"Data architects often turn to graphs because they are flexible enough to accommodate multiple heterogeneous representations of the same entities as described by each of the source systems. With a graph, it is possible to associate underlying records incrementally as data is discovered. There is no need for big, up-front design, which serves only to hamper business agility. This is important because data fabric integration is not a one-off effort and a graph model remains flexible over the lifetime of the data domains." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)
"Data fabrics are general-purpose, organization-wide data access interfaces that offer a connected view of the integrated domains by combining data stored in a local graph with data retrieved on demand from third-party systems. Their job is to provide a sophisticated index and integration points so that they can curate data across silos, offering consistent capabilities regardless of the underlying store (which might or might not be graph based) […]." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)
"A Data Fabric has its focus more on the architectural underpinning, technical capabilities, and intelligent analysis to produce active metadata supporting a smarter, AI-infused system to orchestrate various data integration styles, enabling trusted and reusable data in a hybrid cloud landscape to be consumed by humans, applications, or other downstream systems." (Eberhard Hechler et al, "Data Fabric and Data Mesh Approaches with AI", 2023)
"Data Fabric’s building blocks represent groupings of different components and characteristics. They are high-level blocks that describe a package of capabilities that address specific business needs. The building blocks are Data Governance and its knowledge layer, Data Integration, and Self-Service." (Sonia Mezzetta, "Principles of Data Fabric: Become a data-driven organization by implementing Data Fabric solutions efficiently", 2023)
"Data Fabric is a composable architecture made up of different tools, technologies, and systems. It has an active metadata and event-driven design that automates Data Integration while achieving interoperability. Data Governance, Data Privacy, Data Protection, and Data Security are paramount to its design and to enable Self-Service data sharing. The following figure summarizes the different characteristics that constitute a Data Fabric design." (Sonia Mezzetta, "Principles of Data Fabric: Become a data-driven organization by implementing Data Fabric solutions efficiently", 2023)
"Data Fabric is a distributed data architecture that connects scattered data across tools and systems with the objective of providing governed access to fit-for-purpose data at speed. Data Fabric focuses on Data Governance, Data Integration, and Self-Service data sharing. It leverages a sophisticated active metadata layer that captures knowledge derived from data and its operations, data relationships, and business context. Data Fabric continuously analyzes data management activities to recommend value-driven improvements. Data Fabric works with both centralized and decentralized data systems and supports diverse operational models." (Sonia Mezzetta, "Principles of Data Fabric: Become a data-driven organization by implementing Data Fabric solutions efficiently", 2023)
"Enterprises have difficulties in interpreting new concepts like the data mesh and data fabric, because pragmatic guidance and experiences from the field are missing. In addition to that, the data mesh fully embraces a decentralized approach, which is a transformational change not only for the data architecture and technology, but even more so for organization and processes. This means the transformation cannot only be led by IT; it’s a business transformation as well." (Piethein Strengholt, "Data Management at Scale: Modern Data Architecture with Data Mesh and Data Fabric" 2nd Ed., 2023)
"Gaining more insight into data, simplifying data access, enabling shopping-for-data, augmenting traditional data governance, generating active metadata, and accelerating development of products and services are enabled by infusing AI into the Data Fabric architecture. An AI-infused Data Fabric is not only leveraging AI but also likewise an architecture to manage and deal with AI artefacts, including AI models, pipelines, etc." (Eberhard Hechler et al, "Data Fabric and Data Mesh Approaches with AI", 2023)
"The data fabric is an approach that addresses today’s data management and scalability challenges by adding intelligence and simplifying data access using self-service. In contrast to the data mesh, it focuses more on the technology layer. It’s an architectural vision using unified metadata with an end-to-end integrated layer (fabric) for easily accessing, integrating, provisioning, and using data." (Piethein Strengholt, "Data Management at Scale: Modern Data Architecture with Data Mesh and Data Fabric" 2nd Ed., 2023)
"At its core, a data fabric is an architectural framework, designed to be employed within one or more domains inside a data mesh. The data mesh, however, is a holistic concept, encompassing technology, strategies, and methodologies." (James Serra, "Deciphering Data Architectures", 2024)
"It is very important to understand that data mesh is a concept, not a technology. It is all about an organizational and cultural shift within companies. The technology used to build a data mesh could follow the modern data warehouse, data fabric, or data lakehouse architecture - or domains could even follow different architectures. (James Serra, "Deciphering Data Architectures", 2024)
No comments:
Post a Comment