Showing posts with label Change Management. Show all posts
Showing posts with label Change Management. Show all posts

06 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part I: First Thoughts)

Business Intelligence
Business Intelligence Series

A data project has a set of assumptions and requirements that must be met, otherwise the project has a high chance of failing. It starts with a clear idea of the goals and objectives, and they need to be achievable and feasible, with the involvement of key stakeholders and the executive without which it’s impossible to change the organization’s data culture. Ideally, there should also be a business strategy, respectively a data strategy available to understand the driving forces and the broader requirements. 

An organization’s readiness is important not only in what concerns the data but also the things revolving around the data - processes, systems, decision-making, requirements management, project management, etc. One of the challenges is that the systems and processes available can’t be used as they are for answering important business questions, and many of such questions are quite basic, though unavailability or poor quality of data makes this challenging if not impossible. 

Thus, when starting a data project an organization must be ready to change some of its processes to address a project’s needs, and thus the project can become more expensive as changes need to be made to the systems. For many organizations the best time to have done this was when they implemented the system, respectively the integration(s) between systems. Any changes made after that come in theory with higher costs derived from systems and processes’ redesign.

Many projects start big and data projects are no exception to this. Some of them build a costly infrastructure without first analyzing the feasibility of the investment, or at least whether the data can form a basis for answering the targeted questions. On one side one can torture any dataset and some knowledge will be obtained from it (aka data will confess), though few datasets can produce valuable insights, and this is where probably many data projects oversell their potential. Conversely, some initiatives are worth pursuing even only for the sake of the exposure and experience the employees get. However, trying to build something big only through the perspective of one project can easily become a disaster. 

When building a data infrastructure, the project needs to be an initiative given the transformative potential such an endeavor can have for the organization, and the different aspects must be managed accordingly. It starts with the management of stakeholders’ expectations, with building a data strategy, respectively with addressing the opportunities and risks associated with the broader context.

Organizations recognize that they aren’t capable of planning and executing such a project or initiative, and they search for a partner to lead the way. Becoming overnight such a partner is more than a challenge as a good understanding of the industry and the business is needed. Some service providers have such knowledge, at least in theory, though the leap from knowledge to results can prove to be a challenge even for experienced service providers. 

Many projects follow the pattern: the service provider comes, analyzes the requirements, builds something wonderful, the solution is used for some time and then the business realizes that the result is not what was intended. The causes are multiple and usually form a complex network of causality, though probably the most important aspect is that customers don’t have the in-house technical resources to evaluate the feasibility of requirements, solutions, respectively of the results. Even if organizations involve the best key users, are needed also good data professionals or similar resources who can become the bond between the business and the services provider. Without such an intermediary the disconnect between the business and the service provider can grow with all the implications. 

Previous Post <<||>> Next Post

21 March 2021

𖣯Strategic Management: The Impact of New Technologies (Part III: Checking the Vital Signs)

Strategic Management

An organization which went through a major change, like the replacement of a strategic system (e.g. ERP/BI implementations), needs to go through a period of attentive supervision to address the inherent issues that ideally need to be handled as they arise, to minimize their future effects. Some organizations might even go through a convalescence period, which risks to prolong itself if the appropriate remedies aren’t found. Therefore, one needs an entity, who/which has the skills to recognize the symptoms, understand what’s happening and why, respectively of identifying the appropriate actions.

Given technologies’ multi-layered complexity and the volume of knowledge for understanding them, the role of the doctor can be seldom taken by one person. Moreover, the patient is an organization, each person in the organization having usually local knowledge about the patient. The needed knowledge is dispersed trough the organization, and one needs to tap into that knowledge, identify the people close to technologies and business area, respectively allow such people exchange information on a regular basis.

The people who should know the best the organization are in theory the management, however they are usually too far away from technologies and often too busy with management topics. IT professionals are close to technologies, though sometimes too far away from the patient. The users have a too narrow overview, while from logistical and economic reasons the number of people involved should be kept to a minimum. A compromise is to designate one person from each business area who works with any of the strategic systems, and assure that they have the technical and business knowledge required. It’s nothing but the key-user concept, though for it to work the key-users need not only knowledge but also the empowerment to act when the symptoms appear.

Big organizations have also a product owner for each application who supervises the application through its entire lifecycle, and who needs to coordinate with the IT, business and service providers. This is probably a good idea in order to assure that the ROI is reached over time, respectively that the needs of the system are considered within the IT operation context. In small organizations, the role can be taken by a technical or a business resource with deeper skills then the average user, usually a key-user. However, unless joined with the key-user role, the product owner’s focus will be the product and seldom the business themes.

The issues that need to be overcome after major changes are usually cross-functional, being imperative for people to work together and find solutions. Unfortunately, it’s also in human nature to wait until the issues are big enough to get the proper attention. Unless the key-users have the time allocated already for such topics, the issues will be lost in the heap of operational and tactical activities. This time must be allocated for all key-users and the technical resources needed to support them.

Some organizations build temporary working parties (groups of experts working together to achieve specific goals) or similar groups. However, the statute of such group needs to be permanent if the organization wants to continuously have its health in check, to build the needed expertize and awareness about occurred or potential issues. Centers of excellence/expertize (CoE) or competency centers (CC) are such working groups with permanent statute, having defined roles, responsibilities, and processes for supporting and promoting the effective use of technologies within the organization, respectively of monitoring and systematically addressing the risks and opportunities associated with them.

There’s also the null hypothesis, doing nothing, relying solely on employees’ professionalism, though without defined responsibility, accountability and empowerment, it can get messy.

Previous Post <<||>> Next Post

𖣯Strategic Management: The Impact of New Technologies (Part II - The Technology-oriented Patient)

Strategic Management

Looking at the way data, information and knowledge flow through an organization, with a little imagination one can see the resemblance between an organization and the human body, in which the networks created by the respective flows spread through organization as nervous, circulatory or lymphatic braids do, each with its own role in the good functioning of the organization. Each technology adopted by an organization taps into these flows creating a structure that can be compared with the nerve plexus, as the various flows intersect in such points creating an agglomeration of nerves and braids.

The size of each plexus can be considered as proportional to the importance of the technology in respect to the overall structure. Strategic technologies like ERP, BI or planning systems, given their importance (gravity), resemble with the organs from the human body, with complex networks of braids in their vicinity. Maybe the metaphor is too far-off, though it allows stressing the importance of each technology in respect to its role and the good functioning of the organization. Moreover, each such structure functions as pressure points that can in extremis block any of the flows considered, a long-term block having important effects.

The human organism is a marvelous piece of work reflecting the grand design, however in time, especially when neglected or driven by external agents, diseases can clutch around any of the parts of the human body, with all the consequences deriving from this. On the other side, an organization is a hand-made structure found in continuous expansion as new technologies or resources are added. Even if the technologies are at peripheral side of the system, their good or bad functioning can have a ripple effect trough the various networks.

Replacing any of the above-mentioned strategic systems can be compared with the replacement of an organ in the human body, having a high degree of failure compared with other operations, being complex in nature, the organism needing long periods to recover, while in extreme situations the convalescence prolongs till the end. Fortunately, organizations seem to be more resilient to such operations, though that’s not necessarily a rule. Sometimes all it takes is just a small mistake for making the operation fail.

The general feeling is that ERP and BI implementations are taken too lightly by management, employees and implementers. During the replacement operation one must make sure not only that the organ fits and functions as expected, but also that the vital networks regained their vitality and function as expected, and the latter is a process that spans over the years to come. One needs to check the important (health) signs regularly and take the appropriate countermeasures. There must be an entity having the role of the doctor, who/which has the skills to address adequately the issues.

Moreover, when the physical structure of an organization is affected, a series of micro-operations might be needed to address the deformities. Unfortunately, these areas are seldom seen in time, and can require a sustained effort for fixing, while a total reconstruction might apply. One works also with an amorphous and ever-changing structure that require many attempts until a remedy is found, if a remedy is possible after all.

Even if such operations are pretty well documented, often what organizations lack are the skilled resources needed during and post-implementation, resources that must know as well the patient, and ideally its historical and further health preconditions. Each patient is different and quite often needs its own treatment/medication. With such changes, the organization lands itself on a discovery journey in which the appropriate path can easily deviate from the well-trodden paths.

Previous Post <<||>> Next Post

07 March 2021

💼Project Management: Methodologies (Part II: Agile Manifesto Reloaded II - Requirements Management)

Project Management

Independently of its scope and the methodology used, each software development project is made of the same blocks/phases arranged eventually differently. It starts with Requirements Managements (RM) subprocesses in which the functional and non-functional requirements are gathered, consolidated, prioritized and brought to a form which facilitates their understanding and estimation. It’s an iterative process as there can be overlapping in functionality, requirements that don’t bring any significant benefit when compared with the investment, respectively new aspects are discovered during the internal discussions or with the implementer.

As output of this phase, it’s important having a list of requirements that reflect customer’s needs in respect to the product(s) to be implemented. Once frozen, the list defines project’s scope and is used for estimating the costs, sketching a draft of the final solution, respectively of reaching a contractual agreement with the implementer. Ideally the set of requirements should be completed and be coherent while reflecting customer’s needs. It allows thus in theory to agree upon costs as well about an architecture and other important aspects (responsibilities/accountability).

Typically, each new requirement considered after this stage needs to go through a Change Management (CM) process in which it gets formulated to the needed level of detail, a cost, effort and impact analysis is performed, respectively the budget for it is approved or the change gets rejected. Ideally small changes can be considered as part of a buffer budget upfront, however in the end each change comes with a cost and project delays.

Some changes can come late in the project and can have an important impact on the whole architecture when important aspects were missed upfront. Moreover, when the number of changes goes beyond a certain limit it can lead to what is known as scope creep, with important consequences on project’s costs, timeline and quality. Therefore, to minimize the impact on the project, the number of changes needs to be kept to a minimum, typically considering only the critical changes, while the others can be still implemented after project’s end.

The agile manifesto’s principles impose an important constraint on the requirements - changing requirements is a good practice even late in the process – an assumption - best requirements emerge from self-organizing teams, and probably one implication – the requirements need to be defined together with the implementer.

The way changing requirements are handled seem to provide more flexibility though it’s actually a constraint imposed on the CM process which interfaces with the RM processes. Without a proper CM in place, any requirement might arrive to be implemented, independently on whether is feasible or not. This can easily make project’s costs explode, sometimes unnecessarily, while accommodating extreme behavior like changing the same functionality frequently, handling exceptions extensively, etc.

It’s usually helpful to define the requirements together with the implementer, as this can bring more quality in the process, even if more time needs to be invested. However, starting from a solid set of requirements is a critical factor for project’s success. The manifesto makes no direct statement about this. Just iterates that good requirements emerge from self-organizing teams which is not necessarily the case. 

The users who in theory can define the requirements best are the ones who have the deepest knowledge about an organization’s processes and IT architecture, typically the key users and/or IT experts. Self-organization revolves around how a team organizes itself and handles the various activities, though there’s no guarantee that it will address the important aspects, no matter how motivated the team is, how constant the pace, how excellent the technical details were handled or how good the final product works.

Previous Post <<||>>Next Post

04 March 2021

💼Project Management: Project Execution (Part III: Projects' Dynamics - An Introduction)

Despite the considerable collection of books on Project Management (PM) and related methodologies, and the fact that projects are inherent endeavors in professional as well personal life (setups that would give in theory people the environment and exposure to different project types), people’s understanding on what it takes to plan and execute a project seems to be narrow and questionable sometimes. Moreover, their understanding diverges considerably from common sense. It’s also true that knowledge and common sense are relative when considering any human endeavor in which there are multiple roads to the same destination, or when learning requires time, effort, skills, and implies certain prerequisites, however the lack of such knowledge can hurt when endeavor’s success is a must and a team effort. 

Even if the lack of understanding about PM can be considered as minor when compared with other challenges/problems faced by a project, when one’s running fast to finish a race, even a small pebble in one’s running shoes can hurt a lot, especially when one doesn’t have the luxury to stop and remove the stone, as it would make sense to do.

It resides in the human nature to resist change, to seek for information that only confirm own opinions, to follow the same approach in handling challenges, even if the attempts are far from optimal, even if people who walked the same path tell you that there’s a better way and even sketch the path and provide information about what it takes to reach there. As it seems, there’s the predisposition to learn on the hard way, if there’s significant learning involved at all. Unfortunately, such situations occur in projects and the solutions often overrun the boundaries of PM, where social and communication skills must be brought into play. 

On the other side, there’s still hope that change can be managed optimally once the facts are explained to a certain level that facilitates understanding. However, such an attempt can prove to be quite a challenge, given the various setups in which PM takes place. The intersection between technologies and organizational setups lead to complex scenarios which make such work more difficult, even if projects’ challenges are of organizational rather than technological nature. 

When the knowledge we have about the world doesn’t fit our expectation, a simple heuristic is to return to the basics. A solid edifice can be built only on a solid foundation and the best foundation in coping with reality is to establish common ground with other people. One can achieve this by identifying their suppositions and expectations, by closing the gap in perception and understanding, by establishing a basis for communication, in which feedback is a must if one wants to make significant progress.

Despite of being explorative and time-consuming, establishing common ground can be challenging when addressing to an imaginary audience, which is quite often the situation. The practice shows however that progress can be made by starting with a set of well-formulated definitions, simple models, principles, and heuristics that have the potential of helping in sense-making.

The goal is thus to identify first the definitions that reflect the basic concepts that need to be considered. Once the concepts defined, they can be related to each other with the help of a few models. Even if fictitious, as simplifications of the reality, the models should allow playing with the concepts, facilitating concepts’ understanding. Principles (set of rules for reasoning) can be used together with heuristics (rules of thumb methods or techniques) for explaining the ‘known’ and approaching the ‘unknown’. Even maybe not perfect, these tools can help building theories or explanatory constructs.

||>>Next Post

09 January 2021

🧮ERP: Planning (Part I: It’s all about Partnership - An Introduction)

ERP Implementation
ERP Implementations Series

Unless the organization (customer) implementing an ERP system has a strong IT team and the knowledge required for the implementation is available already in-house, the resources need to be acquired from the market, and probably the right thing to do is to identify a certified implementer (partner) which can fill the knowledge and skillset gaps, respectively which can help splitting the risks associated with such an implementation.

In theory, the customer provides knowledge about its processes, while the partner comes with expertise about the system to be implemented and further technologies, industry best practices, project methodologies, etc. Further on, the mix is leveraged to harness the knowledge and reach project’s objectives. 

In praxis however finding an implementer which can act as partner might be more challenging than expected. This because the implementer needs to understand customer’s business and where it’s heading, bridge the gap between functional requirements and system’s functionality, advise on areas of improvement, prepare the customer for the project and lead the customer through the changes, respectively establish a basis for the future. Some of the implications are seldom made explicit even if they are implied by what is needed by the project. 

Technology is seldom the issue in an ERP implementation, the challenges residing in handing the change and the logistics required. There are so many aspects to be considered and handled, and this can be challenging for any implementer no matter how long has been on the market or how experienced the resources are. Somebody needs to lead the change and the customer seldom has the knowledge to handle the change. In some cases, the implementer must make the customer aware of the implications, while in others needs to take the initiative and lead the change, though the customer needs to play along, which can be challenging also. 

Many aspects need to be handled at management level from a strategical point of view on customer’s side. It starts with assuring that the most important aspects of the business where considered, that the goals and objectives are clear, that the proper environment is created, and ends with the timely decision-making, with assuring that the resources are available when needed, that the needed organization structures and roles are in place, that the required knowledge is available before, during and after implementation, that the potential brought by the ERP system is harnessed for the years to come. 

A partnership allows in theory splitting the implementation risks as ERP implementations have a high rate of failure. Quite often the outcomes of such projects don’t meet the expectations, the systems being in extremis unusable or a bottleneck for the organization. Ideally one should work with the partner(s) and attempt solving the issues, split eventually the incurred cost overruns, find a middle way. Most of the times it’s recommended to find a solution together rather than coming to a litigation. 

Given the complex dependencies existing between the various parts of the project, the causes that lead to poor implementations are difficult to prove, as there are almost always grey areas. Moreover, the litigations can require a considerable time and resources to settle. These can be just extreme situations, and as long one has a good partner, there’s no need to think that far. On the other side, even if undesirable, one must be prepared also for such outcomes, even if the countermeasures may involve an additional effort. Therefore, one must address such issues in contracts by establishing the areas of accountability/responsibilities for each party, document adequately the requirements and further (important) communication, make sure that the deliverables have the expected quality, etc.

Previous Post <<||>> Next Post

05 January 2021

🧮ERP: Planning (Part II: It’s all about Scope I - Functional Requirements)

ERP Implementation

Introduction

ERP (Enterprise Resource Planning) Implementations tend to be expensive projects, often the actual costs overrunning the expectations by an important factor. The causes for this are multiple, the most important ones ranging from the completeness and complexity of the requirements and the impact they have on the organization to the availability of internal and external skilled resources, project methodology, project implementation, organization’s maturity in running projects, etc

The most important decision in an ERP implementation is deciding what one needs, respectively what will be considered for the implementation, aspects reflected in a set of functional and nonfunctional requirements

Functional Requirements 

The functional requirements (FRs) reflect the expected behavior of the system in respect to the inputs and outputs – what the system must do. Typically, they encompass end-users’ requirements in the area of processes, interfaces and data processing, though are not limited to them. 

The FRs are important because they reflect the future behavior of the system as perceived by the business, serving further as basis for identifying project’s scope, the gaps between end-users’ requirements and system’s functionality, respectively for estimating project’s duration and areas of focus. Further they are used as basis for validating system’s behavior and getting the sign-off for the system. Therefore, the FRs need to have the adequate level of detail, be complete, clear, comprehensible and implementable, otherwise any gaps in requirements can impact the project in adverse ways. To achieve this state of art they need to go through several iterations in which the requirements are reevaluated, enhanced, checked for duplication, relevance or any other important aspect. In the process it makes sense to categorize the requirements and provide further metadata needed for their appraisal (e.g. process, procedure, owner, status, priority). 

Once brought close to a final form, the FRs are checked against the functionality available in the targeted system, or systems when more systems are considered for evaluation. Ideally all the requirements can be implemented with the proper parametrization of the systems, though it’s seldom the case as each business has certain specifics. The gaps need to be understood, their impact evaluated and decided whether the gaps need to be implemented. In general, it’s recommended to remain close to the standard functionality, as each further gap requires further changes to the system, gaps that in time can generate further quality-related and maintenance costs. 

It can become a tedious effort, as in the process an impact and cost-benefit analysis need to be performed for each gap. Therefore, gaps’ estimation needs to occur earlier or intermixed with their justification. Once the list of the FRs is finalized and frozen, they will be used for estimating the final costs of the project, identifying the work packages, respectively planning the further work.  Once the FRs frozen, any new requirements or changes to requirements (including taking out a requirement) need to go through the Change Management process and all the consequences deriving from it – additional effort, costs, delays, etc. This can trigger again an impact and cost-benefit analysis. 

The FRs are documented in a specification document (aka functional requirement specification), which is supposed to track all the FRs through their lifetime. When evaluating the FRs against system’s functionality it’s recommended to provide general information on how they will be implemented, respectively which system function(s) will be used for that purpose. Besides the fact that it provides transparence, the information can be used as basic ground for further discussions. 

Seldom all the FRs will be defined upfront or complete. Moreover, some requirements will become obsolete during project’s execution, or gaps will be downgraded as standard and vice-versa. Therefore, it’s important to recollect the unexpected.

Previous Post <<||>> Next Post

14 October 2020

𖣯🧮Strategic Management: Simplicity VI (ERP Implementations' Story II)


Besides the witty sayings and theories advanced in defining what simplicity is about, life shows that there’s a considerable gap between theory and praxis. In the attempt at a definition, one is forced to pull more concepts like harmony, robustness, variety, balance, economy, or proportion, which can be grouped under organic unity or similar concepts. However, intuitionally one can advance the idea that from a cybernetic perspective simplicity is achieved when the information flows are not disrupted and don’t meet unnecessary resistance. By information here are considered the various data aggregations – data, information, knowledge, and eventually wisdom (aka DIKW pyramid) – though it can be extended to encompass materials, cash and vital energy.

One can go further and say that an organization is healthy when the various flows mentioned above run smoothly through the organization nourishing it. The comparison with the human body can go further and say that a blockage in the flow can cause minor headaches or states that can take a period of convalescence to recover from them. Moreover, the sustained effort applied by an organization can result in fatigue or more complex ailments or even diseases if the state is prolonged. 

For example, big projects like ERP implementations tend to suck the vital energy of an organization to the degree that it will take months to recover from the effort, while the changes in the other types of flow can lead to disruptions, especially when the change is not properly managed. Even if ERP implementations provide standard solutions for the value-added processes, they represent vendors’ perspective into the respective processes, which don’t necessarily fit an organization’s needs. One is forced then to make compromises either by keeping close to the standard or by expanding the standard processes to close the gap. Either way processual changes are implied, which affect the information flow, especially for the steps where further coordination is needed, respectively the data flow in respect to implementation or integration with the further systems. A new integration as well as a missing integration have the potential of disrupting the data and information flows.

The processual changes can imply changes in the material flow as the handling of the materials can change, however the most important impact is caused maybe by the processual bottlenecks, which can cause serious disruptions (e.g. late deliveries, production is stopped), and upon case also in the cash-flow (e.g. penalties for late deliveries, higher inventory costs). The two flows can be impacted by the data and information flows independently of the processual changes (e.g. when they have poor quality, when not available, respectively when don’t reach the consumer in timely manner). 

With a new ERP solution, the organization needs to integrate the new data sources into the existing BI infrastructure, or when not possible, to design and implement a new one by taking advantage of the technological advancements. Failing to exploit this potential will impact the other flows, however the major disruptions appear when the needed knowledge about business processes is not available in-house, in explicit and/or implicit form, before, during and after the implementation. 

Independently on how they are organized – in center of excellence or ad-hoc form – is needed a group of people who can manage the various flows and ideally, they should have the appropriate level of empowerment. Typically, the responsibility resides with key users, IT and one or two people from the management. Without a form of ‘organization’ to manage the flows, the organization will reside only on individual effort, which seldom helps reaching the potential. Independently of the number of resources involved, simplicity is achieved when the activities flow naturally. 

Previous Post <<||>> Next Post

Written: Sep-2020, Last Reviewed: Mar-2024

16 December 2019

💻IT: Technology (Just the Quotes)

"Systems engineering embraces every scientific and technical concept known, including economics, management, operations, maintenance, etc. It is the job of integrating an entire problem or problem to arrive at one overall answer, and the breaking down of this answer into defined units which are selected to function compatibly to achieve the specified objectives. [...] Instrument and control engineering is but one aspect of systems engineering - a vitally important and highly publicized aspect, because the ability to create automatic controls within overall systems has made it possible to achieve objectives never before attainable, While automatic controls are vital to systems which are to be controlled, every aspect of a system is essential. Systems engineering is unbiased, it demands only what is logically required. Control engineers have been the leaders in pulling together a systems approach in the various technologies." (Instrumentation Technology, 1957)

"Doing engineering is practicing the art of the organized forcing of technological change." (George Spencer-Brown, Electronics, Vol. 32 (47),  1959)

"The decision which achieves organization objectives must be both (1) technologically sound and (2) carried out by people. If we lose sight of the second requirement or if we assume naively that people can be made to carry out whatever decisions are technically soundwe run the risk of decreasing rather than increasing the effectiveness of the organization." (Douglas McGregor, "The Human Side of Enterprise", 1960)

"Any sufficiently advanced technology is indistinguishable from magic." (Arthur C Clarke, "Profiles of the Future: An Inquiry into the Limits of the Possible", 1962)

"Science is the reduction of the bewildering diversity of unique events to manageable uniformity within one of a number of symbol systems, and technology is the art of using these symbol systems so as to control and organize unique events. Scientific observation is always a viewing of things through the refracting medium of a symbol system, and technological praxis is always handling of things in ways that some symbol system has dictated. Education in science and technology is essentially education on the symbol level." (Aldous L Huxley, "Essay", Daedalus, 1962)

"Engineering is the art of skillful approximation; the practice of gamesmanship in the highest form. In the end it is a method broad enough to tame the unknown, a means of combing disciplined judgment with intuition, courage with responsibility, and scientific competence within the practical aspects of time, of cost, and of talent. This is the exciting view of modern-day engineering that a vigorous profession can insist be the theme for education and training of its youth. It is an outlook that generates its strength and its grandeur not in the discovery of facts but in their application; not in receiving, but in giving. It is an outlook that requires many tools of science and the ability to manipulate them intelligently In the end, it is a welding of theory and practice to build an early, strong, and useful result. Except as a valuable discipline of the mind, a formal education in technology is sterile until it is applied." (Ronald B Smith, "Professional Responsibility of Engineering", Mechanical Engineering Vol. 86 (1), 1964)

"It is a commonplace of modern technology that there is a high measure of certainty that problems have solutions before there is knowledge of how they are to be solved." (John K Galbraith, "The New Industrial State", 1967)

"In many ways, project management is similar to functional or traditional management. The project manager, however, may have to accomplish his ends through the efforts of individuals who are paid and promoted by someone else in the chain of command. The pacing factor in acquiring a new plant, in building a bridge, or in developing a new product is often not technology, but management. The technology to accomplish an ad hoc project may be in hand but cannot be put to proper use because the approach to the management is inadequate and unrealistic. Too often this failure can be attributed to an attempt to fit the project to an existing management organization, rather than molding the management to fit the needs of the project. The project manager, therefore, is somewhat of a maverick in the business world. No set pattern exists by which he can operate. His philosophy of management may depart radically from traditional theory." (David I Cleland & William R King, "Systems Analysis and Project Management", 1968)

"Technological invention and innovation are the business of engineering. They are embodied in engineering change." (Daniel V DeSimone & Hardy Cross, "Education for Innovation", 1968)

"Advanced technology required the collaboration of diverse professions and organizations, often with ambiguous or highly interdependent jurisdictions. In such situations, many of our highly touted rational management techniques break down; and new non-engineering approaches are necessary for the solution of these 'systems' problems." (Leonard R Sayles &Margaret K Chandler, "Managing Large Systems: The Large-Scale Approach", 1971)

"It follows from this that man's most urgent and pre-emptive need is maximally to utilize cybernetic science and computer technology within a general systems framework, to build a meta-systemic reality which is now only dimly envisaged. Intelligent and purposeful application of rapidly developing telecommunications and teleprocessing technology should make possible a degree of worldwide value consensus heretofore unrealizable." (Richard F Ericson, "Visions of Cybernetic Organizations", 1972)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system." (Donella A Meadows, "The Limits to Growth", 1972)

"Modern scientific principle has been drawn from the investigation of natural laws, technology has developed from the experience of doing, and the two have been combined by means of mathematical system to form what we call engineering." (George S Emmerson, "Engineering Education: A Social History", 1973)

"The system of nature, of which man is a part, tends to be self-balancing, self-adjusting, self-cleansing. Not so with technology." (Ernst F Schumacher, "Small is Beautiful", 1973)

"Above all, innovation is not invention. It is a term of economics rather than of technology. [...] The measure of innovation is the impact on the environment. [...] To manage innovation, a manager has to be at least literate with respect to the dynamics of innovation." (Peter F Drucker, "People and Performance", 1977)

"Numeracy has two facets-reading and writing, or extracting numerical information and presenting it. The skills of data presentation may at first seem ad hoc and judgmental, a matter of style rather than of technology, but certain aspects can be formalized into explicit rules, the equivalent of elementary syntax." (Andrew Ehrenberg, "Rudiments of Numeracy", Journal of Royal Statistical Society, 1977)

"Engineering or Technology is the making of things that did not previously exist, whereas science is the discovering of things that have long existed." (David Billington, "The Tower and the Bridge: The New Art of Structural Engineering", 1983)

"No matter how high or how excellent technology may be and how much capital may be accumulated, unless the group of human beings which comprise the enterprise works together toward one unified goal, the enterprise is sure to go down the path of decline." (Takashi Ishihara, Cherry Blossoms and Robotics, 1983)

"People’s views of the world, of themselves, of their own capabilities, and of the tasks that they are asked to perform, or topics they are asked to learn, depend heavily on the conceptualizations that they bring to the task. In interacting with the environment, with others, and with the artifacts of technology, people form internal, mental models of themselves and of the things with which they are interacting. These models provide predictive and explanatory power for understanding the interaction." (Donald A Norman, "Some observations on Mental Models", 1983)

"With the changes in technological complexity, especially in information technology, the leadership task has changed. Leadership in a networked organization is a fundamentally different thing from leadership in a traditional hierarchy." (Edgar Schein, "Organizational Culture and Leadership", 1985)

"[Computer and other technical managers] must become business managers or risk landing on the technological rubbish heap." (Jim Leeke, PC Week, 1987)

"Most managers are not capable of making decisions involving complex technological matters without help - lots of it. [...] The finest technical people on the job should have a dual role: doing technical work and advising management." (Philip W Metzger, "Managing Programming People", 1987)

"People don't want to understand all the components; they just want to make it [the technology] happen." (Bernadine Nicodemus, PC Week, 1987)

"The major problems of our work are not so much technological as sociological in nature. Most managers are willing to concede the idea that they’​​​​​​ve got more people worries than technical worries. But they seldom manage that way. They manage as though technology were their principal concern. They spend their time puzzling over the most convoluted and most interesting puzzles that their people will have to solve, almost as though they themselves were going to do the work rather than manage it. […] The main reason we tend to focus on the technical rather than the human side of the work is not because it’​​​​​​s more crucial, but because it’​​​​​​s easier to do." (Tom DeMarco & Timothy Lister, "Peopleware: Productive Projects and Teams", 1987)

"Information technology can capture and process data, and expert systems can to some extent supply knowledge, enabling people to make their own decisions. As the doers become self-managing and self-controlling, hierarchy - and the slowness and bureaucracy associated with it - disappears." (Michael M Hammer, "Reengineering Work: Don't Automate, Obliterate", Magazine, 1990) [source]

"The new information technologies can be seen to drive societies toward increasingly dynamic high-energy regions further and further from thermodynamical equilibrium, characterized by decreasing specific entropy and increasingly dense free-energy flows, accessed and processed by more and more complex social, economic, and political structures." (Ervin László, "Information Technology and Social Change: An Evolutionary Systems Analysis", Behavioral Science 37, 1992)

"Ignorance of science and technology is becoming the ultimate self-indulgent luxury." (Jeremy Bernstein, "Cranks, Quarks, and the Cosmos: Writings on Science", 1993)

"Technology is nothing. What’s important is that you have a faith in people, that they’re basically good and smart, and if you give them tools, they’ll do wonderful things with them." (Steve Jobs, Rolling Stone, 1994)

"Now that knowledge is taking the place of capital as the driving force in organizations worldwide, it is all too easy to confuse data with knowledge and information technology with information." (Peter Drucker, "Managing in a Time of Great Change", 1995)

"Commonly, the threats to strategy are seen to emanate from outside a company because of changes in technology or the behavior of competitors. Although external changes can be the problem, the greater threat to strategy often comes from within. A sound strategy is undermined by a misguided view of competition, by organizational failures, and, especially, by the desire to grow." (Michael E Porter, "What is Strategy?", Harvard Business Review, 1996)

"Management is a set of processes that can keep a complicated system of people and technology running smoothly. The most important aspects of management include planning, budgeting, organizing, staffing, controlling, and problem solving. Leadership is a set of processes that creates organizations in the first place or adapts them to significantly changing circumstances. Leadership defines what the future should look like, aligns people with that vision, and inspires them to make it happen despite the obstacles." (John P Kotter, "Leading Change", 1996)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"Issues of quality, timeliness and change are the conditions that are forcing us to face up to the issues of enterprise architecture. The precedent of all the older disciplines known today establishes the concept of architecture as central to the ability to produce quality and timely results and to manage change in complex products. Architecture is the cornerstone for containing enterprise frustration and leveraging technology innovations to fulfill the expectations of a viable and dynamic Information Age enterprise." (John Zachman, "Enterprise Architecture: The Issue of The Century", 1997)

"The Enterprise Architecture is the explicit description of the current and desired relationships among business and management process and information technology. It describes the 'target' situation which the agency wishes to create and maintain by managing its IT portfolio." (Franklin D Raines, 1997)

"All things being equal, choose technology that connects. […] This aspect of technology has increasing importance, at times overshadowing such standbys as speed and price. If you are in doubt about what technology to purchase, get the stuff that will connect the most widely, the most often, and in the most ways. Avoid anything that resembles an island, no matter how well endowed that island is." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"Beauty is more important in computing than anywhere else in technology because software is so complicated. Beauty is the ultimate defense against complexity." (David Gelernter, "Machine Beauty: Elegance And The Heart Of Technolog", 1998)

"Modelling techniques on powerful computers allow us to simulate the behaviour of complex systems without having to understand them.  We can do with technology what we cannot do with science.  […] The rise of powerful technology is not an unconditional blessing.  We have  to deal with what we do not understand, and that demands new  ways of thinking." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Technology is no panacea. It will never solve the ills or injustices of society. Technology can do only one thing for us - but it is an astonishing thing: Technology brings us an increase in opportunities." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"A primary reason that evolution - of life-forms or technology - speeds up is that it builds on its own increasing order." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999) 

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"Enterprise architecture is a family of related architecture components. This include information architecture, organization and business process architecture, and information technology architecture. Each consists of architectural representations, definitions of architecture entities, their relationships, and specification of function and purpose. Enterprise architecture guides the construction and development of business organizations and business processes, and the construction and development of supporting information systems." (Gordon B Davis, "The Blackwell encyclopedic dictionary of management information systems"‎, 1999)

"Enterprise architecture is a holistic representation of all the components of the enterprise and the use of graphics and schemes are used to emphasize all parts of the enterprise, and how they are interrelated. [...] Enterprise architectures are used to deal with intra-organizational processes, interorganizational cooperation and coordination, and their shared use of information and information technologies. Business developments, such as outsourcing, partnership, alliances and Electronic Data Interchange, extend the need for architecture across company boundaries." (Gordon B Davis," The Blackwell encyclopedic dictionary of management information systems"‎, 1999)

"We do not learn much from looking at a model - we learn more from building the model and manipulating it. Just as one needs to use or observe the use of a hammer in order to really understand its function, similarly, models have to be used before they will give up their secrets. In this sense, they have the quality of a technology - the power of the model only becomes apparent in the context of its use." (Margaret Morrison & Mary S Morgan, "Models as mediating instruments", 1999)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"The business changes. The technology changes. The team changes. The team members change. The problem isn't change, per se, because change is going to happen; the problem, rather, is the inability to cope with change when it comes." (Kent Beck, "Extreme Programming Explained", 2000)

"A well-functioning team of adequate people will complete a project almost regardless of the process or technology they are asked to use (although the process and technology may help or hinder them along the way)." (Alistair Cockburn, "Agile Software Development", 2001)

"An Enterprise Architecture is a dynamic and powerful tool that helps organisations understand their own structure and the way they work. It provides a ‘map’ of the enterprise and a ‘route planner’ for business and technology change. A well-constructed Enterprise Architecture provides a foundation for the ‘Agile’ business." (Bob Jarvis, "Enterprise Architecture: Understanding the Bigger Picture - A Best Practice Guide for Decision Makers in IT", 2003)

"Normally an EA takes the form of a comprehensive set of cohesive models that describe the structure and functions of an enterprise. An important use is in systematic IT planning and architecting, and in enhanced decision-making. The EA can be regarded as the ‘master architecture’ that contains all the subarchitectures for an enterprise. The individual models in an EA are arranged in a logical manner that provides an ever-increasing level of detail about the enterprise: its objectives and goals; its processes and organisation; its systems and data; the technology used and any other relevant spheres of interest." (Bob Jarvis, "Enterprise Architecture: Understanding the Bigger Picture - A Best Practice Guide for Decision Makers in IT", 2003)

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system - and prevent us from taking effective action to solve it." (Donella H Meadows & Dennis L Meadows, "The Limits to Growth: The 30 Year Update", 2004)

"To turn really interesting ideas and fledgling technologies into a company that can continue to innovate for years, it requires a lot of disciplines."  (Steve Jobs, BusinessWeek, 2004)

"You need a very product-oriented culture, even in a technology company. Lots of companies have tons of great engineers and smart people. But ultimately, there needs to be some gravitational force that pulls it all together. Otherwise, you can get great pieces of technology all floating around the universe." (Steve Jobs, Newsweek, 2004)

"Although the Singularity has many faces, its most important implication is this: our technology will match and then vastly exceed the refinement and suppleness of what we regard as the best of human traits." (Ray Kurzweil, "The Singularity is Near", 2005)

"The Singularity will represent the culmination of the merger of our biological thinking and existence with our technology, resulting in a world that is still human but that transcends our biological roots. There will be no distinction, post-Singularity, between human and machine or between physical and virtual reality. If you wonder what will remain unequivocally human in such a world, it’s simply this quality: ours is the species that inherently seeks to extend its physical and mental reach beyond current limitations." (Ray Kurzweil, "The Singularity is Near", 2005)

"Businesses are themselves a form of design. The design of a business encompasses its strategy, organizational structure, management processes, culture, and a host of other factors. Business designs evolve over time through a process of differentiation, selection, and amplification, with the market as the ultimate arbiter of fitness [...] the three-way coevolution of physical technologies, social technologies, and business designs [...] accounts for the patterns of change and growth we see in the economy." (Eric D Beinhocker, "The Origin of Wealth. Evolution, complexity, and the radical remaking of economics", 2006)

"Enterprise architecture is the organizing logic for business processes and IT infrastructure reflecting the integration and standardization requirements of a company's operation model. […] The key to effective enterprise architecture is to identify the processes, data, technology, and customer interfaces that take the operating model from vision to reality." (Jeanne W Ross et al, "Enterprise architecture as strategy: creating a foundation for business", 2006)

"Chance is just as real as causation; both are modes of becoming.  The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"The big part of the challenge is that data quality does not improve by itself or as a result of general IT advancements. Over the years, the onus of data quality improvement was placed on modern database technologies and better information systems. [...] In reality, most IT processes affect data quality negatively, Thus, if we do nothing, data quality will continuously deteriorate to the point where the data will become a huge liability." (Arkady Maydanchik, "Data Quality Assessment", 2007)

"The corporate data universe consists of numerous databases linked by countless real-time and batch data feeds. The data continuously move about and change. The databases are endlessly redesigned and upgraded, as are the programs responsible for data exchange. The typical result of this dynamic is that information systems get better, while data deteriorates. This is very unfortunate since it is the data quality that determines the intrinsic value of the data to the business and consumers. Information technology serves only as a magnifier for this intrinsic value. Thus, high quality data combined with effective technology is a great asset, but poor quality data combined with effective technology is an equally great liability." (Arkady Maydanchik, "Data Quality Assessment", 2007)

"Enterprise architecture is the process of translating business vision and strategy into effective enterprise change by creating, communicating and improving the key requirements, principles and models that describe the enterprise's future state and enable its evolution. The scope of the enterprise architecture includes the people, processes, information and technology of the enterprise, and their relationships to one another and to the external environment. Enterprise architects compose holistic solutions that address the business challenges of the enterprise and support the governance needed to implement them." (Anne Lapkin et al, "Gartner Clarifies the Definition of the Term 'Enterprise Architecture", 2008)

"Synergy occurs when organizational parts interact to produce a joint effect that is greater than the sum of the parts acting alone. As a result the organization may attain a special advantage with respect to cost, market power, technology, or employee." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"What’s next for technology and design? A lot less thinking about technology for technology’s sake, and a lot more thinking about design. Art humanizes technology and makes it understandable. Design is needed to make sense of information overload. It is why art and design will rise in importance during this century as we try to make sense of all the possibilities that digital technology now affords." (John Maeda, "Why Apple Leads the Way in Design", 2010) 

"Enterprise Architecture presently appears to be a grossly misunderstood concept among management. It is NOT an Information Technology issue. It is an ENTERPRISE issue. It is likely perceived to be an Information Technology issue as opposed to a Management issue for two reasons: (1) Awareness of it tends to surface in the Enterprise through the Information Systems community. (2) Information Technology people seem to have the skills to do Enterprise Architecture if any Enterprise Architecture is being or is to be done." (John A Zachman, 2011)

"Today, technology has lowered the barrier for others to share their opinion about what we should be focusing on. It is not just information overload; it is opinion overload." (Greg McKeown, "Essentialism: The Disciplined Pursuit of Less", 2014)

"We have let ourselves become enchanted by big data only because we exoticize technology. We’re impressed with small feats accomplished by computers alone, but we ignore big achievements from complementarity because the human contribution makes them less uncanny. Watson, Deep Blue, and ever-better machine learning algorithms are cool. But the most valuable companies in the future won’t ask what problems can be solved with computers alone. Instead, they’ll ask: how can computers help humans solve hard problems?" (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)

"Technological change is discontinuous and difficult. It is a radical change in that it forces people to deal with the world in a different way, that is, it changes the world of experience." (William Byers, "Deep Thinking: What Mathematics Can Teach Us About the Mind", 2015)

"The problem with artificial intelligence and information technology is that they promise a methodology that would lead to a way of solving all problems - a self-generating technology that would apply to all situations without the need for new human insights and leaps of creativity." (William Byers, "Deep Thinking: What Mathematics Can Teach Us About the Mind", 2015)

"Technology systems are difficult to wrangle. Our systems grow in accidental complexity and complication over time. Sometimes we can succumb to thinking that other people really hold the cards, that they have the puppet strings we don’t." (Eben Hewitt, "Technology Strategy Patterns: Architecture as strategy" 2nd Ed., 2019)

"Technology is not a magic pill that can solve inadequacies in processes." (Jared Lane, "Why Companies Should Stop Making Digital Transformation A Science Project", 2021) [source]

"Always remember what you originally wanted the system to accomplish. Having the latest, greatest system and a flashy data center to boot is not what data processing is supposed to be all about. It is supposed to help the bottom line, not hinder it." (Richard S Rubin)

"The first rule of any technology used in a business is that automation applied to an efficient operation will magnify the efficiency. The second is that automation applied to an inefficient operation will magnify the inefficiency." (Bill Gates)

28 July 2019

💻IT: Change Management [CM] (Definitions)

"The disciplined use of a defined process to control project modifications, additions, and deletions." (Timothy J  Kloppenborg et al, "Project Leadership", 2003)

"The process allowing changes to applications to occur in a predictable fashion with minimal or no impact on the service. Change management applies to all phases of a lifecycle." (Allan Hirt et al, "Microsoft SQL Server 2000 High Availability", 2004)

"Process of enabling change in an organization as a result of a system implementation." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

"(1) A structured approach to transitioning individuals, teams, and organizations from a current state to a desired future state. (2) Controlled way to effect a change, or a proposed change, to a product or service." (Requirements Engineering Qualifications Board, "Standard glossary of terms used in Requirements Engineering", 2011)

"A structured approach to transition individuals, teams, and organizations from a current state to a desired future state, which includes managing change as part of systems development to avoid user resistance to business and system changes." (Linda Volonino & Efraim Turban, "Information Technology for Management" 8th Ed, 2011)

"Involves problem solving in a concerted effort to adapt to changing organizational needs." (Joan C Dessinger, "Fundamentals of Performance Improvement" 3rd Ed, 2012)

"The process of communicating and managing change throughout the organization." (Charles Cooper & Ann Rockley, "Managing Enterprise Content: A Unified Content Strategy, 2nd Ed.", 2012)

"The management of change in operational processes and applications. Change management is critical when IT organizations are managing software infrastructure in conjunction with new development processes. All software elements have to be synchronized so that they work as intended." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A program designed to prevent unintended outages from changes. Personnel submit change requests, and appropriate experts review them to identify unintended consequences. Personnel do not make changes until the change goes through the change management process." (Darril Gibson, "Effective Help Desk Specialist Skills", 2014)

"The organization's effort to control and manage the introduction of new changes to the current operating model to ensure gradual and successful adoption." (Jim Davis & Aiman Zeid, "Business Transformation: A Roadmap for Maximizing Organizational Insights", 2014)

"Methods and best practices to assist an organization and its employees in implementing changes to business processes, culture, and systems." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"The process, tools, and techniques to manage the people side of change to achieve a required business outcome." (Jonathan Ferrar et al, "The Power of People: Learn How Successful Organizations Use Workforce Analytics To Improve Business Performance", 2017)

"A business process aimed at deliberately regulating the changing nature of business activities such as projects." (Shon Harris & Fernando Maymi, "CISSP All-in-One Exam Guide, 8th Ed", 2018)

"Process responsible for controlling the lifecycle of all changes" (ITIL)

 "The process, tools, coordination, and planning to manage the people side of change through sentiment awareness and change-management skills that together achieve a required state of business agility." (Forrester)

06 June 2019

ITIL: Change Request (Definitions)

"Any request submitted by a customer (buyer or users) for a change to alter the system. These appear in various forms and include software trouble reports (STRs) and baseline change requests (BCRs). BCRs request changes to the system’s specification." (Richard D Stutzke, "Estimating Software-Intensive Systems: Projects, Products, and Processes", 2005)

"Requests to expand or reduce the project scope, modify policies, processes, plans, or procedures, modify costs or budgets, or revise schedules." (Project Management Institute, "Practice Standard for Project Estimating", 2010)

"A document requesting a change for a project." (Bonnie Biafore, "Successful Project Management: Applying Best Practices and Real-World Techniques with Microsoft® Project", 2011)

"An official document requesting modification of existing features, requirements or functions or new ones. Change Request should contain description of the current solution, justification for a change and suggested (desired) solution." (IQBBA, "Standard glossary of terms used in Software Engineering", 2011)

"An appeal to the change review board for a modification to the project by any stakeholder. The request typically includes the justification, relationship of the change to the project goal and objectives, description of the change and deliverables, and effect on project risk." (Bonnie Biafore & Teresa Stover, "Your Project Management Coach: Best Practices for Managing Projects in the Real World", 2012)

"Change management notification for change in current process/environment." (Bill Holtsnider & Brian D Jaffe, "IT Manager's Handbook" 3rd Ed, 2012)

"A formal proposal to modify any document, deliverable, or baseline." (For Dummies, "PMP Certification All-in-One For Dummies" 2nd Ed., 2013)

"1. Written request or proposal to perform a specific change for a development product or to allow it to be implemented. 2. A request to change some software artifact due to a change in requirements." (Tilo Linz et al, "Software Testing Foundations" 4th Ed, 2014)

"Change management notification for a change in current process/environment." (Bill Holtsnider & Brian D Jaffe, "IT Manager's Handbook" 3rd Ed", 2012)

07 May 2019

𖣯Strategic Management: Strategic Perspectives (Part I: Agile vs. Lean Organizations)

Strategic Management

Agile and lean are two important concepts that pervaded the organizations in the past 20-30 years, though they continue to have little effect on organizations’ operations.

Agile is rooted in the need to respond promptly to the changing needs of an organization. The agile philosophy was primarily groomed in Software Development to reconcile the changing customer requirements with disciplined project execution, however it can be applied to an organization’s processes as well. An agile process is in general a process designed to deliver the intended results in an effective and efficient manner by addressing promptly the changing requirements in customers’ needs.

Lean is a systematic method for the minimization of waste, rooted as philosophy in manufacturing. The lean mindset attempts removing the non-value-added activities from processes because they bring no value for the customers. Thus a lean process is a process designed to deliver the intended results in an effective and efficient manner by focusing on the immediate needs of the customers, what customers want and value (when they want it). 

Effective means being successful in producing a desired or intended result, while efficient means achieving maximum productivity with minimum wasted effort or expense. The requirement for a process to be effective and efficient is translated in delivering what’s intended by using a minimum of steps designed in such a way that the quality of the end results is not affected, at least not for the essential characteristics. Efficiency is translated also in the fact that the information, material and resources’ flow suffer minimal delays.

Agile focuses in answering promptly the changing requirements in customers’ needs, while lean focuses on what customers wants and value while eliminating waste. Both mindsets seem to imply iterative and adaptive approaches in which the improvement happens gradually. Through their nature the two mindsets seem to complete each other. Some even equate agile with lean however an agile process is not necessarily lean and vice-versa.

To improve the effectiveness and efficiency of its operations an organization should aim developing processes that are agile and lean to optimize the information and material flows, while focusing on its users’ changing needs, and while eliminating continuously the activities that lead to waste. And waste can take so many forms – the unnecessary bureaucracy reflected in multiple and repetitive sign-offs and approvals, the lack of empowerment, not knowing what to do, etc.

There’s important time wasted just because the users don’t know or don’t understand an organization’s processes. If an organization can’t find rules that everyone understands then a process is doomed, independently of the key area the process belongs to. There’s also the tendency of attempting to address each exception within a process to the degree that multiple processes result. There’s no perfect process, however one can define the basic flow and document the main exceptions, while providing users some guidelines in navigating the unknown and unpredictable.

As part of same tendency it makes sense to move requests that respect a standard procedure on the list of standard requests instead of following futile steps just for the sake of it. It’s the case of requests that can be fulfilled with internal resources, e.g. the development of reports or extraction of data, provisioning of SharePoint websites, some performance optimizations, etc. In addition, one can unify processes that seem to be disconnected, e.g. the handling of changes as part of the Change Management respectively Project Management as they involve almost the same steps.

Probably it's in each organization’s interest to discover and explore the benefits of applying the agile and lean mindsets to its operation and integrate them in its culture

Previous Post <<||>> Next Post

💼Project Management: Methodologies (Part III: Agility under Eyeglasses I)

Mismanagement

There are more and more posts in the cyberspace voicing against the agile practices, the way they are understood and implemented by organizations. Some try to be hilarious [5]; others try to keep the scholastic seriousness [1] [2] [3] [4], and all of them make some valid points. In each remark there’re some seeds of truth, even if context-dependent.

Personally, I embrace an agile approach when possible, however I find it difficult to choose between the agile methodologies available on the market because each of them introduces some concepts that contradict what it means to be agile – to respond promptly to business needs. It doesn’t mean that one must consider each requirement, but that’s appropriate to consider those which have business justification. Moreover, organizations need to adapt the methodologies to their needs, and seldom vice-versa.
Considering the Agile Manifesto, it’s difficult to take as serious statements that lack precision, formulations like “we value something over something else” are more of a wish than principles. When people don’t understand what the agile “principles” mean, one occasionally hears statements like “we need no documentation”, “we need no project plan”, “the project plan is not important”, “Change Management doesn’t apply to agile projects” or “we need only high-level requirements because we’ll figure out where we’re going on the way”. Because of the lack of precision, a mocker can variate the lesser concept to null and keep the validity of the agile “principles”.
The agile approaches seem to lack control. If you’re letting the users in charge of the scope then you risk having a product that offers a lot though misses the essential, and thus unusable or usable to a lower degree. Agile works good for prototyping something to show to the users or when the products are small enough to easily fit within an iteration, or when the vendor wants to gain a customer’s trust. Therefore, agile works good with BI projects that combine in general all three aspects.
An abomination is the work in fix sprints or iterations of one or a few weeks, and then chopping the functionality to fit the respective time intervals. If you have the luck of having sign-offs and other activities that steal your time, then the productive time reduces up to 50% (the smaller the iterations the higher the percentage). What’s even unconceivable is that people ignore the time spent with bureaucracy. If this way of working repeats in each iteration then the project duration multiplies by a factor between 2 or 4, the time spent on Project Management increasing by the same factor. What’s not understandable is that despite bureaucracy the adherence to delivery dates, budget and quality is still required.
Sometimes one has the feeling that people think that software development and other IT projects work like building a house or like the manufacturing of a mug. You choose the colors, the materials, the dimensions and voila the product is ready. IT projects involve lot of unforeseen and one must react agilely to it. Here resides one of the most important challenges.   
Communication is one important challenge in a project especially when multiple interests are involved. Face-to-face conversation is one of the nice-to-have items on the wish list however in praxis isn’t always possible. One can’t expect that all the resources are available to meet and decide. In addition, one needs to document everything from meeting minutes, to Business Cases and requirements. A certain flexibility in changing the requirements is needed though one can’t change them arbitrarily, there must be a concept behind otherwise the volume of overwork can easily make the budget for a project explode exponentially.
||>> Next Post (continuation) 
Resources:
[1] Harvard Business Review (2018) Why Agile Goes Awry - and How to Fix It, by Lindsay McGregor & Neel Doshi (Online) Available from: https://hbr.org/2018/10/why-agile-goes-awry-and-how-to-fix-it
[2] Forbes (2012) The Case Against Agile: Ten Perennial Management Objections, by Steve Denning  (Online) Available from:
https://www.forbes.com/sites/stevedenning/2012/04/17/the-case-against-agile-ten-perennial-management-objections/#6df0e6ea3a95 
[3] Springer (2018) Do Agile Methods Work for Large Software Projects?, by Magne Jørgensen  (Online) Available from:
https://link.springer.com/chapter/10.1007/978-3-319-91602-6_12
[4] Michael O Church (2015) Why “Agile” and especially Scrum are terrible  (Online) Available from:
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/
[5] Dev.to (2019) Mockery of agile, by Artur Martsinkovskyi (Online) Available from: https://dev.to/arturmartsinkovskyi/mockery-of-agile-5bdf

12 March 2019

🧭Business Intelligence: Enterprise Reporting (Part XII: Reports’ Lifecycle)

Business Intelligence

Introduction

A report’s lifecycle is the sequence of stages through which a report goes during the timespan of its ownership. The main stages resume mainly to report’s definition, development, testing and deployment, however a report’s life occurs within the context of IT processes like Change, Incident/Problem, Access, Availability, Information Security and Knowledge Management. To them can add up Data Management processes like Data Governance, Data Quality and Metadata Management. Therefore, the extended reports’ lifecycle could take the following form:


The processes can be easily tailored to an organization’s needs, even if it may take several attempts until the best mix is found. The activities introduced by the supporting processes don’t necessarily change the way reports are developed as long the processes integrate smoothing in report’s authoring.

Definition Phase

The lifecycle of a report starts with a series of steps that lead to report’s definition and the requirements associated with it:



The starting point is the identification of a need for data. It can be a business question that needs to be answered, a decision that needs to be made, data needed to keep an operational, tactical or strategical objective under control, and so on. Such business situations can be referred simple as (business) problems.
Problem definition
Problem definition (statement) is the process by which a business issue or need is clearly and concisely stated. This step might seem trivial and implied, however in praxis correlated to it lies the most important volume of overwork.

The dictum “a problem well stated is a problem half-solved” applies as well in BI field. Unfortunately, there are cases in which the users want something else than stated or they leave important details out. Sometimes the users aren’t sure what they need/want, and it comes in developer’s attributions to help clarify the problem and put it within a context.

There are cases in which the users just request a report without specifying the problem they need to solve. This might do when the user has a good understanding of the data and the problem, however this approach does not always work. Personally, I find it useful to define for each report also the underneath problem. I see it as a “win-win” situation in which the user invests some knowledge into the developer and thus the developer will better understand the business, while in time he can provide better help. A thorough understanding of the business and knowledge of the users and their needs can help minimize the volume of overwork involved in reports’ development.
Requirements definition
Requirements definition is the process by which functional and non-functional expectations, targets and specifications are elicited and documented.

Functional requirements specify what the report must do - how the report is structured or formatted, how data need to be visualized or navigated, to what file formats need to be exported, on whether needs to be printed, how the data needs to be grouped, in which order, in what currency/language needs to be displayed, what data sources need to be used, etc. The functional requirements are typically listed in the use case and test script.

Non-functional requirements refer to requirements related to report’s accessibility, availability, performance, compliance, documentation, quality, maintainability, security or testability.

The degree to which a requirement can be fulfilled depends entirely on the reporting platform. It can be differentiated between soft and hard constraints. Soft constraints can be overcome by adding more processing power, memory or other types of resources, while hard constraints can’t be easily or at all overcome. Of course, not all requirements are equally important. Important not fulfilled requirements can make a report unusable and, in extremis, can lead to choosing one reporting platform over another.

The requirements can be elicited by a developer, an analyst/consultant or defined by the business itself. Organizations can simplify the process by defining a set of guidelines and standards that need to be considered in reports’ definition. Normally, is enough to reference the document(s) where the guidelines and standards are found. In contrast to other software artifacts, the requirements for reports can be gather in a simplified version of a document. Quite often a checklist can help identify these requirements upfront with a minimum of overhead.
Report definition
Report definition is the process by which report’s content, logic and layout are explicitly defined - what attributes are needed for output and from what source, what static/dynamic parameters are needed, how the data need to be displayed/formatted, what formulas, aggregations or ordering apply.

A report’s definition can be anything between a simple statement summarizing what the report is about and complex structures (mainly in form of a mapping) reflecting in detail each attribute, constraint, formula, grouping or sorting.

A good definition should allow a developer to create the report as needed by the users, eventually with minimal deviations implied by user’s understanding. The holy grail in report’s definition is finding a structure flexible enough to cover all the aspects of a report. Even if some structures allow such flexibility, sometimes it’s almost impossible not provide additional descriptions in textual forms. The less insight the developer has into the business, the more textual descriptions and visuals are needed to be included to support the knowledge gap.
GAP Analysis
GAP Analysis is the iterative process by which the current state of a software artifact or situation is compared with the potential or desired state. It became an integrant tool from professionals’ thinking to the extent its role as separate process is quite often ignored. In the context of reporting authoring it can be used when comparing the requirements against the current infrastructure and the data available, as well while comparing the developed report against the requirements.

It can happen that the technical and data constraints don’t allow building the report as needed by the users. The differences need to be mitigated and eventually the requirements need to be changed to accommodate the reality. In extremis must be considered whether the report still make sense in the light of the modified requirements.
Solution formulation
Solution formulation is the process by which a formal (technical) solution is defined for the given requirements. It’s a conceptualization (aka concept) of the requirements, and in many cases it’s just a short description by which means the report will be build and what data sources will be used. In more complex cases it can include details about the changes needed in the infrastructure to support the report (e.g. creation/extensions of tables and other database objects, ETL jobs, components, etc.), about the data that need to be collected, etc.

Of course, the conceptualization must be considered together with report’s definition. In fact, report’s definition can be considered as part of the conceptualization. A conceptualization can cover multiple reports, as well two or more different solutions can be provided for different sets of reports. The infrastructure can make a concept futile, either when there is a single reporting platform, or when clear rules are in place.
Prototyping
Prototyping is the iterative process of building a simplified version of the report for demonstration and evaluation purposes, so that users can better define the requirements or to prove the concept. The prototype is a preliminary version that can be refined successively until user’s requirements have a final form. It can take the form of a mock-up query to verify report’s technical and logical feasibility, and/or an Excel layout to depict how the report will look like. Prototypes can facilitate the communication between the parties involved and can be considered as part of the requirements.

A prototype might be needed 1 from 5 cases or so, however this number depends also on the number of queries available or of the knowledge of the source and business processes. Because a prototype can involve additional work, it’s important to identify those cases in which a prototype makes sense and keep the effort to a minimum, especially when an approval is involved in the process. Therefore, one should consider the most important characteristics that need to be proved (e.g. if the data can be aggregated, matched, displayed at the requested level of detail, or in the requested format).

With the help of self-service tools, the business has the capabilities to play with the data and find answers by itself, being able thus to create a prototyped version of the report. Once the report met business needs it can be standardized so it can be used organization-wide. It’s recommended to standardize the reports that are used as part of organization’s processes, otherwise self-service can become a bottleneck for the organization.
Change Management
Change Management is the process of ensuring that the changes performed to a system, in this case a BI tool or the whole BI infrastructure, are performed with minimal disruption for the business and that risks are kept under control. Changes can be requested via standard requests or change requests. A standard request (SR) is a pre-approved change that involves low risks, is relatively common and follows a predefined procedure. In contrast to SRs, a change request (CR) requires the authorization of a board, e.g. the Change Advisory Board (CAB), it often involves risks, an investment and the approach is not that common.

Both are hard-copy or electronic templates that allow to capture information about the changes and allow to document the change and track its status. They include typically the problem definition together with users’ requirements, report definition and the formulation of the solution. What differentiates them thus is the approval process that can be sometimes time-consuming, and the volume of formalism needed to manage the requests (e.g. tracking status, writing status reports, handling risks, etc.).

Unless infrastructural changes are necessary, the risks involved with the creation of reports are relatively small, especially when the reports are developed in-house. Reports developed by vendors involve more risks and imply investments that in a form or other need to be approved. Considering the particularities of the two approaches, personally I think that reports that can be developed with internal resources should be done via SRs, while reports developed externally should be done via CRs. Even if this categorization has the potential of creating some confusion, the use of SRs allows reducing the volume of effort necessary to manage the requests. I suppose there can be found solutions to request external changes via SRs as well (e.g. by using contingents and a set of well-defined rules).
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.