Showing posts with label goals. Show all posts
Showing posts with label goals. Show all posts

14 September 2024

🗄️Data Management: Data Culture (Part V: Quid nunc? [What now?])

Data Management Series
Data Management Series

Despite the detailed planning, the concentrated and well-directed effort with which the various aspects of data culture are addressed, things don't necessarily turn into what we want them to be. There's seldom only one cause but a mix of various factors that create a network of cause and effect relationships that tend to diminish or increase the effect of certain events or decisions, and it can be just a butterfly's flutter that stirs a set of chained reactions. The butterfly effect is usually an exaggeration until the proper conditions for the chaotic behavior appear!

The butterfly effect is made possible by the exponential divergence of two paths. Conversely, success needs probably multiple trajectories to converge toward a final point or intermediary points or areas from which things move on the "right" path. Success doesn't necessarily mean reaching a point but reaching a favorable zone for future behavior to follow a positive trend. For example, a sink or a cone-like structure allow water to accumulate and flow toward an area. A similar structure is needed for success to converge, and the structure results from what is built in the process. 

Data culture needs a similar structure for the various points of interest to converge. Things don't happen by themselves unless the force of the overall structure is so strong that allows things to move toward the intended path(s). Even then the paths can be far from optimal, but they can be favorable. Probably, that's what the general effort must do - bring the various aspects in the zone for allowing things to unfold. It might still be a long road, though the basis is there!

A consequence of this metaphor is that one must identify the important aspects, respectively factors that influence an organization's culture and drive them in the right direction(s) – the paths that converge toward the defined goal(s). (Depending on the area of focus one can consider that there are successions of more refined goals.)

The structure that allows things to converge is based on the alignment of the various paths and implicitly forces. Misalignment can make a force move in other direction with all the consequences deriving from this behavior. If its force is weak, probably will not have an impact over the overall structure, though that's relative and can change in time. 

One may ask for what's needed all this construct, even if it doesn’t reflect the reality. Sometimes, even a not entirely correct model can allow us to navigate the unknown. Model's intent is to depict what's needed for a initiative to be successful. Moreover, success doesn’t mean to shoot bulls eye but to be first in the zone until one's skillset enables performance.

Conversely, it's important to understand that things don't happen by themselves. At least this seems to be the feeling some initiatives let. One needs to build and pull the whole structure in the right direction and the alignment of the various forces can reduce the overall effort and increase the chances for success. Attempting to build something just because it’s written in documentation without understanding the whole picture (or something close to it) can easily lead to failure.

This doesn’t mean that all attempts that don’t follow a set of patterns are doomed to failure, but that the road will be more challenging and will probably take longer. Conversely, maybe these deviations from the optimal paths are what an organization needs to grow, to solidify the foundation on which something else can be built. The whole path is an exploration that doesn’t necessarily match what is written in books, respectively the expectations!

Previous Post <<||>> Next Post

06 March 2024

🧭Business Intelligence: Data Culture (Part II: Leadership, Necessary but not Sufficient)

Business Intelligence
Business Intelligence Series

Continuing the idea from the previous post on Brent Dykes’ article on data culture and Generative AI [1], it’s worth discussing about the relationship between data culture and leadership. Leadership belongs to a list of select words everybody knows about but fails to define them precisely, especially when many traits are associated with leadership, respectively when most of the issues existing in organizations ca be associated with it directly or indirectly.

Take for example McKinsey’s definition: "Leadership is a set of behaviors used to help people align their collective direction, to execute strategic plans, and to continually renew an organization." [2] It gives an idea of what leadership is about, though it lacks precision, which frankly is difficult to accomplish. Using modifiers like strong or weak with the word leadership doesn’t increase the precision of its usage. Several words stand out though: direction, strategy, behavior, alignment, renewal.

Leadership is about identifying and challenging the status quo, defining how the future will or could look like for the organization in terms of a vision, a mission and a destination, translating them into a set of goals and objectives. Then, it’s about defining a set of strategies, focusing on transformation and what it takes to execute it, adjusting the strategic bridge between goals and objectives, or, reading between the lines, identifying and doing the right things, being able to introduce a new order of things, reinventing the organization, adapting the organization to circumstances.

Aligning resumes in aligning the various strategies, aligning people with the vision and mission, while renewal is about changing course in response to new information or business context, identifying and transforming weaknesses into strengths, risks into opportunities, respectively opportunities into certitudes, seeing possibilities and multiplying them.

Leadership is also about working on the system, addressing the systemic failure, addressing structural and organizational issues, making sure that the preconditions and enablers for organizational change are in place, that no barriers exist or other factors impact negatively the change, that the positive aspects of complex systems like emergence or exponential growth do happen in time.

And leadership is about much more - interpersonal influence, inspiring people, Inspiring change, changing mindsets, assisting, motivating, mobilizing, connecting, knocking people out of their comfort zones, conviction, consistency, authority, competence, wisdom, etc. Leadership seems to be an idealistic concept where too many traits are considered, traits that ideally should apply to the average knowledge worker as well.

An organization’s culture is created, managed, nourished, and destroyed through leadership, and that’s a strong statement and constraint. By extension this statement applies to the data culture as well. It’s about leading by example and not by words or preaching, and many love to preach, even when no quire is around. It’s about demanding the same from the managers as managers demand from their subalterns, it’s about pushing the edges of culture. As Dykes mentions, it should be about participating in the data culture initiatives, making expectations explicit, and sharing mental models.

Leadership is a condition necessary but not sufficient for an organizations culture to mature. Financial and other type of resources are needed, though once a set of behaviors is seeded, they have the potential to grow and multiply when the proper conditions are met. Growth occurs also by being aware of what needs to be done and doing it day by day consciously, through self-mastery. Nowadays there are so many ways to learn and search for support, one just needs a bit of curiosity and drive to learn anything. Blaming in general the lack of leadership is just a way of passing the blame one level above on the command chain.

Resources:
[1] Forbes (2024) Why AI Isn’t Going To Solve All Your Data Culture Problems, by Brent Dykes (link)
[2] McKinsey (2022) What is leadership? (link)

Previous Post <<||>> Next Post

19 October 2022

🌡Performance Management: Mastery (Part II: First Time Right - The Aim toward Operational Excellence)

 

Performance Management Series

Rooted in Six Sigma methodology as a step toward operational excellence, First Time Right (FTR) implies that any procedure is performed in the right manner the first time and every time. It equates to minimizing the waste in its various forms (inventory, motion, overprocessing, overproduction, waiting, transportation, defects). Like many quality concepts from the manufacturing industry, the concept was transported in the software development process as principle, process, goal and/or metric. Thus, it became part of Software Engineering, Project Management, Data Science, and any other similar endeavors whose outcome results in software products. 

Besides the quality aspect, FTR is rooted also in the economic imperative – the need to achieve something in the minimum amount of time with the minimum of effort. It’s about being efficient in delivering a product or achieving a given target. It can be associated with continuous improvement, learning and mastery, the aim being to encompass FTR as part of organization’s culture. 

Even if not explicitly declared, FTR lurks in each task planned. It seems that it became common practice to plan with the FTR in mind, however between this theoretical aim and practice there’s as usual an important gap. Unfortunately, planners, managers and even tasks' performers often forget that mistakes are made, that several iterations are needed to get the job done. It starts with the communication between people in clarifying the requirements and ends with the formal sign off. All the deviations from the FTR add up in the deviations between expected and actual effort, though probably more important are the deviations from the plan and all the consequences deriving from it. Especially in complex projects this adds up into a spiral of issues that can easily reinforce themselves. 

Many of the jobs that imply creativity, innovation, research or exploration require at least several iterations to get the job done and this is independent of participants’ professionalism and experience. Moreover, the more quality one needs, the higher the effort, the 80/20 being sometimes a good approximation of the effort needed. In extremis, aiming for perfection instead of excellence can make certain tasks a never-ending story. 

Achieving FTR requires practice - the more novelty, the higher the complexity, the communication or the synchronization needs, the more practice is needed. It starts with the individual to master the individual tasks and ends with the team, where communication, synchronization and other aspects need to be considered. The practice is usually achieved on hands-on work as part of the daily duties, project work, and so on. Unfortunately, it’s based primarily on individual experience, and seldom groomed in advance, as preparation for future tasks. That’s why sometimes when efficiency is needed in performing critical complex tasks, one also needs to consider the learning curve in achieving the required quality. 

Of course, many organizations demand from job applicants experience and, when possible, they hire people with experience, however the diversity, complexity and changing nature of tasks require further practice. This aspect is somehow recognized in the implementation in organizations of the various forms of DevOps, though how many organizations adopt it and enforce it on a regular basis? Moreover, a major requirement of nowadays businesses is to be agile, and besides the mere application of methodologies, being agile means to have also a FTR mindset. 

FTR starts with the wish for mastery at individual and team level and, with the right management attention, by allocating time for learning, self-development in the important areas, providing relevant feedback and building an infrastructure for knowledge sharing and harnessing, FTR can become part of organization’s culture. It’s up to each of us to do it!

04 April 2021

💼Project Management: Lean Management (Part I: Between Value and Waste I - An Introduction)

 Mismanagement

Independently on whether Lean Management is considered in the context of Manufacturing, Software Development (SD), Project Management (PM) or any other business-related areas, there are three fundamental business concepts on which the whole scaffolding of the Lean philosophies is built upon, namely the ones of value, value stream and waste. 

From an economic standpoint, value refers to the monetary worth of a product, asset or service (further referred as product) to an organization, while from a qualitative perspective, it refers to the perceived benefit associated with its usage. The value is thus reflected in the costs associated with a product’s delivery (producer’s perspective), respectively the price paid on acquiring it and the degree to which the product can fulfill a demand (customer’s perspective).

Without diving too deep into theory of product valuation, the challenges revolve around reducing the costs associated with a product’s delivery, respectively selling it to a price the customer is willing to pay for, typically to address a given set of needs. Moreover, the customer is willing to pay only for the functions that satisfy the needs a product is thought to cover. From this friction of opposing driving forces, a product is designed and valued.

The value stream is the sequence of activities (also steps or processes) needed to deliver a product to customers. This formulation includes value-added and non-value-added activities, internal and external customers, respectively covers the full lifecycle of products and/or services in whatever form it occurs, either if is or not perceived by the customers.  

Waste is any activity that consumes resources but creates no value for the customers or, generally, for the stakeholders, be it internal or external. The waste is typically associated with the non-added value activities, activities that don’t produce value for stakeholders, and can increase directly or indirectly the costs of products especially when no attention is given to it and/or not recognized as such. Therefore, eliminating the waste can have an important impact on products’ costs and become one of the goals of Lean Management. Moreover, eliminating the waste is an incremental process that, when put in the context of continuous improvement, can lead to processes redesign and re-engineering.

Taiichi Ohno, the ‘father’ of the Toyota Production System (TPS), originally identified seven forms of waste (Japanese: muda): overproduction, waiting, transporting, inappropriate processing, unnecessary inventory, unnecessary/excess motion, and defects. Within the context of SD and PM, Tom and Marry Poppendieck [1] translated the types of wastes in concepts closer to the language of software developers: partially done work, extra processes, extra features, task switching, waiting, motion and, of course, defects. To this list were added later further types of waste associated with resources, confusion and work conditions.

Defects in form of errors and bugs, ineffective communication, rework and overwork, waiting, repetitive activities like handoffs or even unnecessary meetings are usually the visible part of products and projects and important from the perspective of stakeholders, which in extremis can become sensitive when their volume increases out of proportion.

Unfortunately, lurking in the deep waters of projects and wrecking everything that stands in their way are the other forms of waste less perceivable from stakeholders’ side: unclear requirements/goals, code not released or not tested, specifications not implemented, scrapped code, overutilized/underutilized resources, bureaucracy, suboptimal processes, unnecessary optimization, searching for information, mismanagement, task switching, improper work condition, confusion, to mention just the important activities associated to waste.

Through their elusive nature, independently on whether they are or not visible to stakeholders, they all impact the costs of projects and products when the proper attention is not given to them and not handled accordingly.

Lean Management - The Waste Iceberg

References:
[1] Mary Poppendieck & Tom Poppendieck (2003) Lean Software Development: An Agile Toolkit, Addison Wesley, ISBN: 0-321-15078-3

03 February 2021

📦Data Migrations (DM): Conceptualization (Part II: Plan vs. Concept vs. Strategy)

Data Migration
Data Migrations Series

A concept is a document that describes at high level the set of necessary steps and their implications to achieve a desired result, typically making the object of a project. A concept is usually needed to provide more technical and nontechnical information about the desired solution, the context in which a set of steps are conducted, respectively the changes considered, how the changes will be implemented and the further aspects that need to be considered. It can include a high-level plan and sometimes also information that typically belong in a Business Case – goals,objectives, required resources, estimated effort and costs, risks and opportunities.

A concept is used primarily as basis for sign-off as well for establishing common ground and understanding. When approved, it’s used for the actual implementation and solution’s validation. The concept should be updated as the project progresses, respectively as new information are discovered.

Creating a concept for a DM can be considered as best practice because it allows documenting the context, the technical and organizational requirements and dependencies existing between the DM and other projects, how they will be addressed. The concept can include also a high-level plan of the main activities (following to be detailed in a separate document).

Especially when the concept has an exploratory nature (due to incomplete knowledge or other considerations), it can be validated with the help of a proof-of-concept (PoC), the realization of a high-level-design prototype that focuses on the main characteristics of the solution and allows thus identifying the challenges. Once the PoC implemented, the feedback can be used to round out the concept.

Building a PoC for a DM should be considered as objective even when the project doesn’t seem to meet any major challenges. The PoC should resume in addressing the most important DM requirements, ideally by implementing the whole or most important aspects of functionality (e.g. data extraction, data transformations, integrity validation, respectively the import into the target system) for one or two data entities. Once the PoC built, the team can use it as basis for the evolutive development of the solution during the iterations considered.

A strategy is a set of coordinated and sustainable actions following a set of well-defined goals, actions devised into a plan and designed to create value and overcome further challenges. A strategy has the character of a concept though it has a broader scope being usually considered when multiple projects or initiatives compete for the same resources to provide a broader context and handle the challenges, risks and opportunities. Moreover, the strategy takes an inventory of the current issues and architecture – the 'AS-IS' perspective and sketches the to 'TO-BE' perspective by devising a roadmap that bridges the gap between the two.

In the case of a DM a strategy might be required when multiple DM projects need to be performed in parallel or sequentially, as it can help the organization to better manage the migrations.

A plan is a high-level document that describes the tasks, schedule and resources required to carry on an activity. Even if it typically refers to the work or product breakdown structure, it can cover other information usually available in a Business Case. A project plan is used to guide both project execution and project control, while in the context of Strategic Management the (strategic) plan provides a high-level roadmap on how the defined goals and objectives will be achieved during the period covered by the strategy.

For small DM projects a plan can be in theory enough. As both a strategy and a concept can include a high-level plan, the names are in praxis interchangeable.

Previous Post <<||>> Next Post

02 February 2021

📦Data Migrations (DM): Conceptualization I (Goals, Objectives & Requirements)

Data Migration
Data Migrations Series

One of the nowadays’ challenges is finding the right mix of technologies that allows building a solution for a business need. There are so many choices and the responsible person is easily tempted to use one of the trending technologies just because he wants to learn something new or the technologies seem to fit into the bigger picture, which probably in many cases it would be acceptable. Unfortunately, there’s also the tendency of picking a technology without looking at what functionality it provides, respectively whether the functionality meets intended solutions’ requirements. Moreover, the requirements are sometimes barely defined at the appropriate level of detail, fact that makes from the implementation project a candidate for failure. Sometimes even the goals and objectives aren’t clearly stated, fact that can make a project’s success easily questionable from the beginning. 

A goal is a general statement that reflects the desired result toward which an organization’s effort needs to be directed. For example, a Data Migration (DM)’s primary goal can be formulated as 'to make available all the master and transactional data needed by the business from the legacy systems to the target system(s) within expected timeline and quality with a minimal disruption for the business'. 

An objective is a break down of the goal into several components that should foster a clear understanding on how the goal will be achieved. Ideally the objectives should be SMART (specific, measurable, attainable, relevant, time-bound), even if measurable objectives are sometimes hard to define properly. One can consider them as the tactics used in achieving the goal. For example, the above formulated goal can be broken down into the following objectives:

  • Build a DM concept/strategy
  • Build a flexible and performant infrastructure for DM that can be adapted to further requirements
  • Provide a basis for further DMs
  • Align DM and main project’s requirements and activities
  • Provide an interface and support for the Data Management areas
  • Foster trust, transparency and awareness 
  • Address internal/external compliance requirements
  • Document and communicate accountability for the various activities
  • Cleanse and enrich the data needed by the target system 
  • Archive the DM and project data 

One can attempt defining the objectives directly from the goal(s), though unless one is aware of all the implication a DM has, more likely one will be forced to define and evaluate the individual functional and nonfunctional requirements for the DM first, and attempt consolidating the requirements into a set of objectives. In the end it can be a combination of both, in which some objectives are first formulated, the requirements are defined and evaluated, respectively the objectives are refined to accommodate the requirements. 

ISO 9126, an international standard for the evaluation of software quality, defines about 45-50 attributes that can be used for addressing the requirements of software solutions, attributes that reflect functionality, reliability, usability, efficiency, and maintainability characteristics. One can start with such a list and identify how important are the respective attributes for the solution.  The next step would be to document the requirements into a consolidated list by providing a short argumentation for their use, respectively how they will be addressed as part of the solution. The process can prove to be time-consuming, however it is a useful exercise that usually needs to be done only once and be reviewed occasionally.

The list can be created independently of any other documentation or be included directly into a concept or strategy. The latter will assure in theory that the document provides a unitary view of the migration, considering that each new or obsolete requirement can impact the concept. 

Previous Post <<||>> Next Post

05 January 2021

🧮ERP: Planning (Part II: It’s all about Scope - Nonfunctional Requirements & MVP))

ERP Implementation

Nonfunctional Requirements

In contrast to functional requirements (FRs), nonfunctional requirements (NFRs) have no direct impact on system’s behavior, affecting end-users’ experience with the system, resuming thus to topics like performance, usability, reliability, compatibility, security, monitoring, maintainability, testability, respectively other constraints and quality attributes. Even if these requirements are in general addressed by design, the changes made to the system have the potential of impacting users’ experience negatively.  

Moreover, the NFRs are usually difficult to quantify, and probably that’s why they are seldom made explicit in a formal document or are considered eventually only at high level. However, one can still find a basis for comparison against compliance requirements, general guidelines, standards, best practices or the legacy system(s) (e.g. the performance should not be worse than in the legacy system, the volume of effort for carrying the various activities should not increase). Even if they can’t be adequately described, it’s recommended to list the NFRs in general terms in a formal document (e.g. implementation contract). Failing to do so can open or widen the risk exposure one has, especially when the system lacks important support in the respective areas. In addition, these requirements need to be considered during testing and sign-off as well. 

Minimum Viable Product (MVP)

Besides gaps’ consideration in respect to FRs, it’s important to consider sometimes on whether the whole functionality is mandatory, especially when considering the various activities that need to be carried out (parametrization, Data Migration).

For example, one can target to implement a minimum viable product (MVP) - a version of the product which has just enough features to cover the mandatory or the most important FRs. The MVP is based on the idea that implementing about 80% of the needed functionality has in theory the potential of providing earlier a usable product with a minimum of effort (quick wins), assure that project’s goals and objectives were met, respectively assure a basis for further development. In case of cost overruns, the MVP assures that the business has a workable product and has the opportunity of deciding whether it’s worth of investing more into the project now or later. 

The MVP allows also to get early users’ feedback and integrate it into further enhancements and developments. Often the users understand the capabilities of a system, respectively implementation, only when they are able using the system. As this is a learning process, the learning period can take up to a few months until adequate feedback is available. Therefore, postponing implementation’s continuation with a few months can have in theory a positive impact, however it can come also with drawbacks (e.g. the resources are not available anymore). 

A sketch of the MVP usually results from requirements’ prioritization, however then requirements need to be regarded holistically, as there can be different levels of dependencies existing between them. In addition, different costs can incur if the requirements will be handled later, and other constrains may apply as well. Considering an MVP approach can be a sword with two edges. In the worst-case scenario, the business will get only the MVP, with its good and bad characteristics. The business will be forced then to fill the gaps by working outside the system, which can lead to further effort and, in extremis, with poor acceptance of the system. In general, users expect having their processes fully implemented in the system, expectation which is not always economically grounded.

After establishing an MVP one can consider the further requirements (including improvement suggestions) based on a cost-benefit basis and implement them accordingly as part of a continuous improvement initiative, even if more time will be maybe required for implementing the same.

Previous Post <<||>> Next Post

03 January 2021

🤝Governance: Responsibility (Just the Quotes)

"Weak character coupled with honored place, meager knowledge with large plans, limited powers with heavy responsibility, will seldom escape disaster." ("I Ching" ["Book of Changes"], cca. 600 BC)

"The only way for a large organization to function is to decentralize, to delegate real authority and responsibility to the man on the job. But be certain you have the right man on the job." (Robert E Wood, 1951)

"[...] authority - the right by which superiors are able to require conformity of subordinates to decisions - is the basis for responsibility and the force that binds organization together. The process of organizing encompasses grouping of activities for purposes of management and specification of authority relationships between superiors and subordinates and horizontally between managers. Consequently, authority and responsibility relationships come into being in all associative undertakings where the superior-subordinate link exists. It is these relationships that create the basic character of the managerial job." (Harold Koontz & Cyril O Donnell, "Principles of Management", 1955)

"[...] authority for given tasks is limited to that for which an individual may properly held responsible." (Harold Koontz & Cyril O Donnell, "Principles of Management", 1955)

"If charts do not reflect actual organization and if the organization is intended to be as charted, it is the job of effective management to see that actual organization conforms with that desired. Organization charts cannot supplant good organizing, nor can a chart take the place of spelling out authority relationships clearly and completely, of outlining duties of managers and their subordinates, and of defining responsibilities." (Harold Koontz & Cyril O Donnell, "Principles of Management", 1955)

"Responsibility cannot be delegated. While a manager may delegate to a subordinate authority to accomplish a service and the subordinate in turn delegate a portion of the authority received, none of these superiors delegates any of his responsibility. Responsibility, being an obligation to perform, is owed to one's superior, and no subordinate reduces his responsibility by assigning the duty to another. Authority may be delegated, but responsibility is created by the subordinate's acceptance of his assignment." (Harold Koontz & Cyril O Donnell, "Principles of Management", 1955)

"Viewed internally with respect to the enterprise, responsibility may be defined as the obligation of a subordinate, to whom a superior has assigned a duty, to perform the service required. The essence of responsibility is, then, obligation. It has no meaning except as it is applied to a person." (Harold Koontz & Cyril O Donnell, "Principles of Management", 1955)

"You can delegate authority, but you can never delegate responsibility by delegating a task to someone else. If you picked the right man, fine, but if you picked the wrong man, the responsibility is yours - not his." (Richard E Krafve, The Boston Sunday Globe, 1960)

"Modern organization makes demands on the individual to learn something he has never been able to do before: to use organization intelligently, purposefully, deliberately, responsibly [...] to manage organization [...] to make [...] his job in it serve his ends, his values, his desire to achieve." (Peter F Drucker, The Age of Discontinuity, 1968)

"[Management by objectives is] a process whereby the superior and the subordinate managers of an enterprise jointly identify its common goals, define each individual's major areas of responsibility in terms of the results expected of him, and use these measures as guides for operating the unit and assessing the contribution of each of its members." (Robert House, "Administrative Science Quarterly", 1971)

"'Management' means, in the last analysis, the substitution of thought for brawn and muscle, of knowledge for folkways and superstition, and of cooperation for force. It means the substitution of responsibility for obedience to rank, and of authority of performance for authority of rank. (Peter F Drucker, "People and Performance", 1977)

"[...] the first criterion in identifying those people within an organization who have management responsibility is not command over people. It is responsibility for contribution. Function rather than power has to be the distinctive criterion and the organizing principle." (Peter F Drucker, "People and Performance", 1977)

"The productivity of work is not the responsibility of the worker but of the manager." (Peter F Drucker, "Management in Turbulent Times", 1980)

"By assuming sole responsibility for their departments, managers produce the very narrowness and self-interest they deplore in subordinates. When subordinates are relegated to their narrow specialties, they tend to promote their own practical interests, which then forces other subordinates into counter-advocacy. The manager is thereby thrust into the roles of arbitrator, judge, and referee. Not only do priorities become distorted, but decisions become loaded with win/lose dynamics. So, try as the manager might, decisions inevitably lead to disgruntlement and plotting for the next battle." (David L Bradford & Allan R Cohen, "Managing for Excellence", 1984)

"The man who delegates responsibilities for running the company, without knowing the intimate details of what is involved, runs the enormous risk of rendering himself superfluous." (Harold Geneen, "Managing", 1984)

"Leadership is the total effect you have on the people and events around you. This effect is your influence. Effective leading is being consciously responsible for your organizational influence. [...] The essence of leadership is knowing that YOU CAN NEVER NOT LEAD. You lead by acts of commission and acts of omission." (Kenneth Schatz & Linda Schatz, "Managing by Influence", 1986)

"Looking for differences between the more productive and less productive organizations, we found that the most striking difference is the number of people who are involved and feel responsibility for solving problems." (Michael McTague, "Personnel Journal", 1986)

"Management has a responsibility to explain to the employee how the routine job contributes to the business's objectives. If management cannot explain the value of the job, then it should be eliminated and the employee reassigned." (Douglas M Reid, Harvard Business Review, 1986)

"A systematic effort must be made to emphasize the group instead of the individual. [...] Group goals and responsibilities can usually overcome any negative reactions to the individual and enforce a standard of cooperation that is attainable by persuasion or exhortation." (Eugene Raudsepp, MTS Digest, 1987)

"An individual without information cannot take responsibility; an individual who is given information cannot help but take responsibility." (Jan Carlzon, "Moments of Truth", 1987)

"Executives have to start understanding that they have certain legal and ethical responsibilities for information under their control." (Jim Leeke, PC Week, 1987)

"If responsibility - and particularly accountability - is most obviously upwards, moral responsibility also reaches downwards. The commander has a responsibility to those whom he commands. To forget this is to vitiate personal integrity and the ethical validity of the system." (Roger L Shinn, "Military Ethics", 1987)

[...] quality assurance is the job of the managers responsible for the product. A separate group can't 'assure' much if the responsible managers have not done their jobs properly. [...] Managers should be held responsible for quality and not allowed to slough off part of their responsibility to a group whose name sounds right but which cannot be guaranteed quality if the responsible managers have not been able to do so." (Philip W. Metzger, "Managing Programming People", 1987)

"Responsibility is a unique concept [...] You may share it with others, but your portion is not diminished. You may delegate it, but it is still with you. [...] If responsibility is rightfully yours, no evasion, or ignorance or passing the blame can shift the burden to someone else. Unless you can point your finger at the man who is responsible when something goes wrong, then you have never had anyone really responsible." (Hyman G Rickover, "The Rickover Effect", 1992)

"If you treat people as though they are responsible, they tend to behave that way." (James P Lewis, "Project Planning, Scheduling, and Control" 3rd Ed., 2001)

"You can’t delegate responsibility without giving a person authority commensurate with it." (James P Lewis, "Project Planning, Scheduling, and Control" 3rd Ed., 2001)

"What do people do today when they don’t understand 'the system'? They try to assign responsibility to someone to fix the problem, to oversee 'the system', to coordinate and control what is happening. It is time we recognized that 'the system' is how we work together. When we don’t work together effectively putting someone in charge by its very nature often makes things worse, rather than better, because no one person can understand 'the system' well enough to be responsible. We need to learn how to improve the way we work together, to improve 'the system' without putting someone in charge, in order to make things work." (Yaneer Bar-Yam, "Making Things Work: Solving Complex Problems in a Complex World", 2004)

"In order to cultivate a culture of accountability, first it is essential to assign it clearly. People ought to clearly know what they are accountable for before they can be held to it. This goes beyond assigning key responsibility areas (KRAs). To be accountable for an outcome, we need authority for making decisions, not just responsibility for execution. It is tempting to refrain from the tricky exercise of explicitly assigning accountability. Executives often hope that their reports will figure it out. Unfortunately, this is easier said than done." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Any software project must have a technical leader, who is responsible for all technical decisions made by the team and have enough authority to make them. Responsibility and authority are two mandatory components that must be present in order to make it possible to call such a person an architect." (Yegor Bugayenko, "Code Ahead", 2018)

"Responsibility means an inevitable punishment for mistakes; authority means full power to make them." (Yegor Bugayenko, "Code Ahead", 2018)

22 November 2019

🔦Process Management: Business Process (Definitions)

"A business process is a collection of activities that takes one or more kinds of input and creates an output that is of value to the customer. A business process has a goal and is affected by events occurring in the external world or in other processes." (James A Champy & Michael M Hammer, "Reengineering the Corporation", 1993)

"A process is a set of linked activities that take an input and transform it to create an output. Ideally, the transformation that occurs in the process should add value to the input and create an output that is more useful and effective to the recipient either upstream or downstream."
(Henry J Johansson, "Business process reengineering: Breakpoint strategies for market dominance", 1993)

"Major operational activities or processes supported by a source system, such as orders, from which data can be collected for the analytic purposes of the data warehouse. Choosing the business process is the first of four key steps in the design of a dimensional model." (Ralph Kimball & Margy Ross, "The Data Warehouse Toolkit" 2nd Ed., 2002)

"The sequence of activities 'enclosing' the production process. These activities are common to all types of products and services, and include defining the job, negotiation with the customer, and reporting project status." (Richard D Stutzke, "Estimating Software-Intensive Systems: Projects, Products, and Processes", 2005)

"The subject areas of a business. The method by which a business is divided up. In a data warehouse, the subject areas become the fact tables." (Gavin Powell, "Beginning Database Design", 2006)

"A structured description of the activities or tasks that have to be done to fulfill a certain business need. The activities or tasks might be manual steps (human interaction) or automated steps (IT steps)." (Nicolai M Josuttis, "SOA in Practice", 2007)

"A structured and measured, managed, and controlled set of interrelated and interacting activities that uses resources to transform inputs into specified outputs." (Nathalíe Galeano, "Competency Concept in VO Breeding Environment", 2008) 

"The codification of rules and practices that constitute a business." (Judith Hurwitz et al, "Service Oriented Architecture For Dummies" 2nd Ed., 2009)

"The defined method for a range of activities that organizations perform. A business process can include anything from the steps needed to make a product to how a supply is ordered or how an invoice is created." (Tony Fisher, "The Data Asset", 2009)

"A structured description of the activities or tasks that have to be done to fulfill a certain business need. The activities or tasks might be manual steps (human interaction) or automated steps (IT steps)." (David Lyle & John G Schmidt, "Lean Integration", 2010)

"An activity as carried out by business people, including the mechanisms involved. This is in the domain of Row Two, the Business Owner’s View. Alternatively, the architect in Row Three sees a system process which is about the data transformations involved in carrying out a business process. In either case, processes can be viewed at a high level or in atomic detail." (David C Hay, "Data Model Patterns: A Metadata Map", 2010)

"A collection of activities performed to accomplish a clearly defined goal." (Linda Volonino & Efraim Turban, "Information Technology for Management" 8th Ed., 2011)

"A collection of activities designed to produce a specific output for a particular customer or market." (International Qualifications Board for Business Analysis, "Standard glossary of terms used in Software Engineering", 2011)

"A process that is intended to contribute to the overall value of an enterprise. The complex interactions between people, applications, and technologies designed to create customer value. A process is composed of activities." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"A business process is a series of steps required to execute a function that is important to an organization. Business processes include things like taking an order or setting up an account or paying a claim. In process analysis, business processes are the focus of opportunities for improvement. Organizations usually have a set of key processes that require support from other areas, like information technology." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

 "A holistic management approach for the detection, analysis, modeling, implementation, improvement and governance of the activities within or between enterprises." (Michael Fellmann et al, "Supporting Semantic Verification of Process Models", 2012)

"An activity (or set of activities) that is managed by an organization to produce some result of value to that organization, its customers, its suppliers, and/or its partners." (Graham Witt, "Writing Effective Business Rules", 2012)

"The codification of rules and practices that constitute a business." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A coordinated set of collaborative and transactional work activities carried out to complete work steps." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"The defined method for a range of activities that organizations perform. A business process can include anything from the steps needed to make a product to how a supply is ordered or how a decision is made." (Jim Davis & Aiman Zeid, "Business Transformation", 2014)

"A set of activities that teams within an organization carry out to accomplish a specific goal." (David K Pham, "From Business Strategy to Information Technology Roadmap", 2016)

"The business activities executed to deliver products or services to external customers. Business process is supported by and consumes IT-services to achieve their objectives." (by Brian Johnson & Leon-Paul de Rouw, "Collaborative Business Design", 2017)

"At its most generic, any set of activities performed by a business that is initiated by an event, transforms information, materials or business commitments, and produces an output. Value chains and large-scale business processes produce outputs that are valued by customers. Other processes generate outputs that are valued by other processes." (Appian)

29 July 2019

💻IT: Best Practices (Definitions)

"A preferred and repeatable action or set of actions completed to fulfill a specific requirement or set of requirements during the phases within a product-development process." (Clyde M Creveling, "Six Sigma for Technical Processes: An Overview for R Executives, Technical Leaders, and Engineering Managers", 2006)

"A process or method that is generally recognized to produce superior results. The application of these should result in a positive, measurable change." (Tilak Mitra et al, "SOA Governance", 2008)

"A technique or methodology that, through past experience and research, has proven to reliably lead to a desired result. A commitment to using the best practices in any field (for example, in the domain of IT Architecture) ensures leveraging past experience and all of the knowledge and technology at one’s disposal to ensure success." (Allen Dreibelbis et al, "Enterprise Master Data Management", 2008)

"An effective way of doing something. It can relate to anything from writing program code to IT governance." (Judith Hurwitz et al, "Service Oriented Architecture For Dummies" 2nd Ed., 2009)

"A best practice is commonly understood to be a well-proven, repeatable, and established technique, method, tool, process, or activity that is more certain in delivering the desired results. This indicates that a best practice typically has been used by a large number of people or organizations and/or over a long time, with significant results that are clearly superior over other practices. Knowledge patterns can be used to formalize the description of a best practice." (Jörg Rech et al, "Knowledge Patterns" [in "Encyclopedia of Knowledge Management" 2nd Ed.], 2011)

"A specific method that improves the performance of a team or an organization and can be replicated or adapted elsewhere. Best practices often take the form of guidelines, principles, or ideas that are endorsed by a person or governing body that attests to the viability of the best practice." (Gina Abudi & Brandon Toropov, "The Complete Idiot's Guide to Best Practices for Small Business", 2011)

"A technique, method, process, discipline, incentive, or reward generally considered to be more effective at delivering a particular outcome than by other means." (Craig S Mullins, "Database Administration", 2012)

"In general, Best Practices refer to the methods, currently recognized within a given industry or discipline, to achieve a stated goal or objective. In the OPM3 context, Best Practices are achieved when an organization demonstrates consistent organizational project management processes evidenced by successful outcomes." (Project Management Institute, "Organizational Project Management Maturity Model (OPM3)" 3rd Ed, 2013)

"An effective way of doing something. It can relate to anything from writing program code to IT governance." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"Those methods, processes, or procedures that have been proven to be the most effective, based on real-world experience and measured results." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"Best practices are defined as commercial or professional procedures that are accepted or prescribed as being effective most of the time. It can also be considered a heuristic, in that is a rule of thumb that generally succeeds but is not guaranteed to always work in every instance." (Michael Winburn & Aaron Wheeler, "Cloud Storage Security", 2015)

"A 'benchmarking' approach where organisations determine who the leader in a particular practice is and then copy that approach. Useful for achieving efficiencies but may diminish differentiation if not used with caution at the strategic level." (Duncan Angwin & Stephen Cummings, "The Strategy Pathfinder" 3rd Ed., 2017)

"A proven activity or process that has been successfully used by multiple enterprises." (ISACA) 

"A superior method or innovative practice that contributes to the improved performance of an organization, usually recognized as best by other peer organizations." (American Society for Quality)

12 July 2019

💻IT: IT Governance (Definitions)

"Framework for the leadership, organizational structures and business processes, standards and compliance to these standards, which ensure that the organization’s IT supports and enables the achievement of its strategies and objectives." (Alan Calder, "IT Governance: Guidelines for Directors", 2005)

"The processes, policies, relationships, and mechanisms that ensure that information technology delivers business value while balancing risk and investment decisions. IT governance ensures accountability and provides rigor for managing IT capabilities in the context of a larger corporate governance framework." (Evan Levy & Jill Dyché, "Customer Data Integration", 2006)

"Addresses the application of governance to an IT organization and its people, processes, and information to guide the way those assets support the needs of the business. It may be characterized by assigning decision rights and measures to processes." (Tilak Mitra et al, "SOA Governance", 2008)

"IT governance is the system and structure for defining policy and monitoring and controlling the policy implementation, and managing and coordinating the procedures and resources aimed at ensuring the efficient and effective execution of services." (Anton Joha & Marijn Janssen, "The Strategic Determinants of Shared Services", 2008)

"The discipline of managing IT as a service to the business, aligning IT objectives with business goals." (Allen Dreibelbis et al, "Enterprise Master Data Management", 2008)

"An integral part of enterprise governance and consists of the leadership and organizational structures and processes that ensure the enterprise’s IT sustains and extends the organization’s strategies and objectives." (Edephonce N Nfuka & Lazar Rusu, IT Governance in the Public Sector in a Developing Country, 2009)

"(1) Locus of IT decision-making authority (narrow definition). (2) The distribution of IT decision-making rights and responsibilities among different stakeholders in the organization, and the rules and procedures for making and monitoring decisions on strategic IT concerns (comprehensive definition)." (Ryan R Peterson, "Trends in Information Technology Governance", 2009)

"Structure of relationships and processes to direct and control the IT enterprise to achieve IT’s goals by adding value while balancing risk versus return over IT and its processes." (IT Governance Institute, "IT Governance Implementation Guide, Using COBIT and Val IT", 2010)

"The discipline of tracking, managing, and steering an IS/IT landscape. Architectural governance is concerned with change processes (design governance). Operational governance looks at the operational performance of systems against contracted performance levels, the definition of operational performance levels, and the implementation of systems that ensure the effective operation of systems." (David Lyle & John G Schmidt, "Lean Integration", 2010)

"Formally established statements that direct the policies regarding IT alignment with organizational goals and allocation of resources." (Linda Volonino & Efraim Turban, "Information Technology for Management 8th Ed", 2011)

"Supervision monitoring and control of an organization's IT assets." (Linda Volonino & Efraim Turban, "Information Technology for Management" 8th Ed, 2011)

"The processes and relationships that lead to reasoned decision making in IT." (Steven Romero, "Eliminating ‘Us and Them’", 2011)

"The function of ensuring that the enterprise's IT activities match and support the organization's strategies and objectives. Governance is very often associated with budgeting, project management, and compliance activities." (Bill Holtsnider & Brian D Jaffe, "IT Manager's Handbook" 3rd Ed, 2012)

"Controls and process to improve the effectiveness of information technology; also, the primary way that stakeholders can ensure that investments in IT create business value and contribute toward meeting business objectives." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"Processes used to ensure that IT resources are aligned with the goals of the organization. Organizations often use frameworks to help them with IT governance." (Darril Gibson, "Effective Help Desk Specialist Skills", 2014)

"The framework of rules and practices by which an organization structures its technology decision-making process in order to ensure alignment of the organization's business strategy with its operations." (David K Pham, "From Business Strategy to Information Technology Roadmap", 2016)

"Set of methods and techniques for reaching full alignment between business strategy and IT strategy." (Dalia S Vugec, "IT Strategic Grid: A Longitudinal Multiple Case Study", 2019)

"The processes that ensure the effective and efficient use of IT in enabling an organization to achieve its goals." (Lili Aunimo et al, "Big Data Governance in Agile and Data-Driven Software Development: A Market Entry Case in the Educational Game Industry", 2019)

"The structures, processes, and mechanisms by which the current and future use of ICT is directed and controlled." (Konstantinos Tsilionis & Yves Wautelet, "Aligning Strategic-Driven Governance of Business IT Services With Their Agile Development: A Conceptual Modeling-Based Approach", 2021)

"IT governance (ITG) is defined as the processes that ensure the effective and efficient use of IT in enabling an organization to achieve its goals." (Gartner)

"The system by which the current and future use of IT is directed and controlled, Corporate Governance of IT involves evaluating and directing the use of IT to support the organisation and monitoring this use to achieve plans." (ISO/IEC 38500)

06 May 2019

🧭Business Intelligence: Key Performance Indicators [KPI] (Part I: An Introduction)

Business Intelligence

Key Performance Indicators (KPIs) are quantifiable measurements (aka metrics) that reflect the critical success factor of an organization in respect to their strategic goals and objectives. They allow measuring the progress toward reaching the defined goals and, to some degree, forecasting the further  evolution. They help keeping the focus on the goals, increases awareness in what concerns the goals and provide visibility into the business.

As they reflect an organization’s objectives, KPIs need to be anchored and aligned with them. If there’s no association with an objective then one doesn’t deal with a KPI but with other form of performance metric. Therefore KPIs need to change with the objectives, they are not fix.

One important requirement for a KPI is to be defined using SMART (specific, measurable, attainable, relevant, time-bound) criteria. Thus a KPI needs to be clear and unambiguous (specific), needs to measure the progress against a goal (measurable), needs to be realistic (attainable), needs to be relevant for the business and its current strategy (relevant), and needs to specify when the result(s) can be achieved (time-bound). To the SMART criteria some consider also the requirement for a KPI to be periodically and consistently evaluated and reviewed (trackable) and agreed between the parties afected by it (agreed).

A KPI needs to be visible within an organization, understandable and non-redundant. Even if KPIs are a tool for the upper management, their definition and impact needs to be visible and understood by all the people working with it, even if this can lead to unexpected behavior. The requirement for non-redundancy implies a partition of the KPIs to limit the cases in which two or more KPIs provide the same information.

A KPI needs to be supported by actions and needs to trigger actions. It’s nice to have KPIs reported periodically to the upper management, though as long no action is triggered, there’s no value in it. A KPI is kind of reinforcement for questions like: “why are we doing good/bad?”. The negative variations must trigger some form of action, however also the positive variation could involve further analysis to understand what caused the improvement.

The variation of a KPI needs to be supported by facts – each variation needs to be explainable in one form or another. A number without a story remains a number that can or not be trusted. Therefore, it might be needed to have further metrics or reports that support the KPIs, that can be used to identify the sources for variation, in order to understand the data.

Last but not the least KPIs need to be documented. The documentation needs to include at minimum a rough definition that includes the rationale, the boundary as well the critical values, metric’s owners, unit of measure, etc. In addition, one can add historical information about the KPI in respect to when and what caused variations, respectively how the variations were brought under control.

KPIs vary from an organization to another, the variation in not only influenced by the different goals organizations might have, but also based on the fact that organizations tend to measure different things, often the wrong things. It’s in general recommended to have a small number of KPIs that reflect in one dasboard how the business is doing and what is important for the business.

KPIs provide a basis for change by providing insights into what needs to change to improve some aspects of the business. When adequately defined and measured, KPIs provide a good perspective over an organization’s effort in achieving its goals and objectives, and therefore a good tool for monitoring and stirring organization’s strategy.

05 May 2019

𖣯Strategic Management: Strategy Definition (Part II: Defining the Strategy)

Strategic Management

In a previous post an organization’s strategy was defined as a set of coordinated and sustainable actions following a set of well-defined goals, actions devised into a plan and designed to create value and overcome an organization’s challenges. In what follows are described succinctly the components of the strategy.

A strategy’s definition should start with the identification of organization’s vision, where the organization wants to be in the future, its mission statement, a precise description of what an organization does in turning the vision from concept to reality, its values - traits and qualities that are considered as representative, and its principlesthe guiding laws and truths for action. All these components have the purpose at defining at high-level the where (the vision), the why (the mission), the what (the core values) and by which means (the principles) of the strategy.

One of the next steps that can be followed in parallel is to take inventory of the available infrastructure: systems, processes, procedures, practices, policies, documentation, resources, roles and their responsibilities, KPIs and other metrics, ongoing projects and initiatives. Another step resumes in identifying the problems (challenges), risks and opportunities existing in the organization as part of a SWOT analysis adjusted to organization’s internal needs. One can extend the analysis to the market and geopolitical conditions and trends to identify further opportunities and risks. Within another step but not necessarily disconnected from the previous steps is devised where the organization could be once the problems, risks, threats and opportunities were addressed.

Then the gathered facts are divided into two perspectives – the “IS” perspective encompasses the problems together with the opportunities and threats existing in organization that define the status quo, while the “TO BE” perspective encompasses the wished state. A capability maturity model can be used to benchmark an organization’s current maturity in respect to industry practices, and, based on the wished capabilities, to identify organization’s future maturity.

Based on these the organization can start formulating its strategic goalsa set of long-range aims for a specific time-frame, from which are derived a (hierarchical) set of objectives, measurable steps an organization takes in order to achieve the goals. Each objective carries with it a rational, why the objective exists, an impact, how will the objective change the organization once achieved, and a target, how much of the objective needs to be achieved. In addition, one can link the objectives to form a set of hypothesis - predictive statements of cause and effect that involve approaches of dealing with the uncertainty. In order to pursue each objective are devised methods and means – the tactics (lines of action) that will be used to approach the various themes. It’s important to prioritize the tactics and differentiate between quick winners and long-term tactics, as well to define alternative lines of actions.

Then the tactics are augmented in a strategy plan (roadmap) that typically covers a minimum of 3 to 5 years with intermediate milestones. Following the financial cycles the strategy is split in yearly units for each objective being assigned intermediate targets. Linked to the plan are estimated the costs, effort and resources needed. Last but not the least are defined the roles, management and competency structures, with their responsibilities, competencies and proper level of authority, needed to support strategy’s implementation. Based on the set objectives are devised the KPIs used to measure the progress (success) and stir the strategy over its lifecycle.

By addressing all these aspects is created thus a first draft of the strategy that will need several iterations to mature, further changes deriving from the contact with the reality.

𖣯Strategic Management: Strategy Definition (Part I: The Reason behind a Strategy)

Strategic Management

Many of the efforts that go on in organizations are just castles built into the thin air, and even if some of the architectures are wonderful, without a foundation they tend to crash under their own weight. For example, the investment in a modern BI solution, in an ERP or CRM system, seldom meets an organization’s expectations, and what’s even more unfortunate is that the potential introduced by the investments is only to a small degree harnessed, while the same old problems continue to exist, typically in new contexts.

An architect more likely would ask himself: What would be that foundation needed to support a castle or the whole settlement the castle belongs to? From what needs to be made? How should it be structured? How often needs to be reconsolidated and when? Who will participate in its building and its maintenance? What it still needed to make the infrastructure self-reliant? What other architects do? What’s best practice in the field? Many questions for which the architect needs to find optimal answers.

The strength of an edifice lies in its foundation. Its main purpose is to provide a solid, durable, self-reliant and maintainable structure on which the edifice can be anchored, that can support the current and future load of the edifice, and that keeps the edifice standing in face of calamities. It must therefore address the core challenges faced by the edifice during its lifetime. When one has a group of edifices holding together as a settlement, there’s needed a foundation to support the whole settlement and not only one edifice. Moreover, the foundation needs to be customized to address environment’s characteristics and owners’ plans for further development.

The foundation on which modern organizations build their edifice is a strategy rooted in organizations’ reason of existence (the mission), wishes of becoming (the vision), beliefs (the core values) and fundamental truths (the principles). A strategy, a term borrowed from military, is a set of coordinated and sustainable actions following a set of well-defined goals, actions devised into a plan and designed to create value and overcome an organization’s challenges. Through its character a strategy is the perfect tool for addressing holistically the problems, opportunities, strengths and weaknesses existing in an organization, of aligning the objectives toward the same goals, of providing transparency and common understanding into the status quo and the road ahead.

Having defined a strategy will not make things happen by themselves, one needs also the capabilities of executing the strategy as a whole, one needs clear roles with responsibilities and proper authority. In addition, the strategy needs to be adapted in time to serve its purpose. This might mean changing the level of detail, changing the strategy when opportunities or threats were identified, when goals become obsolete. To make this possible is needed to define several processes to support the strategy through its whole lifecycle and a set of metrics to make the progress visible.

There are organizations that make it without having a written strategy, some go with the inertia provided by the adoption of tools, with the experience of individual workers that through their cooperation provide the improvement needed. In a higher or lower degree there’s a strategy fragmented in each individual or group, however the strategies don’t necessarily converge. The problem with such approaches is that the results are often suboptimal, especially because they are fragmented efforts, more likely with different contradictory goals.

As any other tool a strategy has a potential power that when adequately harnessed can help organizations achieve their (strategic) goals, though it depends on each organization to harness that potential.

29 April 2019

💼Project Management: Planning Correctly Misunderstood - Part I

Mismanagement

It is sometimes helpful to take a step back, observe, and then logically generalize the extremes of the observed facts; if possible, without judging people’s behavior as there’s more to it as the eyes can perceive. In some cases however one can feel that the observed situations are really close to extreme. It’s the case of some tendencies met in project planning - not planning, planning for the sake of planning, expecting a plan to be perfect, setting a plan as fix, without the possibility of changing it in utile time, respectively changing the plan too often.

There are situations in which it’s better to be spontaneous and go with the flow. Managing a project isn’t one of these situations. As Lakein’s Law formulates it succinctly: “failing to plan is planning to fail”, or paraphrasing Eisenhower (1) and Clausewitz (2) - plans are useless as no plan ever survived contact with the enemy (reality), but planning is indispensable - as a plan increases awareness about project’s scope, actions, challenges, risks and opportunities, and allows devising the tactics and logistics needed to reach the set goals. Even if the plan doesn’t reflect anymore the reality, it can still be adapted to fit the new requirements. The more planning experience one has the more natural it becomes to close the gap between the initial plan and reality, and of adapting the plan as needed.

There’s an important difference between doing something because one is forced to do it and doing it because one sees and understands the value of planning. There's the tendency to plan for the sake of planning, because there's the compel to do it. Besides the fact that it documents the what, when, why and who, and that is used as a basis for action, the plan must reflect project’s current status and the activities planed for the next reporting cycle. As soon a plan is not able to reflect these aspects it becomes thus in time unusable.

The enemy of a good plan can prove to be the dream of a perfect plan (3). Some may think that the holy grail of planning is the perfect plan, that the project can’t start until all the activities were listed to the lowest detail and the effort thoroughly assigned. Few plans actually survive the contact with the reality and there can be lot of energy lost by working on the perfect plan.

Another similar behavior,  rooted mainly in the methodologies used, is that of not allowing a plan to be changed for a part or whole duration of the project. Publilius Syrus recognized more than two millennia ago that a plan that admits no modification is a bad plan (4) per se. Methodologies and practices that don’t allow a flexible way of changing the plan make no service to projects. Often changes need to occur immediately and not at an ideal point in time, when maybe the effect is lost.

Modern Project Management tools allow building the dependencies between the various activities and it’s inevitable that a change in one place will cause a chain reaction and lead to a contraction or dilatation of the plan, and this can happen with each planning iteration. In extremis the end date will alternate as the lines of a seismograph during an earthquake. It’s natural for this to happen in projects in a first phase, however it’s in Project Manager’s attribution to mitigate such variations.

The project plan is a reflection of the project and how it’s managed, therefore, one needs to give it the proper focus, how often and how detailed required.

Referenced quotes:
(1) “In preparing for battle I have always found that plans are useless, but planning is indispensable” (Eisenhower quoted by Nixon)
(2) “No plan ever survived contact with the enemy. ” (Carl von Clausewitz)
(3) “The enemy of a good plan is the dream of a perfect plan.” (Carl von Clausewitz)
(4) "It's a bad plan that admits of no modification." (Publilius Syrus)

19 April 2019

🌡Performance Management: Mastery (Part I: The Need for Perfection vs. Excellence)

Performance Management

A recurring theme occurring in various contexts over the years seemed to be corroborated with the need for perfection, need going sometimes in extremis beyond common sense. The simplest theory attempting to explain at least some of these situations is that people tend to confuse excellence with perfection, from this confusion deriving false beliefs, false expectations and unhealthy behavior. 

Beyond the fact that each individual has an illusory image of what perfection is about, perfection is in certain situations a limiting force rooted in the idealistic way of looking at life. Primarily, perfection denotes that we will never be good enough to reach it as we are striving to something that doesn’t exist. From this appears the external and internal criticism, criticism that instead of helping us to build something it drains out our energy to the extent that it destroys all we have built over the years with a considerable effort. Secondarily, on the long run, perfection has the tendency to steal our inner peace and balance, letting fear take over – the fear of not making mistakes, of losing the acceptance and trust of the others. It focuses on our faults, errors and failures instead of driving us to our goals. In extremis it relieves the worst in people, actors and spectators altogether. 

In its proximate semantics though at diametral side through its implications, excellence focuses on our goals, on the aspiration of aiming higher without implying a limit to it. It’s a shift of attention from failure to possibilities, on what matters, on reaching our potential, on acknowledging the long way covered. It allows us building upon former successes and failures. Excellence is what we need to aim at in personal and professional life. Will Durant explaining Aristotle said that: “We are what we repeatedly do. Excellence, then, is not an act, but a habit.” 

People who attempt giving 100% of their best to achieve a (positive) goal are to admire, however the proximity of 100% is only occasionally achievable, hopefully when needed the most. 100% is another illusory limit we force upon ourselves as it’s correlated to the degree of achievement, completeness or quality an artefact or result can ideally have. We rightly define quality as the degree to which something is fit for purpose. Again, a moving target that needs to be made explicit before we attempt to reach it otherwise quality envisions perfection rather than excellence and effort is wasted. 

Considering the volume of effort needed to achieve a goal, Pareto’s principles (aka the 80/20 rule) seems to explain the best its underlying forces. The rule states that roughly 80% of the effects come from 20% of the causes. A corollary is that we can achieve 80% of a goal with 20% of the effort needed altogether to achieve it fully. This means that to achieve the remaining 20% toward the goal we need to put four times more of the effort already spent. This rule seems to govern the elaboration of concepts, designs and other types of documents, and I suppose it can be easily extended to other activities like writing code, cleaning data, improving performance, etc. 

Given the complexity, urgency and dependencies of the tasks or goals before us probably it's beneficial sometimes to focus first on the 80% of their extent, so we can make progress, and focus on the remaining 20% if needed, when needed. This concurrent approach can allow us making progress faster in incremental steps. Also, in time, through excellence, we can bridge the gap between the two numbers as is needed less time and effort in the process.


15 March 2018

🔬Data Science: Neural Network [NN] (Definitions)

"Information processing systems, inspired by biological neural systems but not limited to modeling such systems. Neural networks consist of many simple processing elements joined by weighted connection paths." (Laurene V Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications", 1994)

"A computing model based on the architecture of the brain consisting of multiple simple processing units connected by adaptive weights." (Joseph P Bigus, "Data Mining with Neural Networks", 1996)

[Feedback neural network:] "A network in which there are connections from output to input neurons." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

[Feedforward neural network: "A neural network in which there are no connections back from output to input neurons." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

[Fuzzy neural network (FNN): "Neural network designed to realize a fuzzy system, consisting of fuzzy rules, fuzzy variables, and fuzzy values defined for them and the fuzzy inference method." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

[probabilistic neural network (PNN):] "A feedforward neural network trained using supervised learning that allocates a hidden unit for each input pattern." (Joseph P Bigus, "Data Mining with Neural Networks", 1996)

"A system that applies neural computation. An adaptive, nonlinear dynamical system. Its equilibrium states can recall or recognize a stored pattern or can solve a mathematical or computational problem." (Guido Deboeck & Teuvo Kohonen (Eds), "Visual Explorations in Finance with Self-Organizing Maps" 2nd Ed., 2000)

"A nonlinear modeling technique comprising of a series of interconnected nodes with weights, which are adjusted as the network learns." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2006)

"A network modelled after the neurons in a biological nervous system with multiple synapses and layers. It is designed as an interconnected system of processing elements organized in a layered parallel architecture. These elements are called neurons and have a limited number of inputs and outputs. NNs can be trained to find nonlinear relationships in data, enabling specific input sets to lead to given target outputs." (Ioannis Papaioannou et al, "A Survey on Neural Networks in Automated Negotiations", Encyclopedia of Artificial Intelligence, 2009)

"A network of many simple processors ('units' or 'neurons') that imitates a biological neural network. The units are connected by unidirectional communication channels, which carry numeric data. Neural networks can be trained to find nonlinear relationships in data, and are used in applications such as robotics, speech recognition, signal processing or medical diagnosis." (Fernando Mateo et al, "A 2D Positioning Application in PET Using ANNs", Encyclopedia of Artificial Intelligence, 2009)

[Probabilistic Neural Network (PNN):] "A neural network using kernel-based approximation to form an estimate of the probability density functions of classes in a classification problem." (Robert Nisbet et al, "Handbook of statistical analysis and data mining applications", 2009)

"Structure composed of a group of interconnected artificial neurons or units. The objective of a NN is to transform the inputs into meaningful outputs." (M Paz S Lorente et al, Ensemble of ANN for Traffic Sign Recognition [in "Encyclopedia of Artificial Intelligence"], 2009)

"Techniques modeled after the (hypothesized) processes of learning in the cognitive system and the neurological functions of the brain and capable of predicting new observations (on specific variables) from other observations (on the same or other variables) after inducing a model from existing data. These techniques are also sometimes described as flexible nonlinear regression models, discriminant models, data reduction models, and multilayer nonlinear models." (Robert Nisbet et al, "Handbook of statistical analysis and data mining applications", 2009)

"A dynamic system in which outputs are calculated by a summation of weighted functions operating on inputs. Weights for the individual functions are determined by a learning process, simulating the learning process hypothesized for human neurons. In the computer model, individual functions that contribute to a correct output (based on the training data) have their weights increased (strengthening their influence to the calculated output)." (Jules H Berman, "Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information", 2013)

"An algorithm that conceptually mimics the learning patterns of biological neural networks by adaptively adjusting a series of classification functions in a nonlinear nature to maximize predictive accuracy, given a series of inputs." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"A family of model types capable of simulating some very complex systems." (Meta S Brown, "Data Mining For Dummies", 2014)

"A neural network is a network of neurons - units with inputs and outputs. The output of a neuron can be passed to a neuron and so on, thus creating a multilayered network. Neural networks contain adaptive elements, making them suitable to deal with nonlinear models and pattern recognition problems." (Ivan Idris, "Python Data Analysis", 2014)

"Neural network algorithms are designed to emulate human/animal brains. The network consists of input nodes, hidden layers, and output nodes. Each of the units is assigned a weight. Using an iterative approach, the algorithm continuously adjusts the weights until it reaches a specific stopping point." (Judith S Hurwitz, "Cognitive Computing and Big Data Analytics", 2015)

"A model composed of a network of simple processing units called neurons and connections between neurons called synapses. Each synapse has a direction and a weight, and the weight defines the effect of the neuron before on the neuron after." (Ethem Alpaydın, "Machine learning : the new AI", 2016)

"A powerful set of algorithms whose objective is to find a pattern of behavior. They are called neural because they are based on how biological neurons work when processing information. These networks try to simulate the way the neural network of a live being processes, recognizes and transmits the information. The implementation of neural networks in very different fields is due to their good performance relative to other methods" (Felix Lopez-Iturriaga & Iván Pastor-Sanz, "Using Self Organizing Maps for Banking Oversight: The Case of Spanish Savings Banks", 2016)

"Neural networks are learning algorithms that mimic the human brain in learning mechanics and complexity." (Davy Cielen et al, "Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools", 2016)

"A machine learning algorithm consisting of a network of simple classifiers that make decisions based on the input or the results of the other classifiers in the network." (David Natingga, "Data Science Algorithms in a Week" 2nd Ed., 2018)

"A type of machine-learning model that is implemented as a network of simple processing units called neurons. It is possible to create a variety of different types of neural networks by modifying the topology of the neurons in the network. A feed-forward, fully connected neural network is a very common type of network that can be trained using backpropagation." (John D Kelleher & Brendan Tierney, "Data science", 2018)

"Neural networks refer to a family of models that are defined by an input layer (a vectorized representation of input data), a hidden layer that consists of neurons and synapses, and an output layer with the predicted values. Within the hidden layer, synapses transmit signals between neurons, which rely on an activation function to buffer incoming signals. The synapses apply weights to incoming values, and the activation function determines if the weighted inputs are sufficiently high to activate the neuron and pass the values on to the next layer of the network." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)

"Fully connected network with minimum of three layers namely input layer, output layer and hidden layer." (S Kayalvizhi & D Thenmozhi, "Deep Learning Approach for Extracting Catch Phrases from Legal Documents", 2020)

"An artificial network of nodes, used for predictive modelling. It is generally used to tackle classification problems and AI related applications." (R Karthik et al, "Performance Analysis of GAN Architecture for Effective Facial Expression Synthesis", 2021)

"A neural network (NN) is a network of many simple processors ('units'), each possibly having a small amount of local memory. The units are connected by communication channels ('connections') which usually carry numeric (as opposed to symbolic) data, encoded by any of various means. The units operate only on their local data and on the inputs they receive via the connections." (Statistics.com) [source]

"Are a very advanced and elegant form of computing system. Machine learning neural networks consist of an interconnected set of "nodes" which mimic the network of neurons in a biological brain. Common applications include optical character recognition and facial recognition." (Accenture)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.