Showing posts with label precision. Show all posts
Showing posts with label precision. Show all posts

13 September 2020

Knowledge Management: Definitions II (What's in a Name)

Knowledge Management

Browsing through the various books on databases and programming appeared over the past 20-30 years, it’s probably hard not to notice the differences between the definitions given even for straightforward and basic concepts like the ones of view, stored procedure or function. Quite often the definitions lack precision and rigor, are circular and barely differentiate the defined term (aka concept) from other terms. In addition, probably in the attempt of making the definitions concise, important definitory characteristics are omitted.

Unfortunately, the same can be said about other non-scientific books, where the lack of appropriate definitions make the understanding of the content and presented concepts more difficult. Even if the reader can arrive in time to an approximate understanding of what is meant, one might have the feeling that builds castles in the air as long there is no solid basis to build upon – and that should be the purpose of a definition – to offer the foundation on which the reader can build upon. Especially for the readers coming from the scientific areas this lack of appropriateness and moreover, the lack of definitions, feels maybe more important than for the professional who already mastered the respective areas.

In general, a definition of a term is a well-defined descriptive statement which serves to differentiate it from related concepts. A well-defined definition should be meaningful, explicit, concise, precise, non-circular, distinct, context-dependent, relevant, rigorous, and rooted in common sense. In addition, each definition needs to be consistent through all the content and when possible, consistent with the other definitions provided. Ideally the definitions should cover as much of possible from the needed foundation and provide a unitary consistent multilayered non-circular and hierarchical structure that facilitates the reading and understanding of the given material.

Thus, one can consider the following requirements for a definition:

Meaningful: the description should be worthwhile and convey the required meaning for understanding the concept.

Explicit: the description must state clearly and provide enough information/detail so it can leave no room for confusion or doubt.

Context-dependent: the description should provide upon case the context in which the term is defined.

Concise: the description should be as succinct as possible – obtaining the maximum of understanding from a minimum of words.

Precise: the description should be made using unambiguous words that provide the appropriate meaning individually and as a whole.

Intrinsic non-circularity: requires that the term defined should not be used as basis for definitions, leading thus to trivial definitions like “A is A”.

Distinct: the description should provide enough detail to differentiate the term from other similar others.

Relevant: the description should be closely connected or appropriate to what is being discussed or presented.

Rigorous: the descriptions should be the result of a thorough and careful thought process in which the multiple usages and forms are considered.  

Extrinsic non-circularity: requires that the definitions of two distinct terms should not be circular (e.g. term A’s definition is based on B, while B’s definition is based on A), situation usually met occasionally in dictionaries.

Rooted in common sense: the description should not deviate from the common-sense acceptance of the terms used, typically resulted from socially constructed or dictionary-based definitions.

Unitary consistent multilayered hierarchical structure: the definitions should be given in an evolutive structure that facilitates learning, typically in the order in which the concepts need to be introduced without requiring big jumps in understanding. Even if concepts have in general a networked structure, hierarchies can be determined, especially based on the way concepts use other concepts in their definitions. In addition, the definitions must be consistent – hold together – respectively be unitary – form a whole.

07 May 2019

Project Management: Agility under Eyeglasses I

Mismanagement

There are more and more posts in the cyberspace voicing against the agile practices, the way they are understood and implemented by organizations. Some try to be hilarious [5]; others try to keep the scholastic seriousness [1] [2] [3] [4], and all of them make some valid points. In each remark there’re some seeds of truth, even if context-dependent.

Personally, I embrace an agile approach when possible, however I find it difficult to choose between the agile methodologies available on the market because each of them introduces some concepts that contradict what it means to be agile – to respond promptly to business needs. It doesn’t mean that one must consider each requirement, but that’s appropriate to consider those which have business justification. Moreover, organizations need to adapt the methodologies to their needs, and seldom vice-versa.
Considering the Agile Manifesto, it’s difficult to take as serious statements that lack precision, formulations like “we value something over something else” are more of a wish than principles. When people don’t understand what the agile “principles” mean, one occasionally hears statements like “we need no documentation”, “we need no project plan”, “the project plan is not important”, “Change Management doesn’t apply to agile projects” or “we need only high-level requirements because we’ll figure out where we’re going on the way”. Because of the lack of precision, a mocker can variate the lesser concept to null and keep the validity of the agile “principles”.
The agile approaches seem to lack control. If you’re letting the users in charge of the scope then you risk having a product that offers a lot though misses the essential, and thus unusable or usable to a lower degree. Agile works good for prototyping something to show to the users or when the products are small enough to easily fit within an iteration, or when the vendor wants to gain a customer’s trust. Therefore, agile works good with BI projects that combine in general all three aspects.
An abomination is the work in fix sprints or iterations of one or a few weeks, and then chopping the functionality to fit the respective time intervals. If you have the luck of having sign-offs and other activities that steal your time, then the productive time reduces up to 50% (the smaller the iterations the higher the percentage). What’s even unconceivable is that people ignore the time spent with bureaucracy. If this way of working repeats in each iteration then the project duration multiplies by a factor between 2 or 4, the time spent on Project Management increasing by the same factor. What’s not understandable is that despite bureaucracy the adherence to delivery dates, budget and quality is still required.
Sometimes one has the feeling that people think that software development and other IT projects work like building a house or like the manufacturing of a mug. You choose the colors, the materials, the dimensions and voila the product is ready. IT projects involve lot of unforeseen and one must react agilely to it. Here resides one of the most important challenges.   
Communication is one important challenge in a project especially when multiple interests are involved. Face-to-face conversation is one of the nice-to-have items on the wish list however in praxis isn’t always possible. One can’t expect that all the resources are available to meet and decide. In addition, one needs to document everything from meeting minutes, to Business Cases and requirements. A certain flexibility in changing the requirements is needed though one can’t change them arbitrarily, there must be a concept behind otherwise the volume of overwork can easily make the budget for a project explode exponentially.
||>> Next Post (continuation) 
Resources:
[1] Harvard Business Review (2018) Why Agile Goes Awry - and How to Fix It, by Lindsay McGregor & Neel Doshi (Online) Available from: https://hbr.org/2018/10/why-agile-goes-awry-and-how-to-fix-it
[2] Forbes (2012) The Case Against Agile: Ten Perennial Management Objections, by Steve Denning  (Online) Available from:
https://www.forbes.com/sites/stevedenning/2012/04/17/the-case-against-agile-ten-perennial-management-objections/#6df0e6ea3a95 
[3] Springer (2018) Do Agile Methods Work for Large Software Projects?, by Magne Jørgensen  (Online) Available from:
https://link.springer.com/chapter/10.1007/978-3-319-91602-6_12
[4] Michael O Church (2015) Why “Agile” and especially Scrum are terrible  (Online) Available from:
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/
[5] Dev.to (2019) Mockery of agile, by Artur Martsinkovskyi (Online) Available from: https://dev.to/arturmartsinkovskyi/mockery-of-agile-5bdf

26 December 2018

Data Science: Precision (Just the Quotes)

"Simplicity and precision ought to be the characteristics of a scientific nomenclature: words should signify things, or the analogies of things, and not opinions." (Sir Humphry Davy, Elements of Chemical Philosophy", 1812)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"Numerical facts, like other facts, are but the raw materials of knowledge, upon which our reasoning faculties must be exerted in order to draw forth the principles of nature. [...] Numerical precision is the soul of science [...]" (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"One is almost tempted to assert that quite apart from its intellectual mission, theory is the most practical thing conceivable, the quintessence of practice as it were, since the precision of its conclusions cannot be reached by any routine of estimating or trial and error; although given the hidden ways of theory, this will hold only for those who walk them with complete confidence." (Ludwig E Boltzmann, "On the Significance of Theories", 1890)

"Physical research by experimental methods is both a broadening and a narrowing field. There are many gaps yet to be filled, data to be accumulated, measurements to be made with great precision, but the limits within which we must work are becoming, at the same time, more and more defined." (Elihu Thomson, "Annual Report of the Board of Regents of the Smithsonian Institution", 1899)

"The apodictic quality of mathematical thought, the certainty and correctness of its conclusions, are due, not to a special mode of ratiocination, but to the character of the concepts with which it deals. What is that distinctive characteristic? I answer: precision, sharpness, completeness of definition. But how comes your mathematician by such completeness? There is no mysterious trick involved; some ideas admit of such precision, others do not; and the mathematician is one who deals with those that do." (Cassius J Keyser, "The Universe and Beyond", Hibbert Journal Vol. 3, 1904–1905)

"It is difficult to find an intelligible account of the meaning of ‘probability’, or of how we are ever to determine the probability of any particular proposition; and yet treatises on the subject profess to arrive at complicated results of the greatest precision and the most profound practical importance." (John M Keynes, "A Treatise on Probability", 1921)

"It is never possible to predict a physical occurrence with unlimited precision." (Max Planck, "A Scientific Autobiography", 1949)

"Precision is expressed by an international standard, viz., the standard error. It measures the average of the difference between a complete coverage and a long series of estimates formed from samples drawn from this complete coverage by a particular procedure or drawing, and processed by a particular estimating formula." (W Edwards Deming, "On the Presentation of the Results of Sample Surveys as Legal Evidence", Journal of the American Statistical Association Vol 49 (268), 1954)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"The precision of a number is the degree of exactness with which it is stated, while the accuracy of a number is the degree of exactness with which it is known or observed. The precision of a quantity is reported by the number of significant figures in it." (Edmund C Berkeley & Lawrence Wainwright, Computers: Their Operation and Applications", 1956)

"The two most important characteristics of the language of statistics are first, that it describes things in quantitative terms, and second, that it gives this description an air of accuracy and precision." (Ely Devons, "Essays in Economics", 1961)

"We all know that in economic statistics particularly, true precision, comparability and accuracy is extremely difficult to achieve, and it is for this reason that the language of economic statistics is so difficult to handle." (Ely Devons, "Essays in Economics", 1961)

"It is of course desirable to work with manageable models which maximize generality, realism, and precision toward the overlapping but not identical goals of understanding, predicting, and modifying nature. But this cannot be done." (Richard Levins, "The strategy of model building in population biology", American Scientist Vol. 54 (4), 1966) 

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"Simplicity is worth buying if we do not have to pay too great a loss of precision for it." (George Pólya, "Mathematical Methods in Science", 1977)

"Computational reducibility may well be the exception rather than the rule: Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be formally undecidable." (Stephen Wolfram, Undecidability and intractability in theoretical physics", Physical Review Letters 54 (8), 1985)

"Negative feedback only improves the precision of goal-seeking, but does not determine it. Feedback devices are only executive mechanisms that operate during the translation of a program." (Ernst Mayr, "Toward a New Philosophy of Biology: Observations of an Evolutionist", 1988)

"A mathematical model uses mathematical symbols to describe and explain the represented system. Normally used to predict and control, these models provide a high degree of abstraction but also of precision in their application." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Precision does not vary linearly with increasing sample size. As is well known, the width of a confidence interval is a function of the square root of the number of observations. But it is more complicate than that. The basic elements determining a confidence interval are the sample size, an estimate of variability, and a pivotal variable associated with the estimate of variability." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"[myth:] Accuracy is more important than precision. For single best estimates, be it a mean value or a single data value, this question does not arise because in that case there is no difference between accuracy and precision. (Think of a single shot aimed at a target.) Generally, it is good practice to balance precision and accuracy. The actual requirements will differ from case to case." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, “The Poincaré Conjecture”, 2007)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"Repeated observations of the same phenomenon do not always produce the same results, due to random noise or error. Sampling errors result when our observations capture unrepresentative circumstances, like measuring rush hour traffic on weekends as well as during the work week. Measurement errors reflect the limits of precision inherent in any sensing device. The notion of signal to noise ratio captures the degree to which a series of observations reflects a quantity of interest as opposed to data variance. As data scientists, we care about changes in the signal instead of the noise, and such variance often makes this problem surprisingly difficult." (Steven S Skiena, "The Data Science Design Manual", 2017)

06 May 2018

Data Science: Precision (Definitions)

"Precision is the ‘spread’ or variability of repeated measures of the same value." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"Defines the variation in repeated measurements of the same item. There are two major ways to measure precision - repeatability and reproducibility." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"An inherent quality characteristic that is a measure of an attribute’s having the right level of granularity in the data values." (David C Hay, "Data Model Patterns: A Metadata Map", 2010)

"Largest likely estimation error, measured by MOE." (Geoff Cumming, "Understanding The New Statistics", 2013)

"The level of detail included in information, such as the number of decimal places in a number, the number of pixels/inch in an image (resolution), or other measure reflecting how closely information is observed. Not to be confused with Accuracy defined elsewhere in this glossary." (Kenneth A Shaw, "Integrated Management of Processes and Information", 2013)

"Within the quality management system, precision is a measure of exactness. |" (For Dummies, "PMP Certification All-in-One For Dummies, 2nd Ed.", 2013)

"Precision easures the accuracy of a result set, that is, how many of the retrieved resources for a query are relevant." (Robert J Glushko, "The Discipline of Organizing: Professional Edition, 4th Ed", 2016)


22 October 2011

Graphical Representation: Precision (Just the Quotes)

"Numerical facts, like other facts, are but the raw materials of knowledge, upon which our reasoning faculties must be exerted in order to draw forth the principles of nature. [...] Numerical precision is the soul of science [...]" (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places, you begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"The precision of a number is the degree of exactness with which it is stated, while the accuracy of a number is the degree of exactness with which it is known or observed. The precision of a quantity is reported by the number of significant figures in it." (Edmund C Berkeley & Lawrence Wainwright, Computers: Their Operation and Applications", 1956)

"Simplicity, accuracy. appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Graphical excellence is the well-designed presentation of interesting data - a matter of substance, of statistics, and of design. Graphical excellence consists of complex ideas communicated with clarity, precision, and efficiency. Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space. Graphical excellence is nearly always multivariate. And graphical excellence requires telling the truth about the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

Law of Definitive Imprecision: "The weaker the data available upon which to base one's position, the greater the precision which should be quoted in order to give that data authenticity." (Norman R Augustine, "Augustine's Laws", 1983)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"Numerical precision should be consistent throughout and summary statistics such as means and standard deviations should not have more than one extra decimal place (or significant digit) compared to the raw data. Spurious precision should be avoided although when certain measures are to be used for further calculations or when presenting the results of analyses, greater precision may sometimes be appropriate." (Jenny Freeman et al, "How to Display Data", 2008)

"An indication that the data is not statistically sound is when it is almost too precise." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Numbers are ideal vehicles for promulgating bullshit. They feel objective, but are easily manipulated to tell whatever story one desires. Words are clearly constructs of human minds, but numbers? Numbers seem to come directly from Nature herself. We know words are subjective. We know they are used to bend and blur the truth. Words suggest intuition, feeling, and expressivity. But not numbers. Numbers suggest precision and imply a scientific approach. Numbers appear to have an existence separate from the humans reporting them." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

17 January 2010

Data Management: Data Quality Dimensions (Part IV: Accuracy)

Data Management
Data Management Series

Accuracy refers to the extent data is correct, matching the reality with an acceptable level of approximation. Correctness, the value of being correct, same as reality are vague terms, in many cases they are a question of philosophy, perception, having a high degree of interpretability. However, in what concerns data they are typically the result of measurement, therefore a measurement of accuracy relates to the degree the data deviate from physical laws, logics or defined rules, though also this context is a swampy field because, utilizing a well-known syntagm, everything is relative. 

From a scientific point of view, we try to model the reality with mathematical models which offer various level of approximation, the more we learn about our world, the more flaws we discover in the existing models, it’s a continuous quest for finding better models that approximate the reality. Things don’t have to be so complicated, for basic measurements there are many tools out there that offer acceptable results for most of the requirements, on the other side, as requirements change, better approximations might be required with time.

Another concept related with the ones of accuracy and measurement systems is the one of precision, and it refers to degree repeated measurements under unchanged conditions lead to the same results, further concepts associated with it being the ones of repeatability and reproducibility. Even if the accuracy and precision concepts are often confounded a measurement system can be accurate but not precise or precise but not accurate (see the target analogy), a valid measurement system targeting thus both aspects. Accuracy and precision can be considered dimensions of correctedness.

Coming back to accuracy and its use in determining data quality, typically accuracy it’s strong related to the measurement tools used, for this being needed to do again the measurements for all or a sample of the dataset and identify whether the requested level of accuracy is met, approach that could involve quite an effort. The accuracy depends also on whether the systems used to store the data are designed to store the data at the requested level of accuracy, fact reflected by the characteristics of data types used (e.g. precision, length).

Given the fact that a system stores related data (e.g. weight, height, width, length) that could satisfy physical, business of common-sense rules could be used rules to check whether the data satisfy them with the desired level of approximation. For example, being known the height, width, length and the composition of a material (e.g. metal bar) could be determined the approximated weight and compared with entered weight, if the difference is not inside of a certain interval then most probably one of the values were incorrect entered. There are even simpler rules that might apply, for example the physical dimensions must be positive real values, or in a generalized formulation - involve maximal or minimal limits that lead to identification of outliers, etc. In fact, most of the time determining data accuracy resumes only at defining possible value intervals, though there will be also cases in which for this purpose are built complex models and specific techniques.

There is another important aspect related to accuracy, time dependency of data – whether the data changes or not with time. Data currency or actuality refers to the extent data are actual. Given the above definition for accuracy, currency could be considered as a special type of accuracy because when the data are not actual then they don’t reflect reality. If currency is considered as a standalone data quality dimension, then accuracy refers only to the data that are not time dependent.


Written: Jan-2010, Last Reviewed: Mar-2024

15 March 2009

DBMS: Precision (Definitions)

"The maximum number of decimal digits that can be stored by numeric and decimal datatypes. The precision includes all digits, both to the right and to the left of the decimal point." (Karen Paulsell et al, "Sybase SQL Server: Performance and Tuning Guide", 1996)

"The maximum total number of decimal digits that can be stored, both to the left and right of the decimal point." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"The degree of detail used to state a numeric quantity; for example, writing a value to two decimal places instead of five decimal places. Contrast with accuracy." (Richard D Stutzke, "Estimating Software-Intensive Systems: Projects, Products, and Processes", 2005)

"This is the total number of digits that can be stored in an object that uses the decimal datatype." (Joseph L Jorden & Dandy Weyn, "MCTS Microsoft SQL Server 2005: Implementation and Maintenance Study Guide - Exam 70-431", 2006)

"Refers to the preciseness with which a numerical quantity is expressed." (Michael Fitzgerald, "Learning Ruby", 2007)

"In a floating-point number, the number of digits to the right of the decimal point." (Jan L Harrington, "SQL Clearly Explained" 3rd Ed., 2010)

"The maximum number of significant digits that can be represented" (Nell Dale & John Lewis, "Computer Science Illuminated" 6th Ed., 2015)

"An attribute of a number that describes the total number of binary or decimal digits. An attribute of a timestamp that describes the total number of decimal digits in the fractional seconds part of the value." (Sybase, "Open Server Server-Library/C Reference Manual", 2019)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.