Business Intelligence Series |
When several technologies make their entrance in a data-related field like Data Warehousing, Data Analitics or Data Science, one is forced to understand how the respective technologies can be used or misused, respectively what's their place in the bigger picture. Microsoft Fabric introduces several important technologies that will change the way data are stored, processed and consumed.
The first important technology is the notebook - a web document-like cell-based container for writing and executing code in a collaborative manner. The concept is not new, Jupyter notebooks have been around for almost a decade. In Microsof Fabric, notebooks support multiple languages, from which a default one applies to the whole notebook, while on cell level any of the supported languages can be used.
One can execute a single cell, multiple cells or the entire notebook in a sequential manner, mix languages for the various operations - load, transform, save, and visualize data when needed. Notebooks can be parametrized and run via the homonymous activity in Data Factory pipelines, automating thus data processing. Probably more functionality is to come.
Data engineers seems to have great flexibility, though usually flexibility implies constraints and/or mischiefs in other areas. I see for example in presentations the overuse of temporary data objects (mainly views) in Spark SQL as part of complex logic. That's acceptable during prototyping, though such code becomes a danger as soon the logic is deployed into production. Data objects should be created outside of the logic that uses them and should be treated as artifacts, with version control and proper documentation. It's maybe true that temporary objects reduce the volume of objects in the metastore, though is this the way to go?
Temporary objects tend to lead to wheel's reinvention or they get duplicated across multiple notebooks, which can easily create a maintenance nightmare. One needs to consider that the business logic changes a lot, the requirements and the data sources change, and on the long term, the cost of maintaining the code can easily overweight the benefits.
Notebooks remind me of the beginnings of web programming when HTML was mixed up with client scripting languages like VB Script or Javascript, CSS, respectively server-side scripting languages. It was kind of a spaghetti code, modified repeatedly by multiple programmers, unendingly duplicated, and through a miracle it worked, until it stopped working unexpectedly in strangest situations. The strangest part was when after removing commented code from a section made the code run again.
The debugging of another person's code was a nightmare. Code developed by two people for similar purposes was looking unrecognizable different in terms of structure, programming techniques and layout. The technical debt was high, increasing in exponential manner. One was aware that the code needed refactoring, though there were more important things to do or no time allocated for it.
In the meantime the maturity of programming languages, frameworks, methodologies, best practices, and hopefully of programmers improved the overall quality of software (at least on average). Thinking of software from an Engineer's perspective improved the efficiency and effectiveness of a programmer's endeavor. The average programmer is able to write quality code, though there's a considerable minimum of "engineering" knowledge involved beside the mere knowledge of languages and tools.
Notebooks are good up to a point, beyond which one needs to take a step back, restructure, move the code where it belongs, take a few more steps back and review the good practices and their application, disseminate the knowledge inside the team and use it in the next iterations, respectively refractor the code when needed! Hopefully, people learned from the mistakes of the past.
Resources:
[1] Microsoft Learn (2023) How to use Microsoft Fabric notebooks (link)