Showing posts with label SQL Reloaded. Show all posts
Showing posts with label SQL Reloaded. Show all posts

16 March 2025

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part XII: Databases)

After reviewing the server and database properties, the next step is to review the database configurations using the sys.databases metadata. There's a such object even for warehouse and lakehouse, respectively for mirrored databases.

Except the last line from the query, all the other attributes are supported by all above mentioned repositories. 

-- database metadata
SELECT db.name
, db.database_id
--, db.source_database_id
, db.owner_sid
, db.create_date
, db.compatibility_level
, db.collation_name
--, db.user_access
, db.user_access_desc
--, db.is_read_only
--, db.is_auto_close_on
--, db.is_auto_shrink_on
--, db.state
, db.state_desc
--, db.is_in_standby
--, db.is_cleanly_shutdown
--, db.is_supplemental_logging_enabled
--, db.snapshot_isolation_state
, db.snapshot_isolation_state_desc
--, db.is_read_committed_snapshot_on
--, db.recovery_model
, db.recovery_model_desc
, db.page_verify_option
, db.page_verify_option_desc
, db.is_auto_create_stats_on
--, db.is_auto_create_stats_incremental_on
, db.is_auto_update_stats_on
--, db.is_auto_update_stats_async_on
--, db.is_ansi_null_default_on
--, db.is_ansi_nulls_on
--, db.is_ansi_padding_on
--, db.is_ansi_warnings_on
--, db.is_arithabort_on
--, db.is_concat_null_yields_null_on
--, db.is_numeric_roundabort_on
--, db.is_quoted_identifier_on
--, db.is_recursive_triggers_on
--, db.is_cursor_close_on_commit_on
--, db.is_local_cursor_default
, db.is_fulltext_enabled
--, db.is_trustworthy_on
, db.is_db_chaining_on
--, db.is_parameterization_forced
, db.is_master_key_encrypted_by_server
--, db.is_query_store_on
--, db.is_published
--, db.is_subscribed
--, db.is_merge_published
--, db.is_distributor
--, db.is_sync_with_backup
, db.service_broker_guid
--, db.is_broker_enabled
--, db.log_reuse_wait
, db.log_reuse_wait_desc
--, db.is_date_correlation_on
--, db.is_cdc_enabled
--, db.is_encrypted
--, db.is_honor_broker_priority_on
--, db.replica_id
--, db.group_database_id
--, db.resource_pool_id
--, db.default_language_lcid
--, db.default_language_name
--, db.default_fulltext_language_lcid
--, db.default_fulltext_language_name
--, db.is_nested_triggers_on
--, db.is_transform_noise_words_on
--, db.two_digit_year_cutoff
--, db.containment
--, db.containment_desc
, db.target_recovery_time_in_seconds
--, db.delayed_durability
--, db.delayed_durability_desc
--, db.is_memory_optimized_elevate_to_snapshot_on
--, db.is_federation_member
--, db.is_remote_data_archive_enabled
--, db.is_mixed_page_allocation_on
, db.is_temporal_history_retention_enabled
--, db.catalog_collation_type
, db.catalog_collation_type_desc
, db.physical_database_name
--, db.is_result_set_caching_on
, db.is_accelerated_database_recovery_on
--, db.is_tempdb_spill_to_remote_store
--, db.is_stale_page_detection_on
, db.is_memory_optimized_enabled
, db.is_data_retention_enabled
--, db.is_ledger_on
--, db.is_change_feed_enabled
--, db.is_data_lake_replication_enabled
--, db.is_change_streams_enabled
--, db.data_lake_log_publishing
, db.data_lake_log_publishing_desc
, db.is_vorder_enabled
--, db.is_optimized_locking_on
FROM sys.databases db

Output (consolidated):

Attribute Warehouse Mirrored Db Lakehouse SQL database
name Warehouse Test 001 MirroredDatabase_1 Lakehouse_DWH SQL DB Test...
database_id 5 6 7 28
owner_sid 0x01010000000000051... 0x01010000000000051... x01010000000000051... AAAAAAWQAAAAAA...
create_date 2025-02-22T18:56:28.700 2025-03-16T14:57:56.600 2025-03-16T15:07:59.563 2025-02-22T03:01:53.7130000
compatibility_level 160 160 160 160
collation_name Latin1_General_100_BIN2_UTF8 Latin1_General_100_BIN2_UTF8 Latin1_General_100_BIN2_UTF8 SQL_Latin1_General_CP1_CI_AS
user_access_desc MULTI_USER MULTI_USER MULTI_USER MULTI_USER
state_desc ONLINE ONLINE ONLINE ONLINE
snapshot_isolation_state_desc ON ON ON ON
recovery_model_desc SIMPLE SIMPLE SIMPLE FULL
page_verify_option 0 0 0 2
page_verify_option_desc NONE NONE NONE CHECKSUM
is_auto_create_stats_on 1 1 1 1
is_auto_update_stats_on 1 1 1 1
is_fulltext_enabled 1 1 1 1
is_db_chaining_on 0 0 0 0
is_master_key_encrypted_by_server 0 0 0 0
service_broker_guid 1F2261FC-5031-... 7D882362-567E-... 0D8938AB-BA79-... 2b74bed3-4405-...
log_reuse_wait_desc NOTHING NOTHING NOTHING NOTHING
target_recovery_time_in_seconds 60 60 60 60
is_temporal_history_retention_enabled 1 1 1 1
catalog_collation_type_desc DATABASE_DEFAULT DATABASE_DEFAULT DATABASE_DEFAULT SQL_Latin1_General_CP1_CI_AS
physical_database_name Warehouse Test 001 MirroredDatabase_1 Lakehouse_DWH 3f4a3e79-e53e-...
is_accelerated_database_recovery_on 1 1 1 1
is_memory_optimized_enabled 1 1 1 1
is_data_retention_enabled 1 1 1 1
data_lake_log_publishing_desc AUTO UNSUPPORTED UNSUPPORTED UNSUPPORTED
is_vorder_enabled 1 1 1 0

The output for the SQL database was slightly different formatted and is_vorder_enabled is not available. Otherwise, the above query can be used for all environments. 

All attributes except the last two are known from the earlier versions of SQL Server. is_vorder_enabled reflects the current status of V-Order [2], while data_lake_log_publishing_desc reflects the current state of Delta Lake log publishing [3].

Consolidating the output from different sources helps identify the differences and one can easily use Excel formulas for this.

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2025) SQL Server 2022: sys.databases (Transact-SQL) [link]

[2] Microsoft Learn (2025) SQL Server 2022: Disable V-Order on Warehouse in Microsoft Fabric [link

[3] Microsoft Learn (2025) SQL Server 2022: Delta Lake logs in Warehouse in Microsoft Fabric [link

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part XI: Database and Server Properties)

When taking over a SQL Server, respectively database, one of the first checks I do focuses on the overall configuration, going through the UI available for admins to see if I can find anything that requires further investigation. If no documentation is available on the same, I run a few scripts and export their output as baseline. 

Especially when documenting the configuration, it's useful to export the database options and properties defined at database level. Besides the collation and probably the recovery mode, typically the rest of the configuration is similar, though in exceptional cases one should expect also surprises that require further investigation! 

The following query retrieves in a consolidated way all the options and properties of a SQL database in Microsoft Fabric. 

-- database settings/properties 
SELECT DATABASEPROPERTYEX(DB_NAME(), 'Collation') Collation
--, DATABASEPROPERTYEX(DB_NAME(), 'ComparisonStyle')  ComparisonStyle
, DATABASEPROPERTYEX(DB_NAME(), 'Edition') Edition
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAnsiNullDefault') IsAnsiNullDefault
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAnsiNullsEnabled') IsAnsiNullsEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAnsiPaddingEnabled') IsAnsiPaddingEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAnsiWarningsEnabled') IsAnsiWarningsEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsArithmeticAbortEnabled') IsArithmeticAbortEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAutoClose') IsAutoClose
, DATABASEPROPERTYEX(DB_NAME(), 'IsAutoCreateStatistics') IsAutoCreateStatistics
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAutoCreateStatisticsIncremental') IsAutoCreateStatisticsIncremental
--, DATABASEPROPERTYEX(DB_NAME(), 'IsAutoShrink') IsAutoShrink
, DATABASEPROPERTYEX(DB_NAME(), 'IsAutoUpdateStatistics') IsAutoUpdateStatistics
--, DATABASEPROPERTYEX(DB_NAME(), 'IsClone') IsClone
--, DATABASEPROPERTYEX(DB_NAME(), 'IsCloseCursorsOnCommitEnabled') IsCloseCursorsOnCommitEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsDatabaseSuspendedForSnapshotBackup') IsDatabaseSuspendedForSnapshotBackup
, DATABASEPROPERTYEX(DB_NAME(), 'IsFulltextEnabled') IsFulltextEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsInStandBy') IsInStandBy
--, DATABASEPROPERTYEX(DB_NAME(), 'IsLocalCursorsDefault') IsLocalCursorsDefault
--, DATABASEPROPERTYEX(DB_NAME(), 'IsMemoryOptimizedElevateToSnapshotEnabled') IsMemoryOptimizedElevateToSnapshotEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsMergePublished') IsMergePublished
--, DATABASEPROPERTYEX(DB_NAME(), 'IsNullConcat') IsNullConcat
--, DATABASEPROPERTYEX(DB_NAME(), 'IsNumericRoundAbortEnabled') IsNumericRoundAbortEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsParameterizationForced') IsParameterizationForced
--, DATABASEPROPERTYEX(DB_NAME(), 'IsQuotedIdentifiersEnabled') IsQuotedIdentifiersEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsPublished') IsPublished
--, DATABASEPROPERTYEX(DB_NAME(), 'IsRecursiveTriggersEnabled') IsRecursiveTriggersEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsSubscribed') IsSubscribed
--, DATABASEPROPERTYEX(DB_NAME(), 'IsSyncWithBackup') IsSyncWithBackup
--, DATABASEPROPERTYEX(DB_NAME(), 'IsTornPageDetectionEnabled') IsTornPageDetectionEnabled
--, DATABASEPROPERTYEX(DB_NAME(), 'IsVerifiedClone') IsVerifiedClone
--, DATABASEPROPERTYEX(DB_NAME(), 'IsXTPSupported') IsXTPSupported
, DATABASEPROPERTYEX(DB_NAME(), 'LastGoodCheckDbTime') LastGoodCheckDbTime
, DATABASEPROPERTYEX(DB_NAME(), 'LCID') LCID
--, DATABASEPROPERTYEX(DB_NAME(), 'MaxSizeInBytes') MaxSizeInBytes
, DATABASEPROPERTYEX(DB_NAME(), 'Recovery') Recovery
--, DATABASEPROPERTYEX(DB_NAME(), 'ServiceObjective') ServiceObjective
--, DATABASEPROPERTYEX(DB_NAME(), 'ServiceObjectiveId') ServiceObjectiveId
, DATABASEPROPERTYEX(DB_NAME(), 'SQLSortOrder') SQLSortOrder
, DATABASEPROPERTYEX(DB_NAME(), 'Status') Status
, DATABASEPROPERTYEX(DB_NAME(), 'Updateability') Updateability
, DATABASEPROPERTYEX(DB_NAME(), 'UserAccess') UserAccess
, DATABASEPROPERTYEX(DB_NAME(), 'Version') Version
--, DATABASEPROPERTYEX(DB_NAME(), 'ReplicaID') ReplicaID

Output:

Collation Edition IsAutoCreateStatistics IsAutoUpdateStatistics IsFulltextEnabled LastGoodCheckDbTime LCID Recovery SQLSortOrder Status Updateability UserAccess Version
SQL_Latin1_General_CP1_CI_AS FabricSQLDB 1 1 1 12/31/1899 1033 FULL 52 ONLINE READ_WRITE MULTI_USER 981

The query can be run also against the SQL analytics endpoints available for warehouses in Microsoft Fabric.

Output:

Collation Edition IsAutoCreateStatistics IsAutoUpdateStatistics IsFulltextEnabled LastGoodCheckDbTime LCID Recovery SQLSortOrder Status Updateability UserAccess Version
Latin1_General_100_BIN2_UTF8 DataWarehouse 1 1 1 12/31/1899 1033 SIMPLE 0 ONLINE READ_WRITE MULTI_USER 987

Respectively, for lakehouses:

Collation Edition IsAutoCreateStatistics IsAutoUpdateStatistics IsFulltextEnabled LastGoodCheckDbTime LCID Recovery SQLSortOrder Status Updateability UserAccess Version
Latin1_General_100_BIN2_UTF8 LakeWarehouse 1 1 1 12/31/1899 1033 SIMPLE 0 ONLINE READ_WRITE MULTI_USER 987

A similar output is obtained if one runs the query against SQL database's SQL analytics endpoint:

Output:

Collation Edition IsAutoCreateStatistics IsAutoUpdateStatistics IsFulltextEnabled LastGoodCheckDbTime LCID Recovery SQLSortOrder Status Updateability UserAccess Version
Latin1_General_100_BIN2_UTF8 LakeWarehouse 1 1 1 12/31/1899 1033 SIMPLE 0 ONLINE READ_WRITE MULTI_USER 987

SQL databases seem to inherit the collation from the earlier versions of SQL Server.

Another meaningful value for SQL databases is MaxSizeInBytes, which in my environment had a value of 3298534883328 bytes ÷ 1,073,741,824 = 3,072 GB.

There are however also server properties. Here's the consolidated overview:

-- server properties
SELECT --SERVERPROPERTY('BuildClrVersion') BuildClrVersion
 SERVERPROPERTY('Collation') Collation
--, SERVERPROPERTY('CollationID') CollationID
, SERVERPROPERTY('ComparisonStyle') ComparisonStyle
--, SERVERPROPERTY('ComputerNamePhysicalNetBIOS') ComputerNamePhysicalNetBIOS
, SERVERPROPERTY('Edition') Edition
--, SERVERPROPERTY('EditionID') EditionID
, SERVERPROPERTY('EngineEdition') EngineEdition
--, SERVERPROPERTY('FilestreamConfiguredLevel') FilestreamConfiguredLevel
--, SERVERPROPERTY('FilestreamEffectiveLevel') FilestreamEffectiveLevel
--, SERVERPROPERTY('FilestreamShareName') FilestreamShareName
--, SERVERPROPERTY('HadrManagerStatus') HadrManagerStatus
--, SERVERPROPERTY('InstanceDefaultBackupPath') InstanceDefaultBackupPath
, SERVERPROPERTY('InstanceDefaultDataPath') InstanceDefaultDataPath
--, SERVERPROPERTY('InstanceDefaultLogPath') InstanceDefaultLogPath
--, SERVERPROPERTY('InstanceName') InstanceName
, SERVERPROPERTY('IsAdvancedAnalyticsInstalled') IsAdvancedAnalyticsInstalled
--, SERVERPROPERTY('IsBigDataCluster') IsBigDataCluster
--, SERVERPROPERTY('IsClustered') IsClustered
, SERVERPROPERTY('IsExternalAuthenticationOnly') IsExternalAuthenticationOnly
, SERVERPROPERTY('IsExternalGovernanceEnabled') IsExternalGovernanceEnabled
, SERVERPROPERTY('IsFullTextInstalled') IsFullTextInstalled
--, SERVERPROPERTY('IsHadrEnabled') IsHadrEnabled
--, SERVERPROPERTY('IsIntegratedSecurityOnly') IsIntegratedSecurityOnly
--, SERVERPROPERTY('IsLocalDB') IsLocalDB
--, SERVERPROPERTY('IsPolyBaseInstalled') IsPolyBaseInstalled
--, SERVERPROPERTY('IsServerSuspendedForSnapshotBackup') IsServerSuspendedForSnapshotBackup
--, SERVERPROPERTY('IsSingleUser') IsSingleUser
--, SERVERPROPERTY('IsTempDbMetadataMemoryOptimized') IsTempDbMetadataMemoryOptimized
, SERVERPROPERTY('IsXTPSupported') IsXTPSupported
, SERVERPROPERTY('LCID') LCID
, SERVERPROPERTY('LicenseType') LicenseType
, SERVERPROPERTY('MachineName') MachineName
, SERVERPROPERTY('NumLicenses') NumLicenses
, SERVERPROPERTY('PathSeparator') PathSeparator
--, SERVERPROPERTY('ProcessID') ProcessID
, SERVERPROPERTY('ProductBuild') ProductBuild
--, SERVERPROPERTY('ProductBuildType') ProductBuildType
--, SERVERPROPERTY('ProductLevel') ProductLevel
--, SERVERPROPERTY('ProductMajorVersion') ProductMajorVersion
--, SERVERPROPERTY('ProductMinorVersion') ProductMinorVersion
--, SERVERPROPERTY('ProductUpdateLevel') ProductUpdateLevel
--, SERVERPROPERTY('ProductUpdateReference') ProductUpdateReference
--, SERVERPROPERTY('ProductUpdateType') ProductUpdateType
, SERVERPROPERTY('ProductVersion') ProductVersion
, SERVERPROPERTY('ResourceLastUpdateDateTime') ResourceLastUpdateDateTime
, SERVERPROPERTY('ResourceVersion') ResourceVersion
, SERVERPROPERTY('ServerName') ServerName
, SERVERPROPERTY('SqlCharSet') SqlCharSet
, SERVERPROPERTY('SqlCharSetName') SqlCharSetName
, SERVERPROPERTY('SqlSortOrder') SqlSortOrder
, SERVERPROPERTY('SqlSortOrderName') SqlSortOrderName
, SERVERPROPERTY('SuspendedDatabaseCount') SuspendedDatabaseCount

Output (consolidated):

Property SQL database Warehouse Lakehouse
Collation SQL_Latin1_General_CP1_CI_AS SQL_Latin1_General_CP1_CI_AS SQL_Latin1_General_CP1_CI_AS
ComparisonStyle 196609 196609 196609
Edition SQL Azure SQL Azure SQL Azure
EngineEdition 12 11 11
InstanceDefaultDataPath NULL NULL NULL
IsAdvancedAnalyticsInstalled 1 1 1
IsExternalAuthenticationOnly 1 0 0
IsExternalGovernanceEnabled 1 1 1
IsFullTextInstalled 1 0 0
IsXTPSupported 1 1 1
LCID 1033 1033 1033
LicenseType DISABLED DISABLED DISABLED
MachineName NULL NULL NULL
NumLicenses NULL NULL NULL
PathSeparator \ \ \
ProductBuild 2000 502 502
ProductVersion 12.0.2000.8 12.0.2000.8 12.0.2000.8
ResourceLastUpdateDateTime 11/6/2024 3:41:27 PM 3/5/2025 12:05:50 PM 3/5/2025 12:05:50 PM
ResourceVersion 16.00.5751 17.00.502 17.00.502
ServerName ... .... ....
SqlCharSet 1 1 1
SqlCharSetName iso_1 iso_1 iso_1
SqlSortOrder 52 52 52
SqlSortOrderName nocase_iso nocase_iso nocase_iso
SuspendedDatabaseCount NULL 0 0

It's interesting that all three instances have the same general collation, while the Engine Edition of SQL databases is not compatible with the others [2]. The Server Names has been removed manually from the output from obvious reasons. The warehouse and lakehouse are in the same environment (SQL Azure instance, see sys.databases), and therefore the same values are shown (though this might happen independently of the environments used).

The queries were run in a trial Microsoft Fabric environment. Other environments can have upon case different properties. Just replace the "--" from the commented code to get a complete overview.

The queries should run also in the other editions of SQL Server. If DATABASEPROPERTYEX is not supported, one should try DATABASEPROPERTY instead.

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) SQL Server 2022: DATABASEPROPERTYEX (Transact-SQL) [link]
[2] Microsoft Learn (2024) SQL Server 2022: SERVERPROPERTY (Transact-SQL) [link]

06 March 2025

💎🤖SQL Reloaded: Copilot Stories (Part X: Working with the Left Function)

Left is one of the dull string functions in SQL Server, returning the left part of a character string with the specified number of characters. Besides mid, right and a few other functions, Left can help retrieve the subparts of a string (see previous post). This post evaluates the answers provided by Microsoft 365 Copilot in the use of the respective function.

Disclaimer: The below code was generated by Copilot via prompts and is used for demonstration purposes!

Prompt:
Give me 10 scenarios with examples in which the Left function can be used in SQL Server.

Output:

-- Example 1: Extracting Initials
SELECT LEFT('John', 1) + LEFT('Doe', 1) AS Initials -- Result: 'JD'

-- Example 2: Getting the First N Characters of a String:
SELECT LEFT('Hello World', 5) AS Substring; -- Result: 'Hello'

-- Example 3: Extracting wear from a Date string
SELECT LEFT('2025-03-06', 4) AS Year; -- Result: '2025'

-- Example 4: Truncating a string for display:
SELECT LEFT('This is a long description', 10) + '...' AS ShortDescription; -- Result: 'This is a ...'

-- Example 5: Extracting Country Code from Phone Number:
SELECT LEFT('+49 1234567890', 3) AS CountryCode; -- Result: '+49'

-- Example 6: Getting the First Word of a Sentence:
SELECT LEFT('Hello World', CHARINDEX(' ', 'Hello World') - 1) AS FirstWord;-- Result: 'Hello'

-- Example 7: Formatting Product Codes:
SELECT LEFT(ProductCode, 3) AS ProductPrefix
FROM Products; -- Result: 'ABC' for ProductCode 'ABC12345'

-- Example 8: Extracting File Extension:
SELECT LEFT(FileName, CHARINDEX('.', FileName) - 1) AS FileExtension
FROM Files; -- Result: 'txt' for FileName 'document.txt'

-- Example 9: Creating Abbreviations:
SELECT LEFT('International Business Machines', 3) AS Abbreviation; -- Result: 'Int'

-- Example 10: Extracting Date Part from DateTime:
SELECT LEFT(CONVERT(VARCHAR, GETDATE(), 120), 10) AS DatePart; -- Result: '2025-03-06'

Example 1: Extracting the initials can prove to be useful when the space in a report is limited and one wants to have the initial of the person who created or updated the record, respectively who is responsible for a part of the process involved. One can also combine an initial with the full name.

Example 2: Getting the first word from a sentence is useful when an encoding can be derived from it. However, it's seldom that the first characters that form the encoding have a fixed number of letters. One can use the technique from Example 6.

Example 3: Getting the year or other date part from a string can be done in this way, at least if the dates are always in the expected format. It's recommended to get the date parts via the DatePart or DateName functions. 

Example 4: This is a generalization of Example 2.

Example 5: One can get the country code from a phone number if the string is correctly delimited, which is seldom the case. Sometimes, one can use the Country field from the address to identify the correct code from the phone number, though there can also be exceptions.

Example 6: This is usually the recommended way to extract the string before a delimiter and this technique has applicability in many scenarios. 

Example 7: Product numbers and other similar encodings are formed via general rules and the formula should take the rules into account.

Example 8: This technique is used quite often in combination with file names and other similar encodings.

Example 9: The rules of abbreviations are usually more complex than this, though this may work occasionally. 

Example 10: That's a valid way to extract the date from a string that contains also the time. One should consider the alternatives as well.

Prompt:
Give me 10 more scenarios with examples in which the Left function can be used in SQL Server.

Output:

-- Example 11: Extracting the First N Digits of a Number:
SELECT LEFT(CAST(1234567890 AS VARCHAR), 5) AS FirstDigits; -- Result: '12345'

-- Example 12: Trimming a String to a Fixed Length:
SELECT LEFT('This is a test string', 10) AS TrimmedString; -- Result: 'This is a '

-- Example 13: Extracting the First Part of an Email Address:
SELECT LEFT('user@example.com', CHARINDEX('@', 'user@example.com') - 1) AS Username; -- Result: 'user'

-- Example 14: Getting the First N Characters of a Column Value:
SELECT LEFT(ColumnName, 8) AS ShortenedValue
FROM TableName;-- Result: 'Example' for ColumnName 'ExampleValue'

-- Example 15: Extracting the First Few Characters of a GUID:
SELECT LEFT(NEWID(), 8) AS ShortGUID; -- Result: '550e8400'

-- Example 16: Example 11: Creating a Shortened Version of a URL:
SELECT LEFT('https://example.com/page', 15) + '...' AS ShortURL; -- Result: 'https://example...'

-- Example 17: Extracting the First N Characters of a File Path:
SELECT LEFT('C:\Users\Name\Documents\File.txt', 12) AS ShortPath; -- Result: 'C:\Users\Nam'

-- Example 18: Getting the First N Characters of a Description:
SELECT LEFT(Description, 20) AS ShortDescription
FROM Products; -- Result: 'This is a product de'

-- Example 19: Extracting the First N Characters of a JSON String:
SELECT LEFT('{"name":"John","age":30}', 10) AS ShortJSON; -- Result: '{"name":"J'

-- Example 20: Creating a Shortened Version of a Log Entry:
SELECT LEFT(LogEntry, 50) + '...' AS ShortLog
FROM Logs; -- Result: 'Error: Unable to connect to the database. Please...'

Example 11: The example makes sense especially when the first n characters have a special meaning. Just selecting n characters from a random numbers brings little benefit, though there might also be exceptions out there.

Example 12: This is similar with example 3.

Example 13: Extracting the first part of an email can be useful for further processing especially when the emails have a predefined form (e.g. first name and last name, usually delimited by a special character).

Example 14: The example is a variation of 13 but with applicability to a given column from a table.

Example 15: It may look like a way to generate unique values, though no part of the GUID is unique when taken in isolation from any other part!

Example 16: This can be used to extract the hostname of a URL.

Example 17: This technique can be used to provide the main path to a folder, though more complex rules to generate it usually apply.

Example 18: Descriptions tend to be long enough to provide identification information for the products. Therefore, selecting only long enough parts of a description can help minimize the volume of data stored, which can be useful in reports of any type. 

Example 19: The technique can be used indeed, though it has little value without the addition of further information (see first example).

Example 20: If Log entries tend to be real long, this can help extracting the essential information. It can allow further on to aggregate the information and identify the number of events stored in the log. 

Not all the examples are representative for the use of the Left function and even if it looks that they repeat themselves, the context brings slight differences. They can be met in practice in combination with CharIndex, date or similar functions. 

Happy coding!

Previous Post <<||>> Next Post 

💎🤖SQL Reloaded: Copilot Stories (Part IX: Working with the Stuff Function)

One of the underused string functions in SQL Server is Stuff, which returns part of a character, binary, text, or image expression. This post evaluates the answers provided by Microsoft 365 Copilot in the use of the respective function.

Disclaimer: The below code was generated by Copilot via prompts and is used for demonstration purposes!

Prompt:
Give me 10 scenarios with examples in which the Stuff function can be used in SQL Server.

Output:

/* Example 1: Inserting a Substring */

-- Insert a substring into a specific position within a string
SELECT STUFF('Hello World', 6, 0, 'SQL ') AS Result; -- Result: 'Hello SQL World'

/* Example 2: Replacing a Substring */

-- Replace a part of a string with another substring.
SELECT STUFF('Hello World', 7, 5, 'SQL Server') AS Result; -- Result: 'Hello SQL Server'

/* Example 3: Removing Characters */

-- Remove a specific number of characters from a string
SELECT STUFF('Hello World', 6, 5, '') AS Result; -- Result: 'Hello'

/* Example 4: Masking Sensitive Data */

-- Mask a credit card number
SELECT STUFF('1234-5678-9012-3456', 6, 9, '****-****') AS MaskedCard; -- Result: '1234-****-****-3456'

/* Example 5: Formatting Phone Numbers */

-- insert formatting characters into a phone number.
SELECT STUFF(STUFF('1234567890', 4, 0, '-'), 8, 0, '-') AS FormattedPhone; -- Result: '123-456-7890'

/* Example 6: Creating Initials */

-- extract initials from a full name.
SELECT STUFF(STUFF('John Doe', 2, 3, '.'), 5, 3, '.') AS Initials; -- Result: 'J.D.'

/* Example 7: Dynamic SQL Generation */

-- modify parts of a dynamic SQL query.
DECLARE @sql NVARCHAR(MAX) = 'SELECT * FROM Table WHERE Column = Value';
SELECT STUFF(@sql, CHARINDEX('Value', @sql), LEN('Value'), 'NewValue') AS ModifiedSQL; -- Result: 'SELECT * FROM Table WHERE Column = NewValue'

/* Example 8: URL Manipulation */

-- Insert or replace parts of a URL.
SELECT STUFF('http://example.com/page', 8, 0, 'www.') AS ModifiedURL; -- Result: 'http://www.example.com/page'

/* Example 9: Handling CSV Data */

-- Modify parts of a CSV string
SELECT STUFF('1,2,3,4,5', 3, 1, '10') AS ModifiedCSV; -- Result: '1,10,3,4,5'

/* Example 10: Custom String Formatting */ 

-- Insert custom formatting into a string
SELECT STUFF('20250305', 5, 0, '-') AS FormattedDate; -- Result: '2025-0305'

The first 6 examples are typical usages of the Stuff function while the other might raise the eyebrows of some developers.

Example 1: The example is not entirely correct (counting the characters starts at 1).

Example 2: In exchange, this example is correct.

Example 3: The example is unfortunately incorrect (same issue like in the first example). The technique can be useful when only one contiguous region is to be replaced once. Otherwise, one should use the Replace function. 

Example 4: Starting with SQL Server 2016 one can use dynamic masking for similar purposes, which should provide more flexibility in many cases. 

Example 5: Formatting phone number can be more complex than this because there can be different formats, country codes or any other special formats.

Example 6: Names can be quite complex, each part having different size.

Example 7: The example might work in certain cases, though it's enough for a field to contain the keyword "value" for the whole logic to generate errors. 

Example 8: The example is valid, though web addresses can use also other transfer protocols (ftp, ftps, sftp, scp, etc.).

Example 9: A more reliable method is splitting the string in parts and replacing the value from the nth position then inserting a text when the length of the values is not known.

Example 10: Even if the technique is valid, the example isn't entirely valid even if it might be met in practice. See 20th example below for a better approach. 

Prompt:
Give me 10 more scenarios with examples in which the Stuff function can be used in SQL Server.

Output:

/* Example 11: Reversing a string */

-- Reverse a string by replacing characters in a specific order.
SELECT STUFF(STUFF(STUFF('abcde', 1, 1, 'e'), 2, 1, 'd'), 3, 1, 'c') AS ReversedString; -- Result: 'edcba'

/* Example 12: Generating unique identifiers */

-- Modify parts of a GUID to create a custom identifier.
SELECT STUFF('123e4567-e89b-12d3-a456-426614174000', 1, 8, 'abcdef12') AS CustomGUID;-- Result: 'abcdef12-e89b-12d3-a456-426614174000'

/* Example 13: Combining columns */

-- Combine multiple columns into a single formatted string.
SELECT STUFF(FirstName + ' ' + LastName, LEN(FirstName) + 1, 0, ', ') AS FullName
FROM Employees;-- Result: 'John, Doe'

/* Example 14: Trimming strings */

-- Remove leading or trailing characters from a string.
SELECT STUFF('   Hello World   ', 1, 3, '') AS TrimmedString;-- Result: 'Hello World   '

/* Example 15: Creating abbreviations */

-- Generate abbreviations from a full string.
SELECT STUFF('North Atlantic Treaty Organization', 6, 22, 'ATO') AS Abbreviation;-- Result: 'NATO'

/* Example 16: Modifying JSON Data */

-- Insert or replace parts of a JSON string 
SELECT STUFF('{"name":"John","age":30}', 9, 4, 'Doe') AS ModifiedJSON;-- Result: '{"name":"Doe","age":30}'

/* Example 17: Handling XML Data */

-- Modify parts of an XML string.
SELECT STUFF('<name>John</name>', 7, 4, 'Doe') AS ModifiedXML;-- Result: '<name>Doe</name>'

/* Example 18: Generating random strings */

-- Insert random characters into a string.
SELECT STUFF('abcdef', 3, 0, CHAR(65 + ABS(CHECKSUM(NEWID())) % 26)) AS RandomString;-- Result: 'abXcdef' (X is a random character)

/* Example 19: Creating custom error messages  */

-- Insert dynamic values into error messages.
DECLARE @ErrorMessage NVARCHAR(100) = 'Error: Value {0} is not valid.';
SELECT STUFF(@ErrorMessage, CHARINDEX('{0}', @ErrorMessage), 3, '123') AS CustomErrorMessage;-- Result: 'Error: Value 123 is not valid.'

/* Example 20: Formatting dates */

-- Insert separators into a date string.
SELECT STUFF(STUFF('20250305', 5, 0, '-'), 8, 0, '-') AS FormattedDate; -- Result: '2025-03-05'

Example 11: Copilot got the use partially wrong given that each character except the pivoting character needs to be replaced accordingly. So for 6 characters one needs to replace the Stuff function 5 times!

Example 12:  Implementing custom GUID is a process more complex than this as one needs to take care of not generating duplicates.

Example 13: This is an example on how to handle changes dynamically.

Example 14: One should use the Trim function whenever possible, respectively the combination LTrim and RTrim, if Trim is not available (it was introduced in SQL 2017).

Example 15: The example is incorrect. One should consider the length of the string in the formula. 

Example 16:  One must know the values in advance, otherwise the example doesn't hold. Moreover, the same issue like in the first example occurs.

Example 17:  The example in not dynamic.

Example 18:  It's an interesting technique for generating "random" characters given that unique values are generated across a dataset.

Example 19: One can write error messages with multiple placeholders, though the Replace function is simpler to use. 

Example 20: It's easier to cast the value as datetime and apply the required formatting accordingly. Not testing whether the value is a date can lead to curious results.

I met some of the usages exemplified above, though I used the Stuff function seldom (see a previous post), when no other functions were available. Frankly, Copilot could prove to be a useful tool for learning SQL or other programming language in similar ways.

Happy coding!

Previous Post <<||>> Next Post 

03 March 2025

💎🤖SQL Reloaded: Copilot Stories (Part VIII: Recursive Functions)

In theory, recursive functions prove useful in generating a list of numbers based on a formula in which the final result is based on the result of the previous step. In other words, a problem is solved by calculating the previous iteration of the same problem. In practice, they are limited by the number of iterations allowed, and there is a hard limit in SQL Server, the available resources (usually memory), and probably a few other factors. Of course, some algorithms can be implemented to overcome the limitations, while other times there are quite simple linear implementations based on a loop, like in the below examples. Therefore, recursive functions are more of a theoretical concept.   

Disclaimer: The below code was generated by Copilot via prompts and is used for demonstration purposes!

This post evaluates whether Microsoft 365 and Edge Copilot can be used to generate the code for some recursive functions. 

Case 1: Factorials

Let's start with the factorial that calculates the product of the n consecutive numbers.

Prompt:
Generate a recursive function in SQL Server to calculate the factorial of a number.

Output (M365 Copilot):

-- factorial function in Microsoft 365 Copilot
CREATE FUNCTION dbo.Factorial (@n INT)
RETURNS BIGINT
AS
BEGIN
    IF @n <= 1
        RETURN 1
    ELSE
        RETURN @n * dbo.Factorial(@n - 1)
END

Output (Edge Copilot):

-- factorial function in Edge Copilot
CREATE FUNCTION dbo.Factorial (@n INT)
RETURNS BIGINT
AS
BEGIN
    IF @n = 0 OR @n = 1
        RETURN 1
    ELSE
        RETURN @n * dbo.Factorial(@n - 1)
END;

The structure seems correct, and the returning value was identified correctly as bigint, which allows the maximum value in working with integer values. Unfortunately, both functions lead to the same error in a SQL database:

"Msg 455, Level 16, State 2, Line 9, The last statement included within a function must be a return statement."

The formulas ca be consolidated in a single statement as follows:

-- factorial function adapted (minimal)
CREATE FUNCTION dbo.Factorial (@n INT)
RETURNS BIGINT
AS
BEGIN
    RETURN 
        CASE 
            WHEN @n = 0 OR @n = 1 THEN 1
        ELSE
            @n * dbo.Factorial(@n - 1) END
END;

Especially when formulas become complex, it might be a good idea to store the result into a variable and use it in the RETURN statement.

-- factorial function adapted
CREATE FUNCTION dbo.Factorial (@n INT)
RETURNS BIGINT
AS
BEGIN
    DECLARE @retval as bigint;

    IF @n = 0 OR @n = 1
        SET @retval = 1
    ELSE
        SET @retval = @n * dbo.Factorial(@n - 1)

    RETURN @retval
END;

And, here are some tests for the function:

-- testing the functions for multiple values
SELECT dbo.Factorial (0) -- returns 1
SELECT dbo.Factorial (1) -- returns 1
SELECT dbo.Factorial (2) -- returns 2
SELECT dbo.Factorial (3) -- returns 6
SELECT dbo.Factorial (4) -- returns 24
SELECT dbo.Factorial (5) -- returns 120
SELECT dbo.Factorial (20) -- returns 2432902008176640000
SELECT dbo.Factorial (21) -- returns an error for all bigger values

As can be seen, the function will return an error for values bigger than 20, output limited by the data type used. One can build further constraints to test for the maximum value.

Use the following code to drop the function as needed:

-- dropping the function
DROP FUNCTION IF EXISTS dbo.Factorial 

Function's implementation has however another important caveat. If negative numbers are provided as parameters, the following error message is thrown:

"Msg 217, Level 16, State 1, Line 1, Maximum stored procedure, function, trigger, or view nesting level exceeded (limit 32)."

The final function can be defined as:

-- factorial function adapted (final)
CREATE FUNCTION dbo.Factorial (@n INT)
RETURNS BIGINT
AS
BEGIN
    DECLARE @retval as bigint;

    IF @n BETWEEN 0 AND 20
        IF @n = 0 OR @n = 1
            SET @retval = 1
        ELSE
            SET @retval = @n * dbo.Factorial(@n - 1)

    RETURN @retval
END;

One can linearize the function as a loop, though the limitation with the maximum value still exists:

Prompt:
Rewrite the factorial function using a loop.

Output (M365 Copilot):

-- non-recursive function to calculate the factorial of a number using a loop:
CREATE FUNCTION dbo.Factorial (@n INT)
RETURNS BIGINT
AS
BEGIN
    DECLARE @result BIGINT = 1;
    DECLARE @i INT = 1;

    WHILE @i <= @n
    BEGIN
        SET @result = @result * @i;
        SET @i = @i + 1;
    END

    RETURN @result;
END

-- test the code
SELECT dbo.Factorial(5) AS FactorialResult; -- result 120

One can obtain some improvement by changing the return type and @retsult from bigint to float, though the results are always approximations. Here are the approximated results:

-- test code
SELECT dbo.Factorial(20) AS FactorialResult; -- result 2432902008176640000
SELECT dbo.Factorial(21) AS FactorialResult; -- result 5.109094217170944E+19
SELECT dbo.Factorial(22) AS FactorialResult; -- result 1.1240007277776077E+21
SELECT dbo.Factorial(23) AS FactorialResult; -- result 2.585201673888498E+22
SELECT dbo.Factorial(24) AS FactorialResult; -- result 6.204484017332394E+23
SELECT dbo.Factorial(25) AS FactorialResult; -- result 1.5511210043330986E+25
SELECT dbo.Factorial(26) AS FactorialResult; -- result 4.0329146112660565E+26
SELECT dbo.Factorial(27) AS FactorialResult; -- result 1.0888869450418352E+28
SELECT dbo.Factorial(28) AS FactorialResult; -- result 3.0488834461171384E+29
SELECT dbo.Factorial(29) AS FactorialResult; -- result 8.841761993739701E+30
SELECT dbo.Factorial(30) AS FactorialResult; -- result 2.6525285981219103E+32
SELECT dbo.Factorial(31) AS FactorialResult; -- result 8.222838654177922E+33
SELECT dbo.Factorial(32) AS FactorialResult; -- result 2.631308369336935E+35
SELECT dbo.Factorial(170) AS FactorialResult; -- result 7.257415615307994E+306
SELECT dbo.Factorial(171) AS FactorialResult; -- results in arithmetic overflow

Another structure that allows creating recursive functions are the common table expressions (CTEs).

Prompt:
Create a recursive CTE in SQL Server for calculating n factorial.

Output (M365 Copilot):

-- n factorial as CTE
WITH FactorialCTE AS (
    -- Anchor member: factorial of 0 is 1
    SELECT 0 AS n, 1 AS factorial
    UNION ALL
    -- Recursive member: factorial of n is n * factorial of (n-1)
    SELECT n + 1, (n + 1) * factorial
    FROM FactorialCTE
    WHERE n < 10 -- Change this value to calculate factorial for larger numbers
)
SELECT n, factorial
FROM FactorialCTE;

One can cast the value in the anchor member as bigint or float as above with all the constraints resulting from this:

-- n factorial as CTE
WITH FactorialCTE AS (
    -- Anchor member: factorial of 0 is 1
    SELECT 0 AS n, Cast(1 as bigint) AS factorial
    UNION ALL
    -- Recursive member: factorial of n is n * factorial of (n-1)
    SELECT n + 1, (n + 1) * factorial
    FROM FactorialCTE
    WHERE n < 20 -- Change this value to calculate factorial for larger numbers
)
SELECT n, factorial
FROM FactorialCTE;

Case 2: Approximation of π

Power laws can be used to approximate the value of π and other irrational constants. Writing such a function via recursive functions has the same constraint as above, though there are alternatives (including storing the actual value as a constant). 

Prompt:
Generate a recursive function in SQL Server to approximate the value of π using power laws.

Output (M365 Copilot):

-- approximate the value of π using this series:
CREATE FUNCTION dbo.ApproximatePi (@n INT)
RETURNS FLOAT
AS
BEGIN
    IF @n = 0
        RETURN 4.0
    ELSE
        RETURN 4.0 * POWER(-1, @n) / (2 * @n + 1) + dbo.ApproximatePi(@n - 1)
END

-- test the function
SELECT dbo.ApproximatePi(1000) AS PiApproximation;

Function's definition has the same issue as the previous example. It's needed to rewrite the function as a single return:

-- approximate the value of π using this series (rewritten)
CREATE FUNCTION dbo.ApproximatePi (@n INT)
RETURNS FLOAT
AS
BEGIN
    RETURN
        CASE 
            WHEN @n = 0 THEN 4.0
            ELSE
                4.0 * POWER(-1, @n) / (2 * @n + 1) + dbo.ApproximatePi(@n - 1)
        END
END

-- testing the function
SELECT dbo.ApproximatePi (0) -- output: 4
SELECT dbo.ApproximatePi (1) -- output: 2.666666666667
SELECT dbo.ApproximatePi (2) -- output: 3.466666666667
SELECT dbo.ApproximatePi (3) -- output: 2.8952380952389998
SELECT dbo.ApproximatePi (10) -- output: 3.232315809407
SELECT dbo.ApproximatePi (20) -- output: 3.189184782279
SELECT dbo.ApproximatePi (30) -- output: 3.1738423371919993
SELECT dbo.ApproximatePi (31) -- output: 3.110350273699999
SELECT dbo.ApproximatePi (32) -- output: 3.171888735237999
SELECT dbo.ApproximatePi (33) -- throws error

After 32 iterations the call throws the same error as above. Fortunately, such functions can be (re)written using non-recursive implementations, which is the proper way to implementation such functions:

Prompt:
Implement the function without using recursive functions.

Output (M365 Copilot):

-- approximation within loop
CREATE FUNCTION dbo.ApproximatePi (@terms INT)
RETURNS FLOAT
AS
BEGIN
    DECLARE @pi FLOAT = 0.0;
    DECLARE @i INT = 0;

    WHILE @i < @terms
    BEGIN
        SET @pi = @pi + 4.0 * POWER(-1, @i) / (2 * @i + 1);
        SET @i = @i + 1;
    END

    RETURN @pi;
END 

This implementation is more flexible and a similar approach can be used for similar series. And, here are the results for various parameters:

-- testing the function
SELECT dbo.ApproximatePi(1000) AS PiApproximation; -- result: 3.140592653840002
SELECT dbo.ApproximatePi(10000) AS PiApproximation; -- result: 3.141492653571029
SELECT dbo.ApproximatePi(100000) AS PiApproximation; -- result: 3.141582653466945
SELECT dbo.ApproximatePi(1000000) AS PiApproximation; -- result: 3.1415916535590713

The last call is close, but probably not close enough, especially when one needs to use the function in multiple places. There are more complex power series which provide better performance faster. The direct use of the pi() function is usually recommended:

-- using the pi function
SELECT pi(); -- 3.141592653589793

Moreover, some series can be reduced to formulas based on constants like π, e or Φ.

And, a final piece of code:

-- drop the function
DROP FUNCTION IF EXISTS dbo.ApproximatePi

One can use a CTE also in this case:

Prompt:
Generate a recursive function in SQL Server to approximate the value of π using power laws.

Output (M365 Copilot):

-- series via recursive CTE
WITH PiApproximationCTE AS (
    -- Anchor member: start with k = 0
    SELECT 0 AS k, CAST(4.0 AS FLOAT) AS term, CAST(4.0 AS FLOAT) AS pi_approx
    UNION ALL
    -- Recursive member: calculate the next term and add it to the approximation
    SELECT 
        k + 1,
        CAST(4.0 * POWER(-1, k + 1) / (2 * (k + 1) + 1) AS FLOAT),
        pi_approx + CAST(4.0 * POWER(-1, k + 1) / (2 * (k + 1) + 1) AS FLOAT)
    FROM PiApproximationCTE
    WHERE k < 1000 -- Change this value to increase the number of terms
)
SELECT k, pi_approx
FROM PiApproximationCTE
OPTION (MAXRECURSION 0); -- Allow for more recursion levels if needed

This time Copilot generated a different faction for calculating the same. (The output is too long to be added in here as one record is generated  for each iteration.)

Happy coding!

Previous Post <<||>> Next Post

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.