26 December 2015

Business Intelligence: Measurement (Just the Quotes)

"There is no inquiry which is not finally reducible to a question of Numbers; for there is none which may not be conceived of as consisting in the determination of quantities by each other, according to certain relations." (Auguste Comte, “The Positive Philosophy”, 1830)

"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science.” (Lord Kelvin, "Electrical Units of Measurement", 1883)

“Of itself an arithmetic average is more likely to conceal than to disclose important facts; it is the nature of an abbreviation, and is often an excuse for laziness.” (Arthur Lyon Bowley, “The Nature and Purpose of the Measurement of Social Phenomena”, 1915)

“Science depends upon measurement, and things not measurable are therefore excluded, or tend to be excluded, from its attention.” (Arthur J Balfour, “Address”, 1917)

“It is important to realize that it is not the one measurement, alone, but its relation to the rest of the sequence that is of interest.” (William E Deming, “Statistical Adjustment of Data”, 1943)

“The purpose of computing is insight, not numbers […] sometimes […] the purpose of computing numbers is not yet in sight.” (Richard Hamming, “Numerical Methods for Scientists and Engineers”, 1962)

“A quantity like time, or any other physical measurement, does not exist in a completely abstract way. We find no sense in talking about something unless we specify how we measure it. It is the definition by the method of measuring a quantity that is the one sure way of avoiding talking nonsense...” (Hermann Bondi, “Relativity and Common Sense”, 1964)

“Measurement, we have seen, always has an element of error in it. The most exact description or prediction that a scientist can make is still only approximate.” (Abraham Kaplan, “The Conduct of Inquiry: Methodology for Behavioral Science”, 1964)

“A mature science, with respect to the matter of errors in variables, is not one that measures its variables without error, for this is impossible. It is, rather, a science which properly manages its errors, controlling their magnitudes and correctly calculating their implications for substantive conclusions.” (Otis D Duncan, “Introduction to Structural Equation Models”, 1975)

“Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]” (George Greenstein, “Frozen Star”, 1983)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

“The value of having numbers - data - is that they aren't subject to someone else's interpretation. They are just the numbers. You can decide what they mean for you.” (Emily Oster, “Expecting Better”, 2013)

25 December 2015

Business Intelligence: Graphics (Just the Quotes)

"As to the propriety and justness of representing sums of money, and time, by parts of space, tho’ very readily agreed to by most men, yet a few seem to apprehend there may possibly be some deception in it, of which they are not aware […]" (William Playfair, "The Commercial and Political Atlas", 1786)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877) 

"The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they are therefore no substitutes for such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in explaining the conclusions founded upon them." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"Factual science may collect statistics, and make charts. But its predictions are, as has been well said, but past history reversed." (John Dewey, "Art as Experience", 1934)

"Although, the tabular arrangement is the fundamental form for presenting a statistical series, a graphic representation - in a chart or diagram - is often of great aid in the study and reporting of statistical facts. Moreover, sometimes statistical data must be taken, in their sources, from graphic rather than tabular records." (William L Crum et al, "Introduction to Economic Statistics", 1938)

"Graphic charts have often been thought to be tools of those alone who are highly skilled in mathematics, but one needs to have a knowledge of only eighth-grade arithmetic to use intelligently even the logarithmic or ratio chart, which is considered so difficult by those unfamiliar with it. […] If graphic methods are to be most effective, those who are unfamiliar with charts must give some attention to their fundamental structure. Even simple charts may be misinterpreted unless they are thoroughly understood. For instance, one is not likely to read an arithmetic chart correctly unless he also appreciates the significance of a logarithmic chart." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"Graphic methods are very commonly used in business correlation problems. On the whole, carefully handled and skillfully interpreted graphs have certain advantages over mathematical methods of determining correlation in the usual business problems. The elements of judgment and special knowledge of conditions can be more easily introduced in studying correlation graphically. Mathematical correlation is often much too rigid for the data at hand." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"One of the greatest values of the graphic chart is its use in the analysis of a problem. Ordinarily, the chart brings up many questions which require careful consideration and further research before a satisfactory conclusion can be reached. A properly drawn chart gives a cross-section picture of the situation. While charts may bring out. hidden facts in tables or masses of data, they cannot take the place of careful, analysis. In fact, charts may be dangerous devices when in the hands of those unwilling to base their interpretations upon careful study. This, however, does not detract from their value when they are properly used as aids in solving statistical problems." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"The eye can accurately appraise only very few features of a diagram, and consequently a complicated or confusing diagram will lead the reader astray. The fundamental rule for all charting is to use a plan which is simple and which takes account, in its arrangement of the facts to be presented, of the above-mentioned capacities of the eye."  (William L Crum et al, "Introduction to Economic Statistics", 1938)

"For many purposes graphical accuracy is sufficient. The speed of graphical processes, and more especially the advantages of visual presentation in pointing out facts or clues which might otherwise be overlooked, make graphical analysis very valuable." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"The technical analysis of any large collection of data is a task for a highly trained and expensive man who knows the mathematical theory of statistics inside and out. Otherwise the outcome is likely to be a collection of drawings - quartered pies, cute little battleships, and tapering rows of sturdy soldiers in diversified uniforms - interesting enough in the colored Sunday supplement, but hardly the sort of thing from which to draw reliable inferences." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)

"The primary purpose of a graph is to show diagrammatically how the values of one of two linked variables change with those of the other. One of the most useful applications of the graph occurs in connection with the representation of statistical data." (John F Kenney & E S Keeping, "Mathematics of Statistics" Vol. I 3rd Ed., 1954)

"The aim of the graphic is to make the relationship among previously defined sets appear." (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"One of the methods making the data intelligible is to represent it by means of graphs and diagrams. The graphic & diagrammatic representation of the data is always appealing to the eye as well as to the mind of the observer." (S P Singh & R P S Verma, "Agricultural Statistics", cca. 1969)

"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (W Edwards Deming, "On Probability as Basis for Action", American Statistician Vol. 29 (4), 1975)

"The greatest value of a picture is when it forces us to notice what we never expected to see." (John W Tukey, "Exploratory Data Analysis", 1977) 

"Although advice on how and when to draw graphs is available, we have no theory of statistical graphics […]" (Stephen Fienberg, "The American Statistician", Graphical Methods in Statistics Vol. 13 (4), 1979)

"Excellence in statistical graphics consists of complex ideas communicated
with clarity, precision, and efficiency. Graphical displays should
- show the data
- induce the viewer to think about the substance rather than about the
methodology, graphic design, the technology of graphic production,
or something else
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the
- serve a reasonable clear purpose: description, exploration, tabulation,
- be closely integrated." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Graphical integrity is more likely to result if these six principles are followed:
The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities represented.
Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.
Show data variations, not design variations. 
In time-series displays of money, deflated and standardized units of monetary measurements are nearly always better than nominal units.
The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.
Graphics must not quote data out of context." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Inept graphics also flourish because many graphic artists believe that statistics are boring and tedious. It then follows that decorated graphics must pep up, animate, and all too often exaggerate what evidence there is in the data. […] If the statistics are boring, then you've got the wrong numbers." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Of course statistical graphics, just like statistical calculations, are only as good as what goes into them. An ill-specified or preposterous model or a puny data set cannot be rescued by a graphic (or by calculation), no matter how clever or fancy. A silly theory means a silly graphic." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The theory of the visual display of quantitative information consists of principles that generate design options and that guide choices among options. The principles should not be applied rigidly or in a peevish spirit; they are not logically or mathematically certain; and it is better to violate any principle than to place graceless or inelegant marks on paper. Most principles of design should be greeted with some skepticism, for word authority can dominate our vision, and we may come to see only though the lenses of word authority rather than with our own eyes." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Despite the prevailing use of graphs as metaphors for communicating and reasoning about dependencies, the task of capturing informational dependencies by graphs is not at all trivial." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference", 1988)

"What about confusing clutter? Information overload? Doesn't data have to be ‘boiled down’ and  ‘simplified’? These common questions miss the point, for the quantity of detail is an issue completely separate from the difficulty of reading. Clutter and confusion are failures of design, not attributes of information." (Edward R Tufte, "Envisioning Information", 1990)

"The illusion of randomness gradually disappears as the skill in chart reading improves." (John W. Murphy, "Technical Analysis of the Financial Markets", 1999) 

"The real value of dashboard products lies in their ability to replace hunt‐and‐peck data‐gathering techniques with a tireless, adaptable, information‐flow mechanism. Dashboards transform data repositories into consumable information." (Gregory L Hovis, "Stop Searching for InformationMonitor it with Dashboard Technology," DM Direct, 2002)

"Audience boredom is usually a content failure, not a decoration failure." (Edward R Tufte, "The cognitive style of PowerPoint", 2003)

"Computers are able to multiply useless images without taking into account that, by definition, every graphic corresponds to a table. This table allows you to think about three basic questions that go from the particular to the general level. When this last one receives an answer, you have answers for all of them. Understanding means accessing the general level and discovering significant grouping (patterns). Consequently, the function of a graphic is answering the three following questions:
Which are the X,Y, Z components of the data table? (What it’s all about?)
What are the groups in X, in Y that Z builds? (What the information at the general level is?
What are the exceptions?
These questions can be applied to every kind of problem. They measure the usefulness of whatever construction or graphical invention allowing you to avoid useless graphics." (Jacques Bertin [interview], 2003)

"Data is transformed into graphics to understand. A map, a diagram are documents to be interrogated. But understanding means integrating all of the data. In order to do this it’s necessary to reduce it to a small number of elementary data. This is the objective of the 'data treatment' be it graphic or mathematic." (Jacques Bertin [interview], 2003)

"If your words or images are not on point, making them dance in color won't make them relevant." (Edward R Tufte, "The cognitive style of PowerPoint", 2003)

"Dashboards and visualization are cognitive tools that improve your 'span of control' over a lot of business data. These tools help people visually identify trends, patterns and anomalies, reason about what they see and help guide them toward effective decisions. As such, these tools need to leverage people's visual capabilities. With the prevalence of scorecards, dashboards and other visualization tools now widely available for business users to review their data, the issue of visual information design is more important than ever." (Richard Brath & Michael Peters, "Dashboard Design: Why Design is Important," DM Direct, 2004)

"Graphical design notations have been with us for a while [...] their primary value is in communication and understanding. A good diagram can often help communicate ideas about a design, particularly when you want to avoid a lot of details. Diagrams can also help you understand either a software system or a business process. As part of a team trying to figure out something, diagrams both help understanding and communicate that understanding throughout a team. Although they aren't, at least yet, a replacement for textual programming languages, they are a helpful assistant." (Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling", 2004)

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"An effective dashboard is the product not of cute gauges, meters, and traffic lights, but rather of informed design: more science than art, more simplicity than dazzle. It is, above all else, about communication." (Stephen Few, "Information Dashboard Design", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Clearly principles and guidelines for good presentation graphics have a role to play in exploratory graphics, but personal taste and individual working style also play important roles. The same data may be presented in many alternative ways, and taste and customs differ as to what is regarded as a good presentation graphic. Nevertheless, there are principles that should be respected and guidelines that are generally worth following. No one should expect a perfect consensus where graphics are concerned. (Antony Unwin, "Good Graphics?"[in "Handbook of Data Visualization"], 2008)

"For a given dataset there is not a great deal of advice which can be given on content and context. hose who know their own data should know best for their specific purposes. It is advisable to think hard about what should be shown and to check with others if the graphic makes the desired impression. Design should be let to designers, though some basic guidelines should be followed: consistency is important (sets of graphics should be in similar style and use equivalent scaling); proximity is helpful (place graphics on the same page, or on the facing page, of any text that refers to them); and layout should be checked (graphics should be neither too small nor too large and be attractively positioned relative to the whole page or display)."(Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"Graphical displays are often constructed to place principal focus on the individual observations in a dataset, and this is particularly helpful in identifying both the typical positions of datapoints and unusual or influential cases. However, in many investigations, principal interest lies in identifying the nature of underlying trends and relationships between variables, and so it is oten helpful to enhance graphical displays in wayswhich give deeper insight into these features.his can be very beneficial both for small datasets, where variation can obscure underlying patterns, and large datasets, where the volume of data is so large that effective representation inevitably involves suitable summaries." (Adrian W Bowman, "Smoothing Techniques for Visualisation" [in "Handbook of Data Visualization"], 2008)

"There are two main reasons for using graphic displays of datasets: either to present or to explore data. Presenting data involves deciding what information you want to convey and drawing a display appropriate for the content and for the intended audience. [...] Exploring data is a much more individual matter, using graphics to find information and to generate ideas.Many displays may be drawn. They can be changed at will or discarded and new versions prepared, so generally no one plot is especially important, and they all have a short life span.(Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"So what is the difference between a chart or graph and a visualization? […] a chart or graph is a clean and simple atomic piece; bar charts contain a short story about the data being presented. A visualization, on the other hand, seems to contain much more ʻchart junkʼ, with many sometimes complex graphics or several layers of charts and graphs. A visualization seems to be the super-set for all sorts of data-driven design." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The amount of information rendered in a single financial graph is easily equivalent to thousands of words of text or a page-sized table of raw values. A graph illustrates so many characteristics of data in a much smaller space than any other means. Charts also allow us to tell a story in a quick and easy way that words cannot." (Brian Suda, "A Practical Guide to Designing with Data", 2010) 

"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)

"Graphics, charts, and maps aren’t just tools to be seen, but to be read and scrutinized. The first goal of an infographic is not to be beautiful just for the sake of eye appeal, but, above all, to be understandable first, and beautiful after that; or to be beautiful thanks to its exquisite functionality." (Alberto Cairo, "The Functional Art", 2011)

"In information graphics, what you show can be as important as what you hide." (Alberto Cairo, "The Functional Art", 2011)

"The fact that an information graphic is designed to help us complete certain intellectual tasks is what distinguishes it from fine art." (Alberto Cairo, "The Functional Art", 2011)

"The first and main goal of any graphic and visualization is to be a tool for your eyes and brain to perceive what lies beyond their natural reach." (Alberto Cairo, "The Functional Art", 2011)

"Thinking of graphics as art leads many to put bells and whistles over substance and to confound infographics with mere illustrations." (Alberto Cairo, "The Functional Art", 2011)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Data is more than numbers, and to visualize it, you must know what it represents. Data represents real life. It’s a snapshot of the world in the same way that a photograph captures a small moment in time. […] The connection between data and what it represents is key to visualization that means something. It is key to thoughtful data analysis. It is key to a deeper understanding of your data. Computers do a bulk of the work to turn numbers into shapes and colors, but you must make the connection between data and real life, so that you or the people you make graphics for extract something of value." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Put everything together - from understanding data, to exploration, clarity, anda dapting to an audience - and you get a general process for how to make data graphics."  (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The biggest thing to know is that data visualization is hard. Really difficult to pull off well. It requires harmonization of several skills sets and ways of thinking: conceptual, analytic, statistical, graphic design, programmatic, interface-design, story-telling, journalism - plus a bit of ‘gut feel.’ The end result is often simple and beautiful, but the process itself is usually challenging and messy." (David McCandless, 2013)

"What is good visualization? It is a representation of data that helps you see what you otherwise would have been blind to if you looked only at the naked source. It enables you to see trends, patterns, and outliers that tell you about yourself and what surrounds you. The best visualization evokes that moment of bliss when seeing something for the first time, knowing that what you see has been right in front of you, just slightly hidden. Sometimes it is a simple bar graph, and other times the visualization is complex because the data requires it." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"There are myriad questions that we can ask from data today. As such, it’s impossible to write enough reports or design a functioning dashboard that takes into account every conceivable contingency and answers every possible question." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Dashboards are collections of several linked visualizations all in one place. The idea is very popular as part of business intelligence: having current data on activity summarized and presented all inone place. One danger of cramming a lot of disparate information into one place is that you will quickly hit information overload. Interactivity and small multiples are definitely worth considering as ways of simplifying the information a reader has to digest in a dashboard. As with so many other visualizations, layering the detail for different readers is valuable." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"If the statistics are boring, then you've got the wrong numbers." (Edward R Tufte)

05 December 2015

Business Intelligence: Indicators (Just the Quotes)

"If we view organizations as adaptive, problem-solving structures, then inferences about effectiveness have to be made, not from static measures of output, but on the basis of the processes through which the organization approaches problems. In other words, no single measurement of organizational efficiency or satisfaction - no single time-slice of organizational performance can provide valid indicators of organizational health." (Warren G Bennis, "General Systems Yearbook", 1962)

"All good KPIs that I have come across, that have made a difference, had the CEO’s constant attention, with daily calls to the relevant staff. [...] A KPI should tell you about what action needs to take place. [...] A KPI is deep enough in the organization that it can be tied down to an individual. [...] A good KPI will affect most of the core CSFs and more than one BSC perspective. [...] A good KPI has a flow on effect." (David Parmenter, "Pareto’s 80/20 Rule for Corporate Accountants", 2007)

"If the KPIs you currently have are not creating change, throw them out because there is a good chance that they may be wrong. They are probably measures that were thrown together without the in-depth research and investigation KPIs truly deserve." (David Parmenter, "Pareto’s 80/20 Rule for Corporate Accountants", 2007)

"Key performance indicators (KPIs) are the vital navigation instruments used by managers to understand whether their business is on a successful voyage or whether it is veering off the prosperous path. The right set of indicators will shine light on performance and highlight areas that need attention. ‘What gets measured gets done’ and ‘if you can’t measure it, you can’t manage it’ are just two of the popular sayings used to highlight the critical importance of metrics. Without the right KPIs managers are sailing blind." (Bernard Marr, "Key Performance Indicators (KPI): The 75 measures every manager needs to know", 2011)

"KRAs and KPIs KRA and KPI are two confusing acronyms for an approach commonly recommended for identifying a person’s major job responsibilities. KRA stands for key result areas; KPI stands for key performance indicators. As academics and consultants explain this jargon, key result areas are the primary components or parts of the job in which a person is expected to deliver results. Key performance indicators represent the measures that will be used to determine how well the individual has performed. In other words, KRAs tell where the individual is supposed to concentrate her attention; KPIs tell how her performance in the specified areas should be measured. Probably few parts of the performance appraisal process create more misunderstanding and bewilderment than do the notion of KRAs and KPIs. The reason is that so much of the material written about KPIs and KRAs is both." (Dick Grote, "How to Be Good at Performance Appraisals: Simple, Effective, Done Right", 2011)

"A statistical index has all the potential pitfalls of any descriptive statistic - plus the distortions introduced by combining multiple indicators into a single number. By definition, any index is going to be sensitive to how it is constructed; it will be affected both by what measures go into the index and by how each of those measures is weighted." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Even if you have a solid indicator of what you are trying to measure and manage, the challenges are not over. The good news is that 'managing by statistics' can change the underlying behavior of the person or institution being managed for the better. If you can measure the proportion of defective products coming off an assembly line, and if those defects are a function of things happening at the plant, then some kind of bonus for workers that is tied to a reduction in defective products would presumably change behavior in the right kinds of ways. Each of us responds to incentives (even if it is just praise or a better parking spot). Statistics measure the outcomes that matter; incentives give us a reason to improve those outcomes." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Once these different measures of performance are consolidated into a single number, that statistic can be used to make comparisons […] The advantage of any index is that it consolidates lots of complex information into a single number. We can then rank things that otherwise defy simple comparison […] Any index is highly sensitive to the descriptive statistics that are cobbled together to build it, and to the weight given to each of those components. As a result, indices range from useful but imperfect tools to complete charades." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Defining an indicator as lagging, coincident, or leading is connected to another vital notion: the business cycle. Indicators are lagging or leading based on where economists believe we are in the business cycle: whether we are heading into a recession or emerging from one." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"[…] economics is a profession grounded in the belief that 'the economy' is a machine and a closed system. The more clearly that machine is understood, the more its variables are precisely measured, the more we will be able to manage and steer it as we choose, avoiding the frenetic expansions and sharp contractions. With better indicators would come better policy, and with better policy, states would be less likely to fall into depression and risk collapse." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Our needs going forward will be best served by how we make use of not just this data but all data. We live in an era of Big Data. The world has seen an explosion of information in the past decades, so much so that people and institutions now struggle to keep pace. In fact, one of the reasons for the attachment to the simplicity of our indicators may be an inverse reaction to the sheer and bewildering volume of information most of us are bombarded by on a daily basis. […] The lesson for a world of Big Data is that in an environment with excessive information, people may gravitate toward answers that simplify reality rather than embrace the sheer complexity of it." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Statistics are meaningless unless they exist in some context. One reason why the indicators have become more central and potent over time is that the longer they have been kept, the easier it is to find useful patterns and points of reference." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"The indicators - through no particular fault of anyone in particular - have not kept up with the changing world. As these numbers have become more deeply embedded in our culture as guides to how we are doing, we rely on a few big averages that can never be accurate pictures of complicated systems for the very reason that they are too simple and that they are averages. And we have neither the will nor the resources to invent or refine our current indicators enough to integrate all of these changes." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"We don’t need new indicators that replace old simple numbers with new simple numbers. We need instead bespoke indicators, tailored to the specific needs and specific questions of governments, businesses, communities, and individuals." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Yet our understanding of the world is still framed by our leading indicators. Those indicators define the economy, and what they say becomes the answer to the simple question 'Are we doing well?'" (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Financial measures are a quantification of an activity that has taken place; we have simply placed a value on the activity. Thus, behind every financial measure is an activity. I call financial measures result indicators, a summary measure. It is the activity that you will want more or less of. It is the activity that drives the dollars, pounds, or yen. Thus financial measures cannot possibly be KPIs." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Key performance indicators (KPIs) are those indicators that focus on the aspects of organizational performance that are the most critical for the current and future success of the organization." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Key Performance Indicators (KPIs) in many organizations are a broken tool. The KPIs are often a random collection prepared with little expertise, signifying nothing. [...] KPIs should be measures that link daily activities to the organization’s critical success factors (CSFs), thus supporting an alignment of effort within the organization in the intended direction." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Most organizational measures are very much past indicators measuring events of the last month or quarter. These indicators cannot be and never were KPIs." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"We need indicators of overall performance that need only be reviewed on a monthly or bimonthly basis. These measures need to tell the story about whether the organization is being steered in the right direction at the right speed, whether the customers and staff are happy, and whether we are acting in a responsible way by being environmentally friendly. These measures are called key result indicators (KRIs)." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Indicators represent a way of 'distilling' the larger volume of data collected by organizations. As data become bigger and bigger, due to the greater span of control or growing complexity of operations, data management becomes increasingly difficult. Actions and decisions are greatly influenced by the nature, use and time horizon (e.g., short or long-term) of indicators." (Fiorenzo Franceschini et al, "Designing Performance Measurement Systems: Theory and Practice of Key Performance Indicators", 2019)

"Indicators take on the role of real 'conceptual technologies', capable of driving organizational management in intangible terms, conditioning the 'what' to focus and the 'how'; in other words, they become the beating heart of the management, operational and technological processes." (Fiorenzo Franceschini et al, "Designing Performance Measurement Systems: Theory and Practice of Key Performance Indicators", 2019)

"Monitoring a process requires identifying specific activities, responsibilities and indicators for testing effectiveness and efficiency. Effectiveness means setting the right goals and objectives, making sure that they are properly accomplished (doing the right things); effectiveness is measured comparing the achieved results with target objectives. On the other hand, efficiency means getting the most (output) from the available (input) resources (doing things right): efficiency defines a link between process performance and available resources." (Fiorenzo Franceschini et al, "Designing Performance Measurement Systems: Theory and Practice of Key Performance Indicators", 2019)

04 December 2015

Business Intelligence: Measures/Metrics (Just the Quotes)

"The most important and frequently stressed prescription for avoiding pitfalls in the use of economic statistics, is that one should find out before using any set of published statistics, how they have been collected, analysed and tabulated. This is especially important, as you know, when the statistics arise not from a special statistical enquiry, but are a by-product of law or administration. Only in this way can one be sure of discovering what exactly it is that the figures measure, avoid comparing the non-comparable, take account of changes in definition and coverage, and as a consequence not be misled into mistaken interpretations and analysis of the events which the statistics portray." (Ely Devons, "Essays in Economics", 1961)

"If we view organizations as adaptive, problem-solving structures, then inferences about effectiveness have to be made, not from static measures of output, but on the basis of the processes through which the organization approaches problems. In other words, no single measurement of organizational efficiency or satisfaction - no single time-slice of organizational performance can provide valid indicators of organizational health." (Warren G Bennis, "General Systems Yearbook", 1962)

"[Management by objectives is] a process whereby the superior and the subordinate managers of an enterprise jointly identify its common goals, define each individual's major areas of responsibility in terms of the results expected of him, and use these measures as guides for operating the unit and assessing the contribution of each of its members." (Robert House, "Administrative Science Quarterly", 1971)

"A mature science, with respect to the matter of errors in variables, is not one that measures its variables without error, for this is impossible. It is, rather, a science which properly manages its errors, controlling their magnitudes and correctly calculating their implications for substantive conclusions." (Otis D Duncan, "Introduction to Structural Equation Models", 1975)

"Reengineering is the fundamental rethinking and radical redesign of business processes to achieve dramatic improvements in critical contemporary measures of performance such as cost, quality, service and speed." (James A Champy & Michael M Hammer, "Reengineering the Corporation", 1993)

"Industrial managers faced with a problem in production control invariably expect a solution to be devised that is simple and unidimensional. They seek the variable in the situation whose control will achieve control of the whole system: tons of throughput, for example. Business managers seek to do the same thing in controlling a company; they hope they have found the measure of the entire system when they say 'everything can be reduced to monetary terms'." (Stanford Beer, "Decision and Control", 1994)

"A strategy is a set of hypotheses about cause and effect. The measurement system should make the relationships (hypotheses) among objectives (and measures) in the various perspectives explicit so that they can be managed and validated. The chain of cause and effect should pervade all four perspectives of a Balanced Scorecard." (Robert S Kaplan & David P Norton, "The Balanced Scorecard", Harvard Business Review, 1996)

"The Balanced Scorecard has its greatest impact when it is deployed to drive organizational change. [...] The Balanced Scorecard is primarily a mechanism for strategy implementation, not for strategy formulation. It can accommodate either approach for formulating business unit strategy-starting from the customer perspective, or starting from excellent internal-business-process capabilities. For whatever approach that SBU senior executives use to formulate their strategy, the Balanced Scorecard will provide an invaluable mechanism for translating that strategy into specific objectives, measures, and targets, and monitoring the implementation of that strategy during subsequent periods." (Robert S Kaplan & David P Norton, "The Balanced Scorecard", Harvard Business Review, 1996)

"The Balanced Scorecard translates mission and strategy into objectives and measures, organized into four different perspectives: financial, customer, internal business process, and learning and growth. The scorecard provides a framework, a language, to communicate mission and strategy; it uses measurement to inform employees about the drivers of current and future success." (Robert S Kaplan & David P Norton, "The Balanced Scorecard", Harvard Business Review, 1996)

"Since the average is a measure of location, it is common to use averages to compare two data sets. The set with the greater average is thought to ‘exceed’ the other set. While such comparisons may be helpful, they must be used with caution. After all, for any given data set, most of the values will not be equal to the average." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"First, good statistics are based on more than guessing. [...] Second, good statistics are based on clear, reasonable definitions. Remember, every statistic has to define its subject. Those definitions ought to be clear and made public. [...] Third, good statistics are based on clear, reasonable measures. Again, every statistic involves some sort of measurement; while all measures are imperfect, not all flaws are equally serious. [...] Finally, good statistics are based on good samples." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Statistics depend on collecting information. If questions go unasked, or if they are asked in ways that limit responses, or if measures count some cases but exclude others, information goes ungathered, and missing numbers result. Nevertheless, choices regarding which data to collect and how to go about collecting the information are inevitable." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"If the KPIs you currently have are not creating change, throw them out because there is a good chance that they may be wrong. They are probably measures that were thrown together without the in-depth research and investigation KPIs truly deserve." (David Parmenter, "Pareto’s 80/20 Rule for Corporate Accountants", 2007)

"Key performance indicators (KPIs) are the vital navigation instruments used by managers to understand whether their business is on a successful voyage or whether it is veering off the prosperous path. The right set of indicators will shine light on performance and highlight areas that need attention. ‘What gets measured gets done’ and ‘if you can’t measure it, you can’t manage it’ are just two of the popular sayings used to highlight the critical importance of metrics. Without the right KPIs managers are sailing blind." (Bernard Marr, "Key Performance Indicators (KPI): The 75 measures every manager needs to know", 2011)

"A statistical index has all the potential pitfalls of any descriptive statistic - plus the distortions introduced by combining multiple indicators into a single number. By definition, any index is going to be sensitive to how it is constructed; it will be affected both by what measures go into the index and by how each of those measures is weighted." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Even if you have a solid indicator of what you are trying to measure and manage, the challenges are not over. The good news is that 'managing by statistics' can change the underlying behavior of the person or institution being managed for the better. If you can measure the proportion of defective products coming off an assembly line, and if those defects are a function of things happening at the plant, then some kind of bonus for workers that is tied to a reduction in defective products would presumably change behavior in the right kinds of ways. Each of us responds to incentives (even if it is just praise or a better parking spot). Statistics measure the outcomes that matter; incentives give us a reason to improve those outcomes." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Once these different measures of performance are consolidated into a single number, that statistic can be used to make comparisons […] The advantage of any index is that it consolidates lots of complex information into a single number. We can then rank things that otherwise defy simple comparison […] Any index is highly sensitive to the descriptive statistics that are cobbled together to build it, and to the weight given to each of those components. As a result, indices range from useful but imperfect tools to complete charades." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Financial measures are a quantification of an activity that has taken place; we have simply placed a value on the activity. Thus, behind every financial measure is an activity. I call financial measures result indicators, a summary measure. It is the activity that you will want more or less of. It is the activity that drives the dollars, pounds, or yen. Thus financial measures cannot possibly be KPIs." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"'Getting it right the first time' is a rare achievement, and ascertaining the organization’s winning KPIs and associated reports is no exception. The performance measure framework and associated reporting is just like a piece of sculpture: you can be criticized on taste and content, but you can’t be wrong. The senior management team and KPI project team need to ensure that the project has a just-do-it culture, not one in which every step and measure is debated as part of an intellectual exercise." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"In order to get measures to drive performance, a reporting framework needs to be developed at all levels within the organization." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Most organizational measures are very much past indicators measuring events of the last month or quarter. These indicators cannot be and never were KPIs." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"We need indicators of overall performance that need only be reviewed on a monthly or bimonthly basis. These measures need to tell the story about whether the organization is being steered in the right direction at the right speed, whether the customers and staff are happy, and whether we are acting in a responsible way by being environmentally friendly. These measures are called key result indicators (KRIs)." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"To be any good, a sample has to be representative. A sample is representative if every person or thing in the group you’re studying has an equally likely chance of being chosen. If not, your sample is biased. […] The job of the statistician is to formulate an inventory of all those things that matter in order to obtain a representative sample. Researchers have to avoid the tendency to capture variables that are easy to identify or collect data on - sometimes the things that matter are not obvious or are difficult to measure." (Daniel J Levitin, "Weaponized Lies", 2017)

"Statistical metrics can show us facts and trends that would be impossible to see in any other way, but often they’re used as a substitute for relevant experience, by managers or politicians without specific expertise or a close-up view." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

03 December 2015

Performance Management: Measurement (Just the Quotes)

"It is important to realize that it is not the one measurement, alone, but its relation to the rest of the sequence that is of interest." (William E Deming, "Statistical Adjustment of Data", 1943)

"If we view organizations as adaptive, problem-solving structures, then inferences about effectiveness have to be made, not from static measures of output, but on the basis of the processes through which the organization approaches problems. In other words, no single measurement of organizational efficiency or satisfaction - no single time-slice of organizational performance can provide valid indicators of organizational health." (Warren G Bennis, "General Systems Yearbook", 1962)

"[...] long-range plans are most valuable when they are revised and adjusted and set anew at shorter periods. The five-year plan is reconstructed each year in turn for the following five years. The soundest basis for this change is accurate measurement of the results of the first year's experience with the plan against the target of the plan." (George S Odiorne, "Management by Objectives", 1965)

"[Management by objectives is] a process whereby the superior and the subordinate managers of an enterprise jointly identify its common goals, define each individual's major areas of responsibility in terms of the results expected of him, and use these measures as guides for operating the unit and assessing the contribution of each of its members." (Robert House, "Administrative Science Quarterly", 1971)

"A manager [...] sets objectives [...] organizes [...] motivates and communicates [...] measure[s] [...] develops people. Every manager does these thingsknowingly or not. A manager may do them well, or may do them wretchedly, but always does them." (Peter F Drucker, "People and Performance", 1977)

"The performance of profit center managers is [usually] measured over a moderate time span. The penalty for unsatisfactory absolute performance over the short-term is severe. The proper balance between known performance and potential future benefits is never clear." (Bruce Henderson, "Henderson on Corporate Strategy", 1979)

"Goals should be specific, realistic and measureable." (William G Dyer, "Strategies for Managing Change", 1984)

"Setting goals can be the difference between success and failure. [...] Goals must not be defined so broadly that they cannot be quantified. Having quantifiable goals is an essential starting point if managers are to measure the results of their organization's activities. [...] Too often people mistake being busy for achieving goals." (Philip D Harvey & James D Snyder, Harvard Business Review, 1987)

"How you measure the performance of your managers directly affects the way they act." (John Dearden, Harvard Business Review, 1987)

"Industrial managers faced with a problem in production control invariably expect a solution to be devised that is simple and unidimensional. They seek the variable in the situation whose control will achieve control of the whole system: tons of throughput, for example. Business managers seek to do the same thing in controlling a company; they hope they have found the measure of the entire system when they say 'everything can be reduced to monetary terms'." (Stanford Beer, "Decision and Control", 1994)

"A strategy is a set of hypotheses about cause and effect. The measurement system should make the relationships (hypotheses) among objectives (and measures) in the various perspectives explicit so that they can be managed and validated. The chain of cause and effect should pervade all four perspectives of a Balanced Scorecard." (Robert S Kaplan & David P Norton, "The Balanced Scorecard", Harvard Business Review, 1996)

"Many management reports are not a management tool; they are merely memorandums of information. As a management tool, management reports should encourage timely action in the right direction, by reporting on those activities the Board, management, and staff need to focus on. The old adage 'what gets measured gets done' still holds true." (David Parmenter, "Pareto’s 80/20 Rule for Corporate Accountants", 2007)

"Key performance indicators (KPIs) are the vital navigation instruments used by managers to understand whether their business is on a successful voyage or whether it is veering off the prosperous path. The right set of indicators will shine light on performance and highlight areas that need attention. ‘What gets measured gets done’ and ‘if you can’t measure it, you can’t manage it’ are just two of the popular sayings used to highlight the critical importance of metrics. Without the right KPIs managers are sailing blind." (Bernard Marr, "Key Performance Indicators (KPI): The 75 measures every manager needs to know", 2011)

"KRAs and KPIs KRA and KPI are two confusing acronyms for an approach commonly recommended for identifying a person’s major job responsibilities. KRA stands for key result areas; KPI stands for key performance indicators. As academics and consultants explain this jargon, key result areas are the primary components or parts of the job in which a person is expected to deliver results. Key performance indicators represent the measures that will be used to determine how well the individual has performed. In other words, KRAs tell where the individual is supposed to concentrate her attention; KPIs tell how her performance in the specified areas should be measured. Probably few parts of the performance appraisal process create more misunderstanding and bewilderment than do the notion of KRAs and KPIs. The reason is that so much of the material written about KPIs and KRAs is both." (Dick Grote, "How to Be Good at Performance Appraisals: Simple, Effective, Done Right", 2011)

"'Getting it right the first time' is a rare achievement, and ascertaining the organization’s winning KPIs and associated reports is no exception. The performance measure framework and associated reporting is just like a piece of sculpture: you can be criticized on taste and content, but you can’t be wrong. The senior management team and KPI project team need to ensure that the project has a just-do-it culture, not one in which every step and measure is debated as part of an intellectual exercise." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Preparation precedes performance. When performance is measured, performance improves. When performance is measured and reported, the rate of improvement accelerates." (Thomas S Monson)

02 December 2015

Business Intelligence: Reporting (Just the Quotes)

"A man's judgment cannot be better than the information on which he has based it. Give him no news, or present him only with distorted and incomplete data, with ignorant, sloppy, or biased reporting, with propaganda and deliberate falsehoods, and you destroy his whole reasoning process and make him somewhat less than a man." (Arthur H Sulzberger, [speech] 1948)

"The secret language of statistics, so appealing in a fact-minded culture, is employed to sensationalize, inflate, confuse, and oversimplify. Statistical methods and statistical terms are necessary in reporting the mass data of social and economic trends, business conditions, 'opinion' polls, the census. But without writers who use the words with honesty and understanding and readers who know what they mean, the result can only be semantic nonsense." (Darell Huff, "How to Lie with Statistics", 1954)

"To be worth much, a report based on sampling must use a representative sample, which is one from which every source of bias has been removed." (Darell Huff, "How to Lie with Statistics", 1954)

"It is probable that one day we shall begin to draw organization charts as a series of linked groups rather than as a hierarchical structure of individual 'reporting' relationships." (Douglas McGregor, "The Human Side of Enterprise", 1960)

"[...] as the planning process proceeds to a specific financial or marketing state, it is usually discovered that a considerable body of 'numbers' is missing, but needed numbers for which there has been no regular system of collection and reporting; numbers that must be collected outside the firm in some cases. This serendipity usually pays off in a much better management information system in the form of reports which will be collected and reviewed routinely." (William H. Franklin Jr., Financial Strategies, 1987)

"Intangible assets [...] surpass physical assets in most business enterprises, both in value and contribution to growth, yet they are routinely expensed in the financial reports and hence remain absent from corporate balance sheets. This asymmetric treatment of capitalizing (considering as assets) physical and financial investment while expensing intangibles leads to biased and deficient reporting of firms’ performance and value." (Baruch Lev, "Intangibles: Management, Measurement, and Reporting", 2000)

"Project planning is the key to effective project management. Detailed and accurate planning of a project produces the managerial information that is the basis of project justification (costs, benefits, strategic impact, etc.) and the defining of the business drivers (scope, objectives) that form the context for the technical solution. In addition, project planning also produces the project schedules and resource allocations that are the framework for the other project management processes: tracking, reporting, and review." (Rob Thomsett, "Radical Project Management", 2002)

"Many management reports are not a management tool; they are merely memorandums of information. As a management tool, management reports should encourage timely action in the right direction, by reporting on those activities the Board, management, and staff need to focus on. The old adage 'what gets measured gets done' still holds true." (David Parmenter, "Pareto’s 80/20 Rule for Corporate Accountants", 2007)

"Reporting to the Board is a classic 'catch-22' situation. Boards complain about getting too much information too late, and management complains that up to 20% of their time is tied up in the Board reporting process. Boards obviously need to ascertain whether management is steering the ship correctly and the state of the crew and customers before they can relax and 'strategize' about future initiatives. The process of assessing the current status of the organization from the most recent Board report is where the principal problem lies. Board reporting needs to occur more efficiently and effectively for both the Board and management." (David Parmenter, "Pareto’s 80/20 Rule for Corporate Accountants", 2007)

"Readability in visualization helps people interpret data and make conclusions about what the data has to say. Embed charts in reports or surround them with text, and you can explain results in detail. However, take a visualization out of a report or disconnect it from text that provides context (as is common when people share graphics online), and the data might lose its meaning; or worse, others might misinterpret what you tried to show." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"These practices - selective reporting and data pillaging - are known as data grubbing. The discovery of statistical significance by data grubbing shows little other than the researcher’s endurance. We cannot tell whether a data grubbing marathon demonstrates the validity of a useful theory or the perseverance of a determined researcher until independent tests confirm or refute the finding. But more often than not, the tests stop there. After all, you won’t become a star by confirming other people’s research, so why not spend your time discovering new theories? The data-grubbed theory consequently sits out there, untested and unchallenged." (Gary Smith, "Standard Deviations", 2014)

"'Getting it right the first time' is a rare achievement, and ascertaining the organization’s winning KPIs and associated reports is no exception. The performance measure framework and associated reporting is just like a piece of sculpture: you can be criticized on taste and content, but you can’t be wrong. The senior management team and KPI project team need to ensure that the project has a just-do-it culture, not one in which every step and measure is debated as part of an intellectual exercise." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"In order to get measures to drive performance, a reporting framework needs to be developed at all levels within the organization." (David Parmenter, "Key Performance Indicators: Developing, implementing, and using winning KPIs" 3rd Ed., 2015)

"Statistics, because they are numbers, appear to us to be cold, hard facts. It seems that they represent facts given to us by nature and it’s just a matter of finding them. But it’s important to remember that people gather statistics. People choose what to count, how to go about counting, which of the resulting numbers they will share with us, and which words they will use to describe and interpret those numbers. Statistics are not facts. They are interpretations. And your interpretation may be just as good as, or better than, that of the person reporting them to you." (Daniel J Levitin, "Weaponized Lies", 2017)

04 August 2015

Statistics: Median (Definitions)

"The middle value in an ordered set of values for which there are an equal number of values." (Jennifer George-Palilonis, "A Practical Guide to Graphics Reporting", 2006)

"The center-most value in an ordered set of values. If the set quantity is even, then the average of the two center-most values." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The median is a statistical measure of variation. It represents the middle measurement when a set of measurements are collected in ascending order: 50% of the measurements are above the median and 50% are below it." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"The middle value in a set of ordered numbers. The median value is determined by choosing the smallest value such that at least half of the values in the set are no greater than the chosen value. If the number of values within the set is odd, the median value corresponds to a single value. If the number of values within the set is even, the median value corresponds to the sum of the two middle values divided by two." (Microsoft, "SQL Server 2012 Glossary", 2012)

"The middle value in a set of values. Half the values fall below the median, and half the values fall above the median. See also average; mode." (E C Nelson & Stephen L Nelson, "Excel Data Analysis For Dummies ", 2015)

"To find the median, list the values of the data set in numerical order and identify which value appears in the middle of the list." (Christopher Donohue et al, "Foundations of Financial Risk: An Overview of Financial Risk and Risk-based Financial Regulation, 2nd Ed", 2015)

"Middle score in a distribution." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

Statistics: Mean (Definitions)

"In a numerical sequence, the number that has an equal number of values before and after it. In the sequence 3, 5, 7, 9, 11, seven is the mean." (Dale Furtwengler, "Ten Minute Guide to Performance Appraisals", 2000)

"The average value of a sample of data that is typically gathered in a matrix experiment." (Clyde M Creveling, "Six Sigma for Technical Processes: An Overview for R Executives, Technical Leaders, and Engineering Managers", 2006)

"The sum of all values in a variable divided by the number of values." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2006)

"The average value of a sample of data that is typically gathered in a matrix experiment." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"The sum of all values in a variable divided by the number of values." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2007)

"The result of dividing the sum of all values within a set by the count of all values included." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The mean is a statistical measure of central tendency. It is most easily understood as the mathematical average. It is calculated by summing the value of a set of measurements and dividing by the number of measurements taken." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement", 2012)

"To find the mean add up the values in the data set and then divide by the number of values." (Christopher Donohue et al, "Foundations of Financial Risk: An Overview of Financial Risk and Risk-based Financial Regulation" 2nd Ed., 2015)

"Arithmetic averages of scores. The mean is the most commonly used measure of central tendency, but should be computed only for score data." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

Statistics: Moving Average (Definitions)

"A trend-following indicator that works best in a trending environment. Moving averages smooth out price action but operate with a time lag. Any number of moving averages can be employed, with different time spans, to generate buy and sell signals. When only one average is employed, a buy signal is given when the price closes above the average. When two averages are employed, a buy signal is given when the shorter average crosses above the longer average. Technicians use three types: simple, weighted, and exponentially smoothed averages." (Guido Deboeck & Teuvo Kohonen (Eds), "Visual Explorations in Finance with Self-Organizing Maps 2nd Ed.", 2000)

"For a time series, an average that is updated as new information is received. With the moving average, the manager employs the most recent observations to calculate an average, which is used as the forecast for the next period." (Jae K Shim & Joel G Siegel, "Budgeting Basics and Beyond", 2008)

[exponential moving average:] "A moving average of data that gives more weight to the more recent data in the period and less weight to the older data in the period. The formula applies weighting factors which decrease exponentially. The weighting for each older data point decreases exponentially, giving much more importance to recent observations while still not discarding older observations entirely." (SQL Server 2012 Glossary, "Microsoft", 2012)

"An average that’s calculated by using only a specified set of values, such as an average based on just the last three values." (E C Nelson & Stephen L Nelson, "Excel Data Analysis For Dummies ", 2015)

"A mathematical average of data points over a specified period of time. Moving averages are used on financial price charts to show the average price over a selected interval of time. Examples are the SMA(9), SMA(20), SMA(50), or SMA(200) referring to 9-, 20-, 50-, or 200-period simple moving averages. Other types of moving averages also exist, such as an exponential moving average (EMA) and triangular moving averages (TMA). The EMA places more emphasis on the most recent data points. The TMA places more emphasis on the center data points of the specified range, that is, 9, 20, 50, 200, and so on." (Russell A Stultz, "The Option Strategy Desk Reference", 2019)

17 June 2015

Data Analytics: Advanced Analytics (Definitions)

"A subset of analytical techniques that, among other things, often uses statistical methods to identify and quantify the influence and significance of relationships between items of interest, groups similar items together, creates predictions, and identifies mathematical optimal or near-optimal answers to business problems." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"Algorithms for complex analysis of either structured or unstructured data. It includes sophisticated statistical models, machine learning, neural networks, text analytics, and other advanced data-mining techniques Advanced analytics does not include database query and reporting and OLAP cubes." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A subset of analytical techniques that, among other things, often uses statistical methods to identify and quantify the influence and significant of relationships between items of interest, group similar items together, create predictions, and identify mathematical optimal or near-optimal answers to business problems." (Evan Stubbs, "Big Data, Big Innovation", 2014)

"Advanced Analytics is the autonomous or semi-autonomous examination of data or content using sophisticated techniques and tools, typically beyond those of traditional business intelligence (BI), to discover deeper insights, make predictions, or generate recommendations. Advanced analytic techniques include those such as data/text mining, machine learning, pattern matching, forecasting, visualization, semantic analysis, sentiment analysis, network and cluster analysis, multivariate statistics, graph analysis, simulation, complex event processing, neural networks. (Gartner)

"Analytic techniques and technologies that apply statistical and/or machine learning algorithms that allow firms to discover, evaluate, and optimize models that reveal and/or predict new insights." (Forrester)

"Advanced analytics describes data analysis that goes beyond simple mathematical calculations such as sums and averages, or filtering and sorting. Advanced analyses use mathematical and statistical formulas and algorithms to generate new information, to recognize patterns, and also to predict outcomes and their respective probabilities." (BI-Survey) [source]

"Advanced analytics is an umbrella term for a group of high-level methods and tools that can help you get more out of your data. The predictive capabilities of advanced analytics can be used to forecast trends, events, and behaviors. This gives organizations the ability to perform advanced statistical models such as 'what-if' calculations, as well as to future-proof various aspects of their operations." (Sisense) [source]

10 June 2015

Business Intelligence: Report Snapshot (Definitions)

"A SQL Server Reporting Services report that contains data that was queried at a particular point in time and has been stored on the Report Server." (Victor Isakov et al, "MCITP Administrator: Microsoft SQL Server 2005 Optimization and Maintenance (70-444) Study Guide", 2007)

"A report that contains data captured at a specific point in time. Since report snapshots hold datasets instead of queries, report snapshots can be used to limit processing costs by running the snapshot during off-peak times." (Darril Gibson, "MCITP SQL Server 2005 Database Developer All-in-One Exam Guide", 2008)

"A report that contains data captured at a specific point in time. A report snapshot is stored in an intermediate format containing retrieved data rather than a query and rendering definitions." (Jim Joseph et al, "Microsoft® SQL Server™ 2008 Reporting Services Unleashed", 2009)

"A static report that contains data captured at a specific point in time." (Microsoft, "SQL Server 2012 Glossary", 2012)

29 May 2015

Knowledge Management: Keeping Current or the Quest to Lifelong Learning for IT Professionals

Introduction

    The pace with which technologies and the business changes becomes faster and faster. If 5-10 years back a vendor needed 3-5 years before coming with a new edition of a product, nowadays each 1-2 years a new edition is released. The release cycles become shorter and shorter, vendors having to keep up with the changing technological trends. Changing trends allow other vendors to enter the market with new products, increasing thus the competition and the need for responsiveness from other vendors. On one side the new tools/editions bring new functionality which mainly address technical and business requirements. On the other side existing tools functionality gets deprecated and superset by other. Knowledge doesn’t resume only to the use of tools, but also in the methodologies, procedures, best practices or processes used to make most of the respective products. Evermore, the value of some tools increases when mixed, flexible infrastructures relying on the right mix of tools working together.

    For an IT person keeping current with the advances in technologies is a major requirement. First of all because knowing modern technologies is a ticket for a good and/or better paid job. Secondly because many organizations try to incorporate in their IT infrastructure modern tools that would allow them increase the ROI and achieve further benefits. Thirdly because, as I’d like to believe, most of the IT professionals are eager to learn new things, keep up with the novelty. Being an adept of the continuous learning philosophy is also a way to keep the brain challenged, other type of challenge than the one we meet in daily tasks.

Knowledge Sources

    Face-to-face or computer-based trainings (CBTs) are the old-fashioned ways of keeping up-to-date with the advances in technologies though paradoxically not all organizations afford to train their IT employees. Despite of affordable CBTs, face-to-face trainings are quite expensive for the average IT person, therefore the IT professional has to reorient himself to other sources of knowledge. Fortunately many important Vendors like Microsoft or IBM provide in one form or another through Knowledge Bases (KB), tutorials, forums, presentations and Blogs a wide range of resources that could be used for learning. Similar resources exist also from similar parties, directly or indirectly interested in growing the knowledge pool.

    Nowadays reading a book or following a course it isn’t anymore a requirement for learning a subject. Blogs, tutorials, articles and other types of similar material can help more. Through their subject-oriented focus, they can bring some clarity in a small unit of time. Often they come with references to further materials, bring fresh perspectives, and are months or even years ahead books or courses. Important professionals in the field can be followed on blogs, Twitter, LinkedIn, You Tube and other social media platforms. Seeing in what topics they are interested in, how they code, what they think, maybe how they think, some even share their expertize ad-hoc when asked, all of this can help an IT professional considerably if he knows how to take advantage of these modern facilities.

    MOOCs start to approach IT topics, and further topics that can become handy for an IT professional. Most of them are free or a small fee is required for some of them, especially if participants’ identity needs to be verified. Such courses are a valuable resource of information. The participant can see how such a course is structured, what topics are approached, and what’s the minimal knowledge base required; the material is almost the same as in a normal university course, and in the end it’s not the piece of paper with the testimonial that’s important, but the change in perspective we obtained by taking the course. In addition the MOOC participant can interact with people with similar hobbies, collaborate with them on projects, and why not, something useful can come out of it. Through MOOCs or direct Vendor initiatives, free or freeware versions of software is available. Sometimes the whole functionality is available for personal use. The professional is therefore no more dependent on the software he can use only at work. New possibilities open for the person who wants to learn.

Maximizing the Knowledge Value

    Despite the considerable numbers of knowledge resources, for an IT professional the most important part of his experience comes from hand-on experience acquired on the job. If the knowledge is not rooted in hand-on experience, his knowledge remains purely theoretical, with minimal value. Therefore in order to maximize the value of his learning, an IT professional has to attempt using his knowledge as much and soon as possible in praxis. One way to increase the value of experience is to be involved in projects dealing with new technologies or challenges that would allow a professional to further extend his knowledge base. Sometimes we can choose such projects or gain exposure to the technologies, though other times no such opportunities can be sized or identified.

    Probably an IT professional can use in his daily duties 10-30% of what he learned. This percentage can be however increased by involving himself in other types of personal or collective (open source or work) projects. This would allow exploring the subjects from other perspective. Considering that many projects involve overtime, many professionals have also a rich personal life, it looks difficult to do that, though not impossible.

    Even if not on a regular basis achievable, a professional can allocate 1-3 hours on a weekly basis from his working time for learning something new. It can be something that would help directly or indirectly his organization, though sometimes it pays off to learn technologies that have nothing to do with the actual job. Somebody may argue that the respective hours are not “billable”, are a waste of time and other resources, that the technologies are not available, that there’s lot of due tasks, etc. With a little benevolence and with the right argumentation also such criticism can be silenced. The arguments can be for example based on the fact that a skilled professional can be with time more productive, a small investment in knowledge can have later a bigger benefit for both parties – employee and employer. An older study was showing that when IT professionals was given some freedom to approach personal projects at work, and use some time for their own benefit, the value they bring for an organization increased. There are companies like Google who made from this type of work a philosophy.

    A professional can also allocate 1-3 hours from his free time while commuting or other similar activities. Reading something before going to bed or as relaxation after work can prove to be a good shut-down for the brain from the daily problems. Where there’s interest in learning something new a person will find the time, no matter how busy his schedule is. It’s important however to do that on a regular basis, and with time the hours and knowledge accumulate.

    It’s also important to have a focused effort that will bring some kind of benefit. Learning just for the sake of learning brings little value on investment for a person if it’s not adequately focused. For sure it’s interesting and fun to browse through different topics, it’s even recommended to do so occasionally, though on the long run if a person wants to increase the value of his knowledge, he needs somehow to focus the knowledge within a given direction and apply that knowledge.

    Direction we obtain by choosing a career or learning path, and focusing on the direct or indirect related topics that belong to that path. Focusing on the subjects related to a career path allows us to build our knowledge further on existing knowledge, understanding a topic fully. On the other side focusing on other areas of applicability not directly linked with our professional work can broaden our perspective by looking at one topic from another’s topic perspective. This can be achieved for example by joining the knowledge base of a hobby we have with the one of our professional work. In certain configurations new opportunities for joint growth can be identified.

    The value of knowledge increases primarily when it’s used in day-to-day scenarios (a form of learning by doing). It would be useful for example for a professional to start a project that can bring some kind of benefit. It can be something simple like building a web page or a full website, an application that processes data, a solution based on a mix of technologies, etc. Such a project would allow simulating to some degree day-to-day situations, when the professional is forced to used and question some aspects, to deal with some situations that can’t be found in textbook or other learning material. If such a project can bring a material benefit, the value of knowledge increases even more.

    Another way to integrate the accumulated knowledge is through blogging and problem-solving. Topic or problem-oriented blogging can allow externalizing a person’s knowledge (aka tacit knowledge), putting knowledge in new contexts into a small focused unit of work, doing some research and see how other think about the same topic/problem, getting feedback, correcting or improving some aspects. It’s also a way of documenting the various problems identified while learning or performing a task. Blogging helps a person to improve his writing communication skills, his vocabulary and with a little more effort can be also a visit card for his professional experience.

    Trying to apply new knowledge in hand-on trainings, tutorials or by writing a few lines of code to test functionality and its applicability, same as structuring new learned material into notes in the form of text or knowledge maps (e.g. concept maps, mind maps, causal maps, diagrams, etc.) allow learners to actively learn the new concepts, increasing overall material’s retention. Even if notes and knowledge maps don’t apply the learned material directly, they offer a new way of structuring the content and resources for further enrichment and review. Applied individually, but especially when combined, the different types of active learning help as well maximize the value of knowledge with a minimum of effort.

Conclusion

    The bottom line – given the fast pace with which new technologies enter the market and the business environment evolves, an IT professional has to keep himself up-to-date with nowadays technologies. He has now more means than ever to do that – affordable computer-based training, tutorials, blogs, articles, videos, forums, studies, MOOC and other type of learning material allow IT professionals to approach a wide range of topics. Through active, focused, sustainable and hand-on learning we can maximize the value of knowledge, and in the end depends of each of us how we use the available resources to make most of our learning experience.

08 May 2015

Data Analytics: Data Analytics (Definitions)

"Business Intelligence procedures and techniques for exploration and analysis of data to discover and identify meaningful information and trends." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"Analytics is the systematic analysis of large databases to solve problems and make informed decisions." (John R Schermerhorn Jr, "Management" 12th Ed., 2012)

"Procedures and techniques for exploration and analysis of data to discover and identify new and meaningful information and trends." (Craig S Mullins, "Database Administration", 2012)

"A data-driven process that creates insight. These processes incorporate a wide variety of techniques and may include manual analysis, reporting, predictive models, time-series models, or optimization models." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"A suite of technical solutions that uses mathematical and statistical methods. The solutions are applied to data to generate insight to help organizations understand historical business performance as well as forecast and plan for future decisions." (Jim Davis & Aiman Zeid, "Business Transformation", 2014) 

"Analytics is the discovery and communication of meaningful patterns in data." (Elaine Biech, "ASTD Handbook" 2nd Ed., 2014) 

"The business intelligence and analytics technologies that are grounded mostly in data mining and statistical analysis." (Xiuli He, "Supply Chain Analytics: Challenges and Opportunities", 2014)

"Data analytics refers to qualitative and quantitative techniques and processes used to enhance productivity and business gain." (Piyush K Shukla & Madhuvan Dixit, "Big Data: An Emerging Field of Data Engineering", 2015)

"The act of extracting and communicating meaningful information among the data sets." (Hamid R Arabnia et al, "Application of Big Data for National Security", 2015) 

"A broad term that includes quantitative analysis of data and building quantitative models. Analytics is the science of analysis and discovery. Analysis may process data from a data warehouse, may result in building model-driven DSS, or may occur in a special study using statistical or data mining software. In general, analytics refers to quantitative analysis and manipulation of data." (Daniel J Power & Ciara Heavin, "Decision Support, Analytics, and Business Intelligence" 3rd Ed., 2017)

"A scientific and systematic approach to examine raw data in order to draw valid conclusions about them. Data are extracted and structured, and qualitative and quantitative techniques are used to identify and analyze patterns." (Lesley S J Farmer, "Data Analytics for Strategic Management: Getting the Right Data", 2017)

"Techniques used to identify patterns in data sets. Qualitative and quantitative techniques are employed to derive meaning that may be valuable and could result in a positive business gain for an organization." (Daniel J Power & Ciara Heavin, "Decision Support, Analytics, and Business Intelligence" 3rd Ed., 2017)

"The discovery, interpretation, and communication of meaningful patterns in data to inform decision making and improve performance." (Jonathan Ferrar et al, "The Power of People: Learn How Successful Organizations Use Workforce Analytics To Improve Business Performance", 2017)

"Analytics refers to quantitative and statistical analysis and manipulation of data to derive meaning. Analytics is a broad umbrella term that includes business analytics and data analytics." (Daniel J. Power & Ciara Heavin, "Data-Based Decision Making and Digital Transformation", 2018)

"Involves drawing insights from the data including big data. Analytics uses simple to advanced tools depending upon the objectives. Analytics may involve visual display of data (charts and graphs), descriptive statistics, making predictions, forecasting future outcomes, or optimizing business processes." (Amar Sahay, "Business Analytics" Vol. I, 2018)

"Is the science of examining raw data with the purpose of drawing actionable information from it, data analytics is used to allow companies and organization to make better business decisions and in the sciences to verify or disprove existing theories." (Dennis C Guster, "Scalable Data Warehouse Architecture: A Higher Education Case Study", 2018)

"Data analytics is a process that examines, clears, converts and models data to explore useful information, draws conclusions and supports decision making." (A Aylin Tokuç, "Management of Big Data Projects: PMI Approach for Success", 2019)

"A rapidly emerging field of information science arising from the explosion of data generated by many Internet based applications and services. Data analytics embodies a sequential process of descriptive, diagnostic, predictive and prescriptive analytics. Each type has a different purpose and requires different techniques to gain meaningful outcomes. The latter two often employ machine learning to gain valuable insights and directional guidance in decision making, such as in self-driving automobiles." (Darrold L Cordes et al, "Transforming Urban Slums: Pathway to Functionally Intelligent Cities in Developing Countries", 2021)

"Discovery, interpretation, and communication of meaningful patterns in data; and the process of applying those patterns towards effective decision making." (Francisco S Gutierres & Pedro M Gome, "The Integrated Tourism Analysis Platform (ITAP) for Tourism Destination Management", 2021)

"The science of extracting meaningful information continuously with the assistance of specialized system for finding patterns to get feasible solutions." (Selvan C & S  R Balasundaram, "Data Analysis in Context-Based Statistical Modeling in Predictive Analytics", 2021)

"Analytics encompasses the discovery, interpretation, and communication of meaningful patterns in data. It relies on the simultaneous application of statistics, computer programming and operations research to quantify performance and is particularly valuable in areas with large amounts of recorded information. The goal of this exercise is to guide decision-making based on the business context. The analytics flow comprises descriptive, diagnostic, predictive analytics and eventually prescriptive steps." (Accenture)

"Data Analytics describes the end-to-end process by which data is cleaned, inspected and modeled. The objective is to discover useful and actionable information that supports decision-making." (Accenture)

"Data analytics enables organizations to analyze all their data (real-time, historical, unstructured, structured, qualitative) to identify patterns and generate insights to inform and, in some cases, automate decisions, connecting intelligence and action." (Tibco) [source]

"Data analytics is a set of technologies and practices that reveal meaning hidden in raw data." (Xplenty) [source]

"Data and analytics is the management of data for all uses (operational and analytical) and the analysis of data to drive business processes and improve business outcomes through more effective decision making and enhanced customer experiences." (Gartner)

"Data analytics (DA) is the process of examining data sets in order to draw conclusions about the information they contain, increasingly with the aid of specialized systems and software." (Techtarget) [source]

"Data analytics is the process of querying and interrogating data in the pursuit of valuable insight and information." (snowflake) [source]

"Data analytics is the pursuit of extracting meaning from raw data using specialized computer systems. These systems transform, organize, and model the data to draw conclusions and identify patterns." (Informatica) [source]

"Data analytics refers to the use of processes and technology to combine and examine datasets, identify meaningful patterns, correlations, and trends in them, and most importantly, extract valuable insights." (Qlik) [source]

"The discovery, interpretation, and communication of meaningful patterns in data. They are essentially the backbone of any data-driven decision making." (Insight Software)

"The process and techniques for the exploration and analysis of business data to discover and identify new and meaningful information and trends that allow for analysis to take place."(Information Management)
Related Posts Plugin for WordPress, Blogger...