQL 2012 Programmer's Guide" 3rd Ed., 2012)

"An unordered association of key/value pairs, stored such that you can easily use a string key to look up its associated data value. This glossary is like a hash, where the word to be defined is the key and the definition is the value. A hash is also sometimes septisyllabically called an “associative array”, which is a pretty good reason for simply calling it a 'hash' instead." (Jon Orwant et al, "Programming Perl" 4th Ed., 2012)

"In a hash cluster, a unique numeric ID that identifies a bucket. Oracle Database uses a hash function that accepts an infinite number of hash key values as input and sorts them into a finite number of buckets. Each hash value maps to the database block address for the block that stores the rows corresponding to the hash key value (department 10, 20, 30, and so on)." (Oracle, "Database SQL Tuning Guide Glossary", 2013)

"The result of applying a mathematical function or transformation to data to generate a smaller 'fingerprint' of the data. Generally, the most useful hash functions are one-way, collision-free hashes that guarantee a high level of uniqueness in their results." (Miguel Cebollero et al, "Pro T-SQL Programmer’s Guide" 4th Ed., 2015)

[hash code:] "The output of the hash function that is associated with the input object" (Nell Dale et al, "Object-Oriented Data Structures Using Java" 4th Ed., 2016)

"A numerical value produced by a mathematical function, which generates a fixed-length value typically much smaller than the input to the function. The function is many to one, but generally, for all practical purposes, each file or other data block input to a hash function yields a unique hash value." (William Stallings, "Effective Cybersecurity: A Guide to Using Best Practices and Standards", 2018)

"The number generated by a hash function to indicate the position of a given item in a hash table." (IEEE 610.5-1990)

17 June 2011

💎SQL Reloaded: Pulling the Strings of SQL Server VII (List of Values)

Introduction

    Lists are one of the basic structures in Mathematics, the term referring to an (ordered) set of elements separated by comma, space or any other delimiter (e.g. “:”, “;”). The elements of a list can be numbers, words, functions, or any other type of objects. In the world of databases, a list is typically formed out of the values of a given column or a given record, however it could span also a combination of rows and records, is such cases two delimiters being needed – one for column and one for row. From here comes probably the denomination of list of values. In a more general accept a list of values could be regarded as a delimited/concatenated subset. Such lists are formed when needed to send the data between the layers of an application or applications, this type of encoding being quite natural. In fact, also the data in a database are stored in similar tabular delimited structure, more complex though.  

    An useful example in which the list of values are quite handy is the passing of multiple values within the parameter of stored procedure or function (see example). This supposes first building the list and then use the values in a dynamic build query (like in the before mentioned example) or by building a table on the fly. We can call the two operations composition, respectively decomposition of list of values.

Composition 

Composition, whether on vertical or horizontal is nothing but a concatenation in which the values alternate with one or more delimiters. Let’s reconsider the concatenation based on the values of a Person.AddressType AdventureWorks table. As the logic for concatenating for one or more attributes is the same, the below example concatenates a list based on a single attribute, namely AddressTypeID in SingleList, respectively two attributes, AddressTypeID and Name.

-- concatenation of values across a table 
;WITH CTE (AddressTypeID, Name, Ranking) 
AS (--preparing the data       
     SELECT AddressTypeID  
     , Name 
     , ROW_NUMBER () OVER(ORDER BY Name) Ranking 
     FROM Person.AddressType 
     -- WHERE ... 
) 
, DAT (SingleList, DoubleList, Ranking) 
AS ( -- concatenating the values 
     SELECT Cast(AddressTypeID as varchar(max)) SingleList 
     , Cast('('+ Cast(AddressTypeID as varchar(10)) + ',''' + Name + ''')' as varchar(max)) DoubleList 
     , Ranking 
     FROM CTE 
     WHERE Ranking = 1 
     UNION ALL 
     SELECT DAT.SingleList + ',' + Cast(CTE.AddressTypeID as varchar(20)) SingleList 
    , Cast(DAT.DoubleList + ', ('+ Cast(CTE.AddressTypeID as varchar(10)) + ',''' + CTE.Name + ''')' as varchar(max)) DoubleList 
    , CTE.Ranking  
     FROM CTE          
       JOIN DAT           
          ON CTE.Ranking = DAT.Ranking + 1       
)  

-- the lists 
SELECT SingleList 
, DoubleList 
FROM DAT 
WHERE Ranking = (SELECT MAX(Ranking) FROM DAT) 

 List of values - concatenation
 

   The second example is based on atypical delimiters, resembling to the structure built for a batch insert or table value constructor-based statement, and as we’ll see later, ideal to be used in a dynamically-built query

Decomposition

Decomposition follows the inverse path, though it’s much easier to exemplify. In fact it’s used the same technique introduced in the last example from the previous post belonging to the same cycle, Subparts of a String, in which a space was used as delimiter. Another example is the dbo.SplitList function which decomposes a string using a loop.


-- decomposition of a string to a table using CTE 
CREATE FUNCTION dbo.StringToTable( 
 @str varchar(500) 
,@Delimiter char(1)) 
RETURNS @Temp TABLE ( 
Id int NOT NULL 
,Value varchar(50)) 
AS 
BEGIN  
     ;WITH CTE (PrevString, Position, Word)  
     AS (  
     SELECT LTrim(RTrim( CASE  
           WHEN CharIndex(@Delimiter, @str)>;0 THEN Right(@str, Len(@str)-CharIndex(@Delimiter, @str))  
           ELSE ''  
      END)) PrevString  
     , 1 Position  
     , LTrim(RTrim(CASE  
           WHEN CharIndex(@Delimiter, @str)>0 THEN LEFT(@str, CharIndex(@Delimiter, @str)-1)  
           ELSE @str  
       END)) Word  
      UNION ALL  
      SELECT LTrim(RTrim(CASE  
            WHEN CharIndex(@Delimiter, PrevString)>0 THEN Right(PrevString, Len(PrevString)-CharIndex(@Delimiter, PrevString))  
             ELSE ''  
       END)) PrevString  
      , Position + 1 Position  
      , LTrim(RTrim(CASE  
           WHEN CharIndex(@Delimiter, PrevString)>0 THEN LEFT(PrevString, CharIndex(@Delimiter, PrevString)-1)  
          ELSE PrevString  
      END)) Word      FROM CTE  
     WHERE Len(PrevString)>0  
    )  
     INSERT @Temp(Id, Value) 
     SELECT Position  
     , Word      FROM CTE  
     OPTION (maxrecursion 100)  
     RETURN 
END    

Here are two examples based on the single list created above and another one based on alphabet:


-- decomposing a list
SELECT Id 
, value 
FROM dbo.StringToTable('6,1,2,3,4,5', ',')     


-- decomposing the "alphabet" 
SELECT Id 
, value 
FROM dbo.StringToTable('a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z', ',') 

List of values - simple decomposition    

List of values - alphabet decomposition
   
Even if the function deals only with a delimiter, it could be used to decompose lists involving multiple delimiters, as long the list is adequately built:


-- decomposing double list 
SELECT Id 
, value 
, Left(value, CHARINDEX(',', value)-1) LeftValue 
, Right(value, len(value)-CHARINDEX(',', value)) RightValue 
FROM dbo.StringToTable('6,Archive;1,Billing;2,Home;3,Main Office;4,Primary;5,Shipping', ';')     

List of values - double decomposition 

 The tables built thus from list of values can be further used in queries when needed to create a table on the fly. It would be interesting maybe to show that the composition and decomposition are inverse functions, however that’s out of scope, at least for current set of posts. 
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.