Showing posts with label infrastructure. Show all posts
Showing posts with label infrastructure. Show all posts

13 December 2024

🧭💹Business Intelligence: Perspectives (Part XX: From BI to AI)

Business Intelligence Series

No matter how good data visualizations, reports or other forms of BI artifacts are, they only serve a set of purposes for a limited amount of time, limited audience or any other factors that influence their lifespan. Sooner or later the artifacts become thus obsolete, being eventually disabled, archived and/or removed from the infrastructure. 

Many artifacts require a considerable number of resources for their creation and maintenance over time. Sometimes the costs can be considerably higher than the benefits brought, especially when the data or the infrastructure are used for a narrow scope, though there can be other components that need to be considered in the bigger picture. Having a report or visualization one can use when needed can have an important impact on the business in correcting issues, sizing opportunities or filling the knowledge gaps. 

Even if it’s challenging to quantify the costs associated with the loss of opportunities rooted in the lack of data, respectively information, the amounts can be considerable high, greater even than building a whole BI infrastructure. Organization’s agility in addressing the important gaps can make a considerable difference, at least in theory. Having the resources that can be pulled on demand can give organizations the needed competitive boost. Internal or external resources can be used altogether, though, pragmatically speaking, there will be always a gap between demand and supply of knowledgeable resources.

The gap in BI artefacts can be addressed nowadays by AI-driven tools, which have the theoretical potential of shortening the gap between needs and the availability of solutions, respectively a set of answers that can be used in the process. Of course, the processes of sense-making and discovery are not that simple as we’d like, though it’s a considerable step forward. 

Having the possibility of asking questions in natural language and guiding the exploration process to create visualizations and other artifacts using prompt engineering and other AI-enabled methods offers new possibilities and opportunities that at least some organizations started exploring already. This however presumes the existence of an infrastructure on which the needed foundation can be built upon, the knowledge required to bridge the gap, respectively the resources required in the process. 

It must be stressed out that the exploration processes may bring no sensible benefits, at least no immediately, and the whole process depends on organizations’ capabilities of identifying and sizing the respective opportunities. Therefore, even if there are recipes for success, each organization must identify what matters and how to use technologies and the available infrastructure to bridge the gap.

Ideally to make progress organizations need besides the financial resources the required skillset, a set of projects that support learning and value creation, respectively the design and execution of a business strategy that addresses the steps ahead. Each of these aspects implies risks and opportunities altogether. It will be a test of maturity for many organizations. It will be interesting to see how many organizations can handle the challenge, respectively how much past successes or failures will weigh in the balance. 

AI offers a set of capabilities and opportunities, however the chance of exploring and failing fast is of great importance. AI is an enabler and not a magic wand, no matter what is preached in technical workshops! Even if progress follows an exponential trajectory, it took us more than half of century from the first steps until now and probably many challenges must be still overcome. 

The future looks interesting enough to be pursued, though are organizations capable to size the opportunities, respectively to overcome the challenges ahead? Are organizations capable of supporting the effort without neglecting the other priorities? 

06 April 2024

🧭Business Intelligence: Why Data Projects Fail to Deliver Real-Life Impact (Part I: First Thoughts)

Business Intelligence
Business Intelligence Series

A data project has a set of assumptions and requirements that must be met, otherwise the project has a high chance of failing. It starts with a clear idea of the goals and objectives, and they need to be achievable and feasible, with the involvement of key stakeholders and the executive without which it’s impossible to change the organization’s data culture. Ideally, there should also be a business strategy, respectively a data strategy available to understand the driving forces and the broader requirements. 

An organization’s readiness is important not only in what concerns the data but also the things revolving around the data - processes, systems, decision-making, requirements management, project management, etc. One of the challenges is that the systems and processes available can’t be used as they are for answering important business questions, and many of such questions are quite basic, though unavailability or poor quality of data makes this challenging if not impossible. 

Thus, when starting a data project an organization must be ready to change some of its processes to address a project’s needs, and thus the project can become more expensive as changes need to be made to the systems. For many organizations the best time to have done this was when they implemented the system, respectively the integration(s) between systems. Any changes made after that come in theory with higher costs derived from systems and processes’ redesign.

Many projects start big and data projects are no exception to this. Some of them build a costly infrastructure without first analyzing the feasibility of the investment, or at least whether the data can form a basis for answering the targeted questions. On one side one can torture any dataset and some knowledge will be obtained from it (aka data will confess), though few datasets can produce valuable insights, and this is where probably many data projects oversell their potential. Conversely, some initiatives are worth pursuing even only for the sake of the exposure and experience the employees get. However, trying to build something big only through the perspective of one project can easily become a disaster. 

When building a data infrastructure, the project needs to be an initiative given the transformative potential such an endeavor can have for the organization, and the different aspects must be managed accordingly. It starts with the management of stakeholders’ expectations, with building a data strategy, respectively with addressing the opportunities and risks associated with the broader context.

Organizations recognize that they aren’t capable of planning and executing such a project or initiative, and they search for a partner to lead the way. Becoming overnight such a partner is more than a challenge as a good understanding of the industry and the business is needed. Some service providers have such knowledge, at least in theory, though the leap from knowledge to results can prove to be a challenge even for experienced service providers. 

Many projects follow the pattern: the service provider comes, analyzes the requirements, builds something wonderful, the solution is used for some time and then the business realizes that the result is not what was intended. The causes are multiple and usually form a complex network of causality, though probably the most important aspect is that customers don’t have the in-house technical resources to evaluate the feasibility of requirements, solutions, respectively of the results. Even if organizations involve the best key users, are needed also good data professionals or similar resources who can become the bond between the business and the services provider. Without such an intermediary the disconnect between the business and the service provider can grow with all the implications. 

Previous Post <<||>> Next Post

22 February 2021

𖣯Strategic Management: The Impact of New Technologies (Part I: A Nail Keeps the Shoe)

Strategic Management

Probably one of the most misunderstood aspects for businesses is the implications the adoption of a new technology have in terms of effort, resources, infrastructure and changes, these considered before, during and post-implementation. Unfortunately, getting a new BI tool or ERP system is not like buying a new car, even if customers’ desires might revolve around such expectations. After all, the customer has been using a BI tool or ERP system for ages, the employees should be able to do the same job as before, right?

In theory adopting a new system is supposed to bring organizations a competitive advantage or other advantages - allow them reduce costs, improve their agility and decision-making, etc. However, the advantages brought by new technologies remain only as potentials unless their capabilities aren’t harnessed adequately. Keeping the car metaphor, besides looking good in the car, having a better mileage or having x years of service, buying a highly technologically-advanced car more likely will bring little benefit for the customer unless he needs, is able to use, and uses the additional features.

Both types of systems mentioned above can be quite expensive when considering the benefits associated with them. Therefore, looking at the features and the further requirements is critical for better understanding the fit. In the end one doesn’t need to buy a luxurious or sport car when one just needs to move from point A to B on small distances. In some occasions a bike or a rental car might do as well. Moreover, besides the acquisition costs, the additional features might involve considerable investments as long the warranty is broken and something needs to be fixed. In extremis, after a few years it might be even cheaper to 'replace' the whole car. Unfortunately, one can’t change systems yet, as if they were cars.

Implementing a new BI tool can take a few weeks if it doesn’t involve architecture changes within the BI infrastructure. Otherwise replacing a BI infrastructure can take from months to one year until having a stable environment. Similarly, an ERP solution can take from six months to years to implement and typically this has impact also on the BI infrastructure. Moreover, the implementation is only the top of the iceberg as further optimizations and changes are needed. It can take even more time until seeing the benefits for the investment.

A new technology can easily have the impact of dominoes within the organization. This effect is best reflected in sayings of the type: 'the wise tell us that a nail keeps a shoe, a shoe a horse, a horse a man, a man a castle, that can fight' and which reflect the impact tools technologies have within organizations when regarded within the broader context. Buying a big car, might involve extending the garage or eventually buying a new house with a bigger garage, or of replacing other devices just for the sake of using them with the new car. Even if not always perceptible, such dependencies are there, and even if the further investments might be acceptable and make sense, the implications can be a bigger shoe that one can wear. Then, the reversed saying can hold: 'for want of a nail, the shoe was lost; for want of a shoe the horse was lost; and for want of a horse the rider was lost'.

For IT technologies the impact is multidimensional as the change of a technology has impact on the IT infrastructure, on the processes associated with them, on the resources required and their skillset, respectively on the various types of flows (data, information, knowledge, materials, money).

Previous Post <<||>> Next Post

01 February 2021

📦Data Migrations (DM): Quality Assurance (Part I: Quality Acceptance Criteria I)

Data Migration
Data Migrations Series

Introduction

When designing a Data Migration (DM), respectively any software solution, it’s important to take inventory of project’s requirements, evaluate, document, communicate and monitor them accordingly. Each of them can have an important impact on the solution, as a solution’s success will be validated and judged upon them. Therefore, the identified requirements must be considered as baseline for conceptualization, design, implementation and sign-off, and should go through same procedures and rigor as other projects requirements. The existence of a standardized Requirements Management process can facilitate their management through project’s lifecycle. 

The requirements are usually driven by the source and target systems (e.g. data import/export features, data models and their constraints), the environments they are hosted on (e.g. cloud vs. on-premise), respectively the layers in between (e.g. network, firewalls), project and business aspects that need to be considered (e.g. freeze window for the Go-Live, data availability dates, data quality, external dependencies, etc.). They resume to the solution itself as well to the data and processes involved, and are reflected but not limited to the following important aspects, that can be considered upon case also as quality acceptance criteria: 

Accessibility

Accessibility is the degree to which the data are available for a solution so it can be processed when needed, in the form, by resources, or means intended for processing. It’s critical for a DM solution to access or have available the master, transaction, parameter and further data when needed. The team must make sure that the data become easily accessible. 

Unavailability of data can impact the DM and can easily lead to delays in the project. This also means that the various project activities (parametrization, cleansing, enrichment, development) need to be synchronized with the migration activities. 

Upon case, accessibility can involve the solution itself expressed as the degree to which it’s available to the resources supposed to use it. Certain architectural decisions can have impact on the carried activities. As the solution is usually deployed on a server, it can happen that only a limited number of people is able to access it concurrently. Moreover, a DM’s complexity makes the involvement of multiple developers challenging.  

Accountability

Accountability is the degree to which accountability is enforced for the various resources involved in DM processes and related activities. As multiple resources are involved for parametrization, cleaning, processing, validation, software development, each resource needs to be aware about the extent they are accountable for. Without accountability made explicit, there’s the danger that the activities are neglected, with all the implications deriving from it – quality deviations, delays, data unavailability, etc. 

Adaptability

Adaptability is the degree to which a solution can be adapted to environment or requirement changes. Even if typically, the environments don’t change, it doesn’t mean that this will not happen as the IT infrastructure goes through continuous changes that can affect directly or indirectly a migration.  Same can be said about requirements, which however have higher probability to change even late in the process as new knowledge is acquired and needs to be integrated in the solution. 

Atomicity 

Atomicity is the degree to which data entities can be processes at the required level of abstraction in an atomic manner. Even if transformations occur during the various stages, the data belonging to an entity need to be kept and processed together (e.g. Customers and their Addresses). This can involve processing attributes in advance even if the data might be required later. There can be situations in which the data belonging to the same entity need to be processed on different paths, though in the end it’s important to keep the data together, when the processing logic allows it. 

Next Post

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.