Showing posts with label sensitivity. Show all posts
Showing posts with label sensitivity. Show all posts

04 March 2021

💼Project Management: Project Execution (Part IV: Projects' Dynamics II - Motion)

Project Management

Motion is the action or process of moving or being moved between an initial and a final or intermediate point. From the tinniest endeavors to the movement of the planets and beyond, everything is governed by motion. If the laws of nature seem to reveal an inner structural perfection, the activities people perform are quite often far from perfect, which is acceptable if we consider that (almost) everything is a learning process. What is probably less acceptable is the volume of inefficient motion we can easily categorize sometimes as waste.

The waste associated with motion can take many forms: sorting through a pile of tools to find the right one, searching for information, moving back and forth to reach a destination or achieve a goal, etc. Suboptimal motion can have important effects for an organization resulting in reduced productivity, respectively higher costs.

If for repetitive activities that involve a certain degree of similarity can be found typically a way to optimize the motion, the higher the uncertainty of the steps involved, the more difficult it becomes to optimize it. It’s the case of discovery endeavors in which the path between start and destination can’t be traced beforehand, respectively when the destination or path in between can’t be depicted to the needed level of detail. A strategy’s implementation, ERP implementations and other complex projects, especially the ones dealing with new technologies and/or incomplete knowledge, tend to be exploratory in nature and thus fall under this latter type a motion.

In other words, one must know at minimum the starting point, the destination, how to reach it and what it takes to reach it – resources, knowledge, skillset. When one has all this information one can go on and estimate how long it will take to reach the destination, though the estimate reflects the information available as well estimator’s skills in translating the information into a realistic roadmap. Each new information has the potential of impacting considerably the whole process, in extremis to the degree that one must start the journey anew. The complexity of such projects and the volume of uncertainty can make estimation difficult if not impossible, no matter how good estimators' skills are. At best an estimator can come with a best- and worst-case estimation, both however dependent on the assumptions made.

Moreover, complex projects are sensitive to the initial conditions or auspices under which they start. This sensitivity can turn a project in a totally different direction or pace, that can be reinforced positively or negatively as the project progresses. It’s a continuous interplay between internal and external factors and components that can create synergies or have adverse effects with the potential of reaching tipping points.

Related to the initial conditions, as the praxis sometimes shows, for entities found in continuous movement (like organizations) it’s also important to know from where one’s coming (and at what speed), as the previous impulse (driving force) can be further used or stirred as needed. Metaphorically, a project will need a certain time to find the right pace if it lacks the proper impulse.

Unless the team is trained to play and plays like an orchestra, the impact of deviations from expectations can be hardly quantified. To minimize the waste, ideally a project’s journey should minimally deviate from the optimal path, which can be challenging to achieve as a project’s mass can pull the project in one direction or the other. The more the project advances the bigger the mass, fact which can make a project unstoppable. When such high-mass projects are stopped, their impulse can continue to haunt the organization years after.

Previous Post <<||>> Next Post

28 August 2019

🛡️Information Security: Data Breach (Definitions)

[data loss:] "Deprivation of something useful or valuable about a set of data, such as unplanned physical destruction of data or failure to preserve the confidentiality of data." (David G Hill, "Data Protection: Governance, Risk Management, and Compliance", 2009)

"The unauthorized disclosure of confidential information, notably that of identifying information about individuals." (David G Hill, "Data Protection: Governance, Risk Management, and Compliance", 2009)

"A failure of an obligation to protect against the release of secure data." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

"The release of secure information to an untrusted environment. Other terms for this occurrence include unintentional information disclosure, data leak, and data spill." (Craig S Mullins, "Database Administration", 2012)

"The unauthorized movement or disclosure of sensitive information to a party, usually outside the organization, that is not authorized to have or see the information." (Olivera Injac & Ramo Šendelj, "National Security Policy and Strategy and Cyber Security Risks", 2016)

"An incident in which sensitive, protected or confidential data has been viewed, stolen or used by an unauthorized body." (Güney Gürsel, "Patient Privacy and Security in E-Health", 2017)

[data leakage:] "The advertent or inadvertent sharing of private and/or confidential information." (Shalin Hai-Jew, "Beware!: A Multimodal Analysis of Cautionary Tales in Strategic Cybersecurity Messaging Online", 2018)

"A security incident involving unauthorized access to data." (Boaventura DaCosta & Soonhwa Seok, "Cybercrime in Online Gaming", 2020)

"An incident where information is accessed without authorization." (Nathan J Rodriguez, "Internet Privacy", 2020)

"A process where large amounts of private data, mostly about individuals, becomes illegally available to people who should not have access to the information." (Ananda Mitra & Yasmine Khosrowshahi, "The 2018 Facebook Data Controversy and Technological Alienation", 2021)

"This refers to any intentional or unintentional leak of secure or private or confidential data to any untrusted system. This is also referred to as information disclosure or data spill." (Srinivasan Vaidyanathan et al, "Challenges of Developing AI Applications in the Evolving Digital World and Recommendations to Mitigate Such Challenges: A Conceptual View", 2021) 

"When the information is stolen or used without consent of the system’s owner, the data stolen may cover confidential information like credit cards or passwords." (Kevser Z Meral, "Social Media Short Video-Sharing TikTok Application and Ethics: Data Privacy and Addiction Issues", 2021)

[data loss:] "The exposure of proprietary, sensitive, or classified information through either data theft or data leakage." (CNSSI 4009-2015)

20 February 2017

⛏️Data Management: Data Security (Definitions)

"The protection of data from disclosure, alteration, destruction, or loss that either is accidental or is intentional but unauthorized. (Network Working Group, "RFC 4949: Internet Security Glossary", 2007)

"An area of information security focused on the protection of data from either accidental or unauthorized intentional viewing, modification, destruction, duplication, or disclosure during input, processing, storage, transmission, or output operations. Data security deals with data that exists in two modes: data-in-transit and data-at-rest." (Alex Berson & Lawrence Dubov, "Master Data Management and Data Governance", 2010)

"1.The safety of data from unauthorized and inappropriate access or change. 2.The measures taken to prevent unauthorized access, use, modification, or destruction of data." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

[Data Security Managemen:] "The process of ensuring that data is safe from unauthorized and inappropriate access or change. Includes focus on data privacy, confidentiality, access, functional capabilities and use." (DAMA International, "The DAMA Dictionary of Data Management" 1st Et., 2010)

"Protection against illegal or wrongful intrusion. In the IT world, intrusion concerns mostly deal with gaining access to user and company data." (Peter Sasvari & Zoltán Nagymate, "The Empirical Analysis of Cloud Computing Services among the Hungarian Enterprises", 2015)

"Linked to data privacy rights, the term refers to the IT mechanisms to protect data through defined processes, filters, fire walls, encryption-in-transit, etc." (Beatriz Arnillas, "Tech-Savvy Is the New Street Smart: Balancing Protection and Awareness", 2019)

 "The processes and technologies that ensure that sensitive and confidential data about an organization are kept secure according to the organization’s policies." (Lili Aunimo et al, "Big Data Governance in Agile and Data-Driven Software Development: A Market Entry Case in the Educational Game Industry", 2019)

"The process of protecting the availability, integrity, and privacy of information from undesired actions." (Zerin M Khan, "How Do Mobile Applications for Cancer Communicate About Their Privacy Practices?: An Analysis of Privacy Policies", 2021)

"Data security can be described as the set of policies, processes, procedures, and tools that IT organizations implement to prevent unauthorized access to their networks, servers, data storage and any other on-premise or cloud-based IT infrastructure." (Sumo Logic) [source]

"Data security comprises the processes and associated tools that protect sensitive information assets, either in transit or at rest. Data security methods include:
• Encryption (applying a keyed cryptographic algorithm so that data is not easily read and/or altered by unauthorized parties) 
• Masking (substituting all or part of a high-value data item with a low-value representative token) 
• Erasure (ensuring that data that is no longer active or used is reliably deleted from a repository) 
• Resilience (creating backup copies of data so that organizations can recover data should it be erased or corrupted accidentally or stolen during a data breach)." (Gartner)

[Data security and privacy technology] "Technologies that directly touch the data itself and that help organizations: 1) understand where their data is located and identify what data is sensitive; 2) control data movement as well as introduce data-centric controls that protect the data no matter where it is; and 3) enable least privilege access and use. This still encompasses a wide range of technologies." (Forrester)

"Is the protection of data from unauthorized (accidental or intentional) modification, destruction, or disclosure." (MISS-DND)

"The capability of the software product to protect programs and data from unauthorized access, whether this is done voluntarily or involuntarily."  (ISO 9126)

"The degree to which a collection of data is protected from exposure to accidental or malicious alteration or destruction." (IEEE 610.5-1990)

"Those controls that seek to maintain confidentiality, integrity and availability of information." (ISACA)

25 December 2014

🕸Systems Engineering: Sensitivity (Just the Quotes)

"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (Jules H Poincaré, "Science and Method", 1908)

"The predictions of physical theories for the most part concern situations where initial conditions can be precisely specified. If such initial conditions are not found in nature, they can be arranged." (Anatol Rapoport, "The Search for Simplicity", 1956)

"[...] the influence of a single butterfly is not only a fine detail - it is confined to a small volume. Some of the numerical methods which seem to be well adapted for examining the intensification of errors are not suitable for studying the dispersion of errors from restricted to unrestricted regions. One hypothesis, unconfirmed, is that the influence of a butterfly's wings will spread in turbulent air, but not in calm air." (Edward N Lorenz, [talk] 1972)

"Everywhere […] in the Universe, we discern that closed physical systems evolve in the same sense from ordered states towards a state of complete disorder called thermal equilibrium. This cannot be a consequence of known laws of change, since […] these laws are time symmetric- they permit […] time-reverse. […] The initial conditions play a decisive role in endowing the world with its sense of temporal direction. […] some prescription for initial conditions is crucial if we are to understand […]" (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"How surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values." (Steven Weinberg, "Life in the Quantum Universe", Scientific American, 1995)

"Unlike classical mathematics, net math exhibits nonintuitive traits. In general, small variations in input in an interacting swarm can produce huge variations in output. Effects are disproportional to causes - the butterfly effect." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Swarm systems generate novelty for three reasons: (1) They are 'sensitive to initial conditions' - a scientific shorthand for saying that the size of the effect is not proportional to the size of the cause - so they can make a surprising mountain out of a molehill. (2) They hide countless novel possibilities in the exponential combinations of many interlinked individuals. (3) They don’t reckon individuals, so therefore individual variation and imperfection can be allowed. In swarm systems with heritability, individual variation and imperfection will lead to perpetual novelty, or what we call evolution." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"[…] we would like to observe that the butterfly effect lies at the root of many events which we call random. The final result of throwing a dice depends on the position of the hand throwing it, on the air resistance, on the base that the die falls on, and on many other factors. The result appears random because we are not able to take into account all of these factors with sufficient accuracy. Even the tiniest bump on the table and the most imperceptible move of the wrist affect the position in which the die finally lands. It would be reasonable to assume that chaos lies at the root of all random phenomena." (Iwo Białynicki-Birula & Iwona Białynicka-Birula, "Modeling Reality: How Computers Mirror Life", 2004)

"Yet, with the discovery of the butterfly effect in chaos theory, it is now understood that there is some emergent order over time even in weather occurrence, so that weather prediction is not next to being impossible as was once thought, although the science of meteorology is far from the state of perfection." (Peter Baofu, "The Future of Complexity: Conceiving a Better Way to Understand Order and Chaos", 2007)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The 'butterfly effect' is at most a hypothesis, and it was certainly not Lorenz’s intention to change it to a metaphor for the importance of small event. […] Dynamical systems that exhibit sensitive dependence on initial conditions produce remarkably different solutions for two initial values that are close to each other. Sensitive dependence on initial conditions is one of the properties to exhibit chaotic behavior. In addition, at least one further implicit assumption is that the system is bounded in some finite region, i.e., the system cannot blow up. When one uses expanding dynamics, a way of pull-back of too much expanded phase volume to some finite domain is necessary to get chaos." (Péter Érdi, "Complexity Explained", 2008)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly - effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

More quotes on the "Sensitivity of initial conditions" (aka "The Butterfly Effect") at the-web-of-knowledge.blogspot.com.

22 May 2014

🕸Systems Engineering: Chaos (Definitions)

"Long-term unpredictable behaviour caused by sensitive dependence on initial conditions." (Jesús B A Hernández & Patricia H Rodríguez, "Nonlinear Techniques for Signals Characterization", 2009)

"The effect whereby minor deficiencies or miniscule changes occurring in any phase of the project, but particularly in the beginning of a process, create significantly different outcomes." (José L Fernández-Solís & Iván Mutis, "The Idealization of an Integrated BIM, Lean, and Green Model (BLG)", 2010)

"A situation where a complex and random-looking behavior arises from simple nonlinear deterministic systems with sensitive dependence on initial conditions." (Bellie Sivakumar, "Chaos Theory for Hydrologic Modeling and Forecasting: Progress and Challenges", 2011)

"An interesting deterministic experience which has a random and unpredictable apparent behavior where petite changes in the initial conditions can lead to immense changes over time." (Mofazzal H. Khondekar et al, "Soft Computing Based Statistical Time Series Analysis, Characterization of Chaos Theory, and Theory of Fractals", 2013)

"A nonlinear erratic phenomenon that is found to be exhibited in several physical systems." (Hassène Gritli, "Further Investigation of the Period-Three Route to Chaos in the Passive Compass-Gait Biped Model", 2015)

"A type of behavior of a deterministic nonlinear system, where tiny changes in initial conditions make huge changes over time." (Viet-Thanh Pham et al, "Chaotic Attractor in a Novel Time-Delayed System with a Saturation Function", 2015)

"The type of behavior of a complex system, where tiny changes in a system’s initial conditions can lead to very large changes over time." (Christos Volos, "Random Bit Generator Based on Non-Autonomous Chaotic Systems", 2015)

"A state of disorder where each unit of a system behaves independently from each other at the same point of time." (Simanti Bhattacharya & Angshuman Bagchi, "Cellular Automata-Basics: Applications in Problem Solving", 2016)

"A new branch of science that deals with systems whose evolution depends very sensitively upon the initial conditions." (Wassim J Aloulou, "Understanding Entrepreneurship through Chaos and Complexity Perspectives", 2016)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.