02 December 2015

𖤓Business Intelligence: Analytics (Just the Quotes)

"Data are essential, but performance improvements and competitive advantage arise from analytics models that allow managers to predict and optimize outcomes. More important, the most effective approach to building a model rarely starts with the data; instead it originates with identifying the business opportunity and determining how the model can improve performance." (Dominic Barton & David Court, "Making Advanced Analytics Work for You", 2012) 

"Even with simple and usable models, most organizations will need to upgrade their analytical skills and literacy. Managers must come to view analytics as central to solving problems and identifying opportunities - to make it part of the fabric of daily operations." (Dominic Barton & David Court, "Making Advanced Analytics Work for You", 2012)

"There is another important distinction pertaining to mining data: the difference between (1) mining the data to find patterns and build models, and (2) using the results of data mining. Students often confuse these two processes when studying data science, and managers sometimes confuse them when discussing business analytics. The use of data mining results should influence and inform the data mining process itself, but the two should be kept distinct." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"It is important to remember that predictive data analytics models built using machine learning techniques are tools that we can use to help make better decisions within an organization and are not an end in themselves. It is paramount that, when tasked with creating a predictive model, we fully understand the business problem that this model is being constructed to address and ensure that it does address it." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"Machine learning takes many different forms and goes by many different names: pattern recognition, statistical modeling, data mining, knowledge discovery, predictive analytics, data science, adaptive systems, self-organizing systems, and more. Each of these is used by different communities and has different associations. Some have a long half-life, some less so." (Pedro Domingos, "The Master Algorithm", 2015)

"The human side of analytics is the biggest challenge to implementing big data." (Paul Gibbons, "The Science of Successful Organizational Change", 2015)

"One important thing to bear in mind about the outputs of data science and analytics is that in the vast majority of cases they do not uncover hidden patterns or relationships as if by magic, and in the case of predictive analytics they do not tell us exactly what will happen in the future. Instead, they enable us to forecast what may come. In other words, once we have carried out some modelling there is still a lot of work to do to make sense out of the results obtained, taking into account the constraints and assumptions in the model, as well as considering what an acceptable level of reliability is in each scenario." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017)

"One of the biggest truths about the real–time analytics is that nothing is actually real–time; it's a myth. In reality, it's close to real–time. Depending upon the performance and ability of a solution and the reduction of operational latencies, the analytics could be close to real–time, but, while day-by-day we are bridging the gap between real–time and near–real–time, it's practically impossible to eliminate the gap due to computational, operational, and network latencies." (Shilpi Saxena & Saurabh Gupta, "Practical Real-time Data Processing and Analytics", 2017)

"The tension between bias and variance, simplicity and complexity, or underfitting and overfitting is an area in the data science and analytics process that can be closer to a craft than a fixed rule. The main challenge is that not only is each dataset different, but also there are data points that we have not yet seen at the moment of constructing the model. Instead, we are interested in building a strategy that enables us to tell something about data from the sample used in building the model." (Jesús Rogel-Salazar, "Data Science and Analytics with Python", 2017) 

"Big data is revolutionizing the world around us, and it is easy to feel alienated by tales of computers handing down decisions made in ways we don’t understand. I think we’re right to be concerned. Modern data analytics can produce some miraculous results, but big data is often less trustworthy than small data. Small data can typically be scrutinized; big data tends to be locked away in the vaults of Silicon Valley. The simple statistical tools used to analyze small datasets are usually easy to check; pattern-recognizing algorithms can all too easily be mysterious and commercially sensitive black boxes." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"For advanced analytics, a well-designed data pipeline is a prerequisite, so a large part of your focus should be on automation. This is also the most difficult work. To be successful, you need to stitch everything together." (Piethein Strengholt, "Data Management at Scale: Best Practices for Enterprise Architecture", 2020)

"Data literacy is not a change in an individual’s abilities, talents, or skills within their careers, but more of an enhancement and empowerment of the individual to succeed with data. When it comes to data and analytics succeeding in an organization’s culture, the increase in the workforces’ skills with data literacy will help individuals to succeed with the strategy laid in front of them. In this way, organizations are not trying to run large change management programs; the process is more of an evolution and strengthening of individual’s talents with data. When we help individuals do more with data, we in turn help the organization’s culture do more with data." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"In the world of data and analytics, people get enamored by the nice, shiny object. We are pulled around by the wind of the latest technology, but in so doing we are pulled away from the sound and intelligent path that can lead us to data and analytical success. The data and analytical world is full of examples of overhyped technology or processes, thinking this thing will solve all of the data and analytical needs for an individual or organization. Such topics include big data or data science. These two were pushed into our minds and down our throats so incessantly over the past decade that they are somewhat of a myth, or people finally saw the light. In reality, both have a place and do matter, but they are not the only solution to your data and analytical needs. Unfortunately, though, organizations bit into them, thinking they would solve everything, and were left at the alter, if you will, when it came time for the marriage of data and analytical success with tools." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Pure data science is the use of data to test, hypothesize, utilize statistics and more, to predict, model, build algorithms, and so forth. This is the technical part of the puzzle. We need this within each organization. By having it, we can utilize the power that these technical aspects bring to data and analytics. Then, with the power to communicate effectively, the analysis can flow throughout the needed parts of an organization." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.