29 November 2006

Phil Simon - Collected Quotes

"Data science is an iterative process. It starts with a hypothesis (or several hypotheses) about the system we’re studying, and then we analyze the information. The results allow us to reject our initial hypotheses and refine our understanding of the data. When working with thousands of fields and millions of rows, it’s important to develop intuitive ways to reject bad hypotheses quickly." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"It’s a mistake to think of data and data visualizations as static terms. They are the very antitheses of stasis." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Just because data is visualized doesn’t necessarily mean that it is accurate, complete, or indicative of the right course of action. Exhibiting a healthy skepticism is almost always a good thing." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Metadata serves as a strong and increasingly important complement to both structured and unstructured data. Even if you can easily visualize and interpret primary source data, it behooves you to also collect, analyze, and visualize its metadata. Incorporating metadata may very well enhance your understanding of the source data." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"The term linked data describes the practice of exposing, sharing, and connecting pieces of data, information, and knowledge on the semantic Web. Both humans and machines benefit when previously unconnected data is connected." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"There are myriad questions that we can ask from data today. As such, it’s impossible to write enough reports or design a functioning dashboard that takes into account every conceivable contingency and answers every possible question." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"To be sure, data doesn’t always need to be visualized, and many data visualizations just plain suck. Look around you. It’s not hard to find truly awful representations of information. Some work in concept but fail because they are too busy; they confuse people more than they convey information [...]. Visualization for the sake of visualization is unlikely to produce desired results - and this goes double in an era of Big Data. Bad is still bad, even and especially at a larger scale." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Visual Organizations benefit from routinely visualizing many different types and sources of data. Doing so allows them to garner a better understanding of what’s happening and why. Equipped with this knowledge, employees are able to ask better questions and make better business decisions." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"We acquire more information through our visual system than we do through all our other senses combined. We understand things better and quicker when we see them." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"We are all becoming more comfortable with data. Data visualization is no longer just something we have to do at work. Increasingly, we want to do it as consumers and as citizens. Put simply, visualizing helps us understand what’s going on in our lives - and how to solve problems." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"While critical, the arrival of Big Data is far from the only data-related trend to take root over the past decade. The arrival of Big Data is one of the key factors explaining the rise of the Visual Organization." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

Stephen J Gould - Collected Quotes

"Facts do not ‘speak for themselves’; they are read in the light of theory. Creative thought, in science as much as in the arts, is the motor of changing opinion. Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)

"Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition. Much of its change through time does not record a closer approach to absolute truth, but the alteration of cultural contexts that influence it so strongly. Facts are not pure and unsullied bits of information; culture also influences what we see and how we see it. Theories, moreover, are not inexorable inductions from facts. The most creative theories are often imaginative visions imposed upon facts; the source of imagination is also strongly cultural." (Stephen J Gould, "The Mismeasure of Man", 1980)

"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)

"Perhaps randomness is not merely an adequate description for complex causes that we cannot specify. Perhaps the world really works this way, and many events are uncaused in any conventional sense of the word." (Stephen J Gould, "Hen's Teeth and Horse's Toes", 1983)

"The progress of science requires more than new data; it needs novel frameworks and contexts. And where do these fundamentally new views of the world arise? They are not simply discovered by pure observation; they require new modes of thought. And where can we find them, if old modes do not even include the right metaphors? The nature of true genius must lie in the elusive capacity to construct these new modes from apparent darkness. The basic chanciness and unpredictability of science must also reside in the inherent difficulty of such a task." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 1985)

"We often think, naïvely, that missing data are the primary impediments to intellectual progress - just find the right facts and all problems will dissipate. But barriers are often deeper and more abstract in thought. We must have access to the right metaphor, not only to the requisite information. Revolutionary thinkers are not, primarily, gatherers of facts, but weavers of new intellectual structures." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 1985)

"Numbers have undoubted powers to beguile and benumb, but critics must probe behind numbers to the character of arguments and the biases that motivate them." (Stephen J Gould, "An Urchin in the Storm: Essays About Books and Ideas", 1987)

"But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology." (Stephen J Gould, "This View of Life: In the Mind of the Beholder", "Natural History", Vol. 103, No. 2, 1994)

"Misunderstanding of probability may be the greatest of all impediments to scientific literacy." (Stephen J Gould, "Dinosaur in a  Haystack: Reflections in natural  history", 1995)

"Theories rarely arise as patient inferences forced by accumulated facts. Theories are mental constructs potentiated by complex external prods (including, in idealized cases, a commanding push from empirical reality)." (Stephen J Gould, "Leonardo's Mountain of Clams and the Diet of Worms", 1998) 

"The human mind delights in finding pattern - so much so that we often mistake coincidence or forced analogy for profound meaning. No other habit of thought lies so deeply within the soul of a small creature trying to make sense of a complex world not constructed for it." (Stephen J Gould, "The Flamingo's Smile: Reflections in Natural History", 2010)

28 November 2006

Nassim N Taleb - Collected Quotes

"A mistake is not something to be determined after the fact, but in the light of the information until that point." (Nassim N Taleb, "Fooled by Randomness", 2001)

"Probability is not about the odds, but about the belief in the existence of an alternative outcome, cause, or motive." (Nassim N Taleb, "Fooled by Randomness", 2001)

"A Black Swan is a highly improbable event with three principal characteristics: It is unpredictable; it carries a massive impact; and, after the fact, we concoct an explanation that makes it appear less random, and more predictable, than it was. […] The Black Swan idea is based on the structure of randomness in empirical reality. [...] the Black Swan is what we leave out of simplification." (Nassim N Taleb, "The Black Swan" , 2007)

"Prediction, not narration, is the real test of our understanding of the world." (Nassim N Taleb, "The Black Swan", 2007)

"The inability to predict outliers implies the inability to predict the course of history.” (Nassim N Taleb, “The Black Swan”, 2007)

"While in theory randomness is an intrinsic property, in practice, randomness is incomplete information." (Nassim N Taleb, "The Black Swan", 2007)

"The higher the dimension, in other words, the higher the number of possible interactions, and the more disproportionally difficult it is to understand the macro from the micro, the general from the simple units. This disproportionate increase of computational demands is called the curse of dimensionality." (Nassim N Taleb, "Skin in the Game: Hidden Asymmetries in Daily Life", 2018)

26 November 2006

Margaret Y Chu - Collected Quotes

"An organization needs to know the condition and quality of its data to be more effective in fixing them and making them blissful. Unfortunately, pride, shame, and a fear of looking incompetent all play a part when people are asked to openly discuss dirty data issues. Because data are an asset, some people are unwilling to share their data. They think this gives them control and power over others. The role of politics in the organization is the dirty secret of dirty data." (Margaret Y Chu, "Blissful Data", 2004)

"Blissful data consist of information that is accurate, meaningful, useful, and easily accessible to many people in an organization. These data are used by the organization’s employees to analyze information and support their decision-making processes to strategic action. It is easy to see that organizations that have reached their goal of maximum productivity with blissful data can triumph over their competition. Thus, blissful data provide a competitive advantage." (Margaret Y Chu, "Blissful Data", 2004)

"Business rules should be simple and owned and defined by the business; they are declarative, indivisible, expressed in clear, concise language, and business oriented." (Margaret Y Chu, "Blissful Data", 2004)

"Clear goals, multiple strategies, clear roles and responsibilities, boldness, teamwork, speed, flexibility, the ability to change, managing risk, and seizing opportunities when they arise are important characteristics in gaining objectives." (Margaret Y Chu, "Blissful Data", 2004)

"[…] dirt and stains are more noticeable on white or light-colored clothing. In the same way, dirty data and data quality issues have existed for a long time. But due to the inherent nature of operational data these issues have not been as visible or immense enough to affect the bottom line. Just as dark clothing hides spills and stains, dirty data have been hidden or ignored in operational data for decades." (Margaret Y Chu, "Blissful Data", 2004)

"Gauging the quality of the operational data becomes an important first step in predicting potential dirty data issues for an organization. But many organizations are reluctant to commit the time and expense to assess their data. Some organizations wait until dirty data issues blow up in their faces. The greater the pain being experienced, the bigger the commitment to improving data quality." (Margaret Y Chu, "Blissful Data", 2004)

"[...] incomplete, inaccurate, and invalid data can cause problems for an organization. These problems are not only embarrassing and awkward but will also cause the organization to lose customers, new opportunities, and market share." (Margaret Y Chu, "Blissful Data", 2004)

"Let’s define dirty data as: ‘… data that are incomplete, invalid, or inaccurate’. In other words, dirty data are simply data that are wrong. […] Incomplete or inaccurate data can result in bad decisions being made. Thus, dirty data are the opposite of blissful data. Problems caused by dirty data are significant; be wary of their pitfalls."  (Margaret Y Chu, "Blissful Data", 2004)

"Organizations must know and understand the current organizational culture to be successful at implementing change. We know that it is the organization’s culture that drives its people to action; therefore, management must understand what motivates their people to attain goals and objectives. Only by understanding the current organizational culture will it be possible to begin to try and change it." (Margaret Y Chu, "Blissful Data", 2004)

"Processes must be implemented to prevent bad data from entering the system as well as propagating to other systems. That is, dirty data must be intercepted at its source. The operational systems are often the source of informational data; thus dirty data must be fixed at the operational data level. Implementing the right processes to cleanse data is, however, not easy." (Margaret Y Chu, "Blissful Data", 2004)

"So business rules are just like house rules. They are policies of an organization and contain one or more assertions that define or constrain some aspect of the business. Their purpose is to provide a structure and guideline to control or influence the behavior of the organization. Further, business rules represent the business and guide the decisions that are made by the people in the organization." (Margaret Y Chu, "Blissful Data", 2004)

"Vision and mission statements are important, but they are not an organization’s culture; they are its goals. A vision is the ideal they are striving to achieve. There may be a huge gap between the ideal and the current state of actions and behaviors."(Margaret Y Chu, "Blissful Data", 2004)

"What management notices and rewards is the best indication of the organization’s culture." (Margaret Y Chu, "Blissful Data", 2004)

25 November 2006

Darell Huff - Collected Quotes

"Another thing to watch out for is a conclusion in which a correlation has been inferred to continue beyond the data with which it has been demonstrated." (Darell Huff, "How to Lie with Statistics", 1954)

"Extrapolations are useful, particularly in the form of soothsaying called forecasting trends. But in looking at the figures or the charts made from them, it is necessary to remember one thing constantly: The trend to now may be a fact, but the future trend represents no more than an educated guess. Implicit in it is 'everything else being equal' and 'present trends continuing'. And somehow everything else refuses to remain equal." (Darell Huff, "How to Lie with Statistics", 1954)

"If you can't prove what you want to prove, demonstrate something else and pretend that they are the something. In the daze that follows the collision of statistics with the human mind, hardly anybody will notice the difference." (Darell Huff, "How to Lie with Statistics", 1954)

"Keep in mind that a correlation may be real and based on real cause and effect -and still be almost worthless in determining action in any single case." (Darell Huff, "How to Lie with Statistics", 1954) 

"Only when there is a substantial number of trials involved is the law of averages a useful description or prediction." (Darell Huff, "How to Lie with Statistics", 1954)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places You begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"Place little faith in an average or a graph or a trend when those important figures are missing."  (Darell Huff, "How to Lie with Statistics", 1954)

"Sometimes the big ado is made about a difference that is mathematically real and demonstrable but so tiny as to have no importance. This is in defiance of the fine old saying that a difference is a difference only if it makes a difference." (Darell Huff, "How to Lie with Statistics", 1954)

"The fact is that, despite its mathematical base, statistics is as much an art as it is a science. A great many manipulations and even distortions are possible within the bounds of propriety. Often the statistician must choose among methods, a subjective process, and find the one that he will use to represent the facts." (Darell Huff, "How to Lie with Statistics", 1954)

"The purely random sample is the only kind that can be examined with entire confidence by means of statistical theory, but there is one thing wrong with it. It is so difficult and expensive to obtain for many uses that sheer cost eliminates it." (Darell Huff, "How to Lie with Statistics", 1954)

"The secret language of statistics, so appealing in a fact-minded culture, is employed to sensationalize, inflate, confuse, and oversimplify. Statistical methods and statistical terms are necessary in reporting the mass data of social and economic trends, business conditions, 'opinion' polls, the census. But without writers who use the words with honesty and understanding and readers who know what they mean, the result can only be semantic nonsense." (Darell Huff, "How to Lie with Statistics", 1954)

"There are often many ways of expressing any figure. […] The method is to choose the one that sounds best for the purpose at hand and trust that few who read it will recognize how imperfectly it reflects the situation." (Darell Huff, "How to Lie with Statistics", 1954)

"To be worth much, a report based on sampling must use a representative sample, which is one from which every source of bias has been removed." (Darell Huff, "How to Lie with Statistics", 1954)

"When numbers in tabular form are taboo and words will not do the work well as is often the case. There is one answer left: Draw a picture. About the simplest kind of statistical picture or graph, is the line variety. It is very useful for showing trends, something practically everybody is interested in showing or knowing about or spotting or deploring or forecasting." (Darell Huff, "How to Lie with Statistics", 1954)

"When you are told that something is an average you still don't know very much about it unless you can find out which of the common kinds of average it is-mean, median, or mode. [...] The different averages come out close together when you deal with data, such as those having to do with many human characteristics, that have the grace to fall close to what is called the normal distribution. If you draw a curve to represent it you get something shaped like a bell, and mean, median, and mode fall at the same point." (Darell Huff, "How to Lie with Statistics", 1954)

"When you find somebody - usually an interested party - making a fuss about a correlation, look first of all to see if it is not one of this type, produced by the stream of events, the trend of the times." (Darell Huff, "How to Lie with Statistics", 1954)

John D Kelleher - Collected Quotes

"A predictive model overfits the training set when at least some of the predictions it returns are based on spurious patterns present in the training data used to induce the model. Overfitting happens for a number of reasons, including sampling variance and noise in the training set. The problem of overfitting can affect any machine learning algorithm; however, the fact that decision tree induction algorithms work by recursively splitting the training data means that they have a natural tendency to segregate noisy instances and to create leaf nodes around these instances. Consequently, decision trees overfit by splitting the data on irrelevant features that only appear relevant due to noise or sampling variance in the training data. The likelihood of overfitting occurring increases as a tree gets deeper because the resulting predictions are based on smaller and smaller subsets as the dataset is partitioned after each feature test in the path." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Decision trees are also discriminative models. Decision trees are induced by recursively partitioning the feature space into regions belonging to the different classes, and consequently they define a decision boundary by aggregating the neighboring regions belonging to the same class. Decision tree model ensembles based on bagging and boosting are also discriminative models." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Decision trees are also considered nonparametric models. The reason for this is that when we train a decision tree from data, we do not assume a fixed set of parameters prior to training that define the tree. Instead, the tree branching and the depth of the tree are related to the complexity of the dataset it is trained on. If new instances were added to the dataset and we rebuilt the tree, it is likely that we would end up with a (potentially very) different tree." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"It is important to remember that predictive data analytics models built using machine learning techniques are tools that we can use to help make better decisions within an organization and are not an end in themselves. It is paramount that, when tasked with creating a predictive model, we fully understand the business problem that this model is being constructed to address and ensure that it does address it." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"There are two kinds of mistakes that an inappropriate inductive bias can lead to: underfitting and overfitting. Underfitting occurs when the prediction model selected by the algorithm is too simplistic to represent the underlying relationship in the dataset between the descriptive features and the target feature. Overfitting, by contrast, occurs when the prediction model selected by the algorithm is so complex that the model fits to the dataset too closely and becomes sensitive to noise in the data."(John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"The main advantage of decision tree models is that they are interpretable. It is relatively easy to understand the sequences of tests a decision tree carried out in order to make a prediction. This interpretability is very important in some domains. [...] Decision tree models can be used for datasets that contain both categorical and continuous descriptive features. A real advantage of the decision tree approach is that it has the ability to model the interactions between descriptive features. This arises from the fact that the tests carried out at each node in the tree are performed in the context of the results of the tests on the other descriptive features that were tested at the preceding nodes on the path from the root. Consequently, if there is an interaction effect between two or more descriptive features, a decision tree can model this."  (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"Tree pruning identifies and removes subtrees within a decision tree that are likely to be due to noise and sample variance in the training set used to induce it. In cases where a subtree is deemed to be overfitting, pruning the subtree means replacing the subtree with a leaf node that makes a prediction based on the majority target feature level (or average target feature value) of the dataset created by merging the instances from all the leaf nodes in the subtree. Obviously, pruning will result in decision trees being created that are not consistent with the training set used to build them. In general, however, we are more interested in creating prediction models that generalize well to new data rather than that are strictly consistent with training data, so it is common to sacrifice consistency for generalization capacity." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"When datasets are small, a parametric model may perform well because the strong assumptions made by the model - if correct - can help the model to avoid overfitting. However, as the size of the dataset grows, particularly if the decision boundary between the classes is very complex, it may make more sense to allow the data to inform the predictions more directly. Obviously the computational costs associated with nonparametric models and large datasets cannot be ignored. However, support vector machines are an example of a nonparametric model that, to a large extent, avoids this problem. As such, support vector machines are often a good choice in complex domains with lots of data." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies", 2015)

"When we find data quality issues due to valid data during data exploration, we should note these issues in a data quality plan for potential handling later in the project. The most common issues in this regard are missing values and outliers, which are both examples of noise in the data." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)

"A neural network consists of a set of neurons that are connected together. A neuron takes a set of numeric values as input and maps them to a single output value. At its core, a neuron is simply a multi-input linear-regression function. The only significant difference between the two is that in a neuron the output of the multi-input linear-regression function is passed through another function that is called the activation function." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Data scientists should have some domain expertise. Most data science projects begin with a real-world, domain-specific problem and the need to design a data-driven solution to this problem. As a result, it is important for a data scientist to have enough domain expertise that they understand the problem, why it is important, an dhow a data science solution to the problem might fit into an organization’s processes. This domain expertise guides the data scientist as she works toward identifying an optimized solution." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"One of the biggest myths is the belief that data science is an autonomous process that we can let loose on our data to find the answers to our problems. In reality, data science requires skilled human oversight throughout the different stages of the process. [...] The second big myth of data science is that every data science project needs big data and needs to use deep learning. In general, having more data helps, but having the right data is the more important requirement. [...] A third data science myth is that modern data science software is easy to use, and so data science is easy to do. [...] The last myth about data science [...] is the belief that data science pays for itself quickly. The truth of this belief depends on the context of the organization. Adopting data science can require significant investment in terms of developing data infrastructure and hiring staff with data science expertise. Furthermore, data science will not give positive results on every project." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"One of the most important skills for a data scientist is the ability to frame a real-world problem as a standard data science task." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Presenting data in a graphical format makes it much easier to see and understand what is happening with the data. Data visualization applies to all phases of the data science process."  (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"The goal of data science is to improve decision making by basing decisions on insights extracted from large data sets. As a field of activity, data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting nonobvious and useful patterns from large data sets. It is closely related to the fields of data mining and machine learning, but it is broader in scope." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"The patterns that we extract using data science are useful only if they give us insight into the problem that enables us to do something to help solve the problem." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"The promise of data science is that it provides a way to understand the world through data." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Using data science, we can uncover the important patterns in a data set, and these patterns can reveal the important attributes in the domain. The reason why data science is used in so many domains is that it doesn’t matter what the problem domain is: if the right data are available and the problem can be clearly defined, then data science can help."  (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"We humans are reasonably good at defining rules that check one, two, or even three attributes (also commonly referred to as features or variables), but when we go higher than three attributes, we can start to struggle to handle the interactions between them. By contrast, data science is often applied in contexts where we want to look for patterns among tens, hundreds, thousands, and, in extreme cases, millions of attributes." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

Daniel J Levitin - Collected Quotes

"A well-designed graph clearly shows you the relevant end points of a continuum. This is especially important if you’re documenting some actual or projected change in a quantity, and you want your readers to draw the right conclusions. […]" (Daniel J Levitin, "Weaponized Lies", 2017)

"Collecting data through sampling therefore becomes a never-ending battle to avoid sources of bias. [...] While trying to obtain a random sample, researchers sometimes make errors in judgment about whether every person or thing is equally likely to be sampled." (Daniel J Levitin, "Weaponized Lies", 2017)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"How do you know when a correlation indicates causation? One way is to conduct a controlled experiment. Another is to apply logic. But be careful - it’s easy to get bogged down in semantics." (Daniel J Levitin, "Weaponized Lies", 2017)

"In statistics, the word 'significant' means that the results passed mathematical tests such as t-tests, chi-square tests, regression, and principal components analysis (there are hundreds). Statistical significance tests quantify how easily pure chance can explain the results. With a very large number of observations, even small differences that are trivial in magnitude can be beyond what our models of change and randomness can explain. These tests don’t know what’s noteworthy and what’s not - that’s a human judgment." (Daniel J Levitin, "Weaponized Lies", 2017)

"Infographics are often used by lying weasels to shape public opinion, and they rely on the fact that most people won’t study what they’ve done too carefully." (Daniel J Levitin, "Weaponized Lies", 2017)

"Just because there’s a number on it, it doesn’t mean that the number was arrived at properly. […] There are a host of errors and biases that can enter into the collection process, and these can lead millions of people to draw the wrong conclusions. Although most of us won’t ever participate in the collection process, thinking about it, critically, is easy to learn and within the reach of all of us." (Daniel J Levitin, "Weaponized Lies", 2017)

"Many of us feel intimidated by numbers and so we blindly accept the numbers we’re handed. This can lead to bad decisions and faulty conclusions. We also have a tendency to apply critical thinking only to things we disagree with. In the current information age, pseudo-facts masquerade as facts, misinformation can be indistinguishable from true information, and numbers are often at the heart of any important claim or decision. Bad statistics are everywhere." (Daniel J Levitin, "Weaponized Lies", 2017)

"Measurements must be standardized. There must be clear, replicable, and precise procedures for collecting data so that each person who collects it does it in the same way." (Daniel J Levitin, "Weaponized Lies", 2017)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"One kind of probability - classic probability - is based on the idea of symmetry and equal likelihood […] In the classic case, we know the parameters of the system and thus can calculate the probabilities for the events each system will generate. […] A second kind of probability arises because in daily life we often want to know something about the likelihood of other events occurring […]. In this second case, we need to estimate the parameters of the system because we don’t know what those parameters are. […] A third kind of probability differs from these first two because it’s not obtained from an experiment or a replicable event - rather, it expresses an opinion or degree of belief about how likely a particular event is to occur. This is called subjective probability […]." (Daniel J Levitin, "Weaponized Lies", 2017)

"One way to lie with statistics is to compare things - datasets, populations, types of products - that are different from one another, and pretend that they’re not. As the old idiom says, you can’t compare apples with oranges." (Daniel J Levitin, "Weaponized Lies", 2017)

"Probabilities allow us to quantify future events and are an important aid to rational decision making. Without them, we can become seduced by anecdotes and stories." (Daniel J Levitin, "Weaponized Lies", 2017)

"Samples give us estimates of something, and they will almost always deviate from the true number by some amount, large or small, and that is the margin of error. […] The margin of error does not address underlying flaws in the research, only the degree of error in the sampling procedure. But ignoring those deeper possible flaws for the moment, there is another measurement or statistic that accompanies any rigorously defined sample: the confidence interval." (Daniel J Levitin, "Weaponized Lies", 2017)

"Statistics, because they are numbers, appear to us to be cold, hard facts. It seems that they represent facts given to us by nature and it’s just a matter of finding them. But it’s important to remember that people gather statistics. People choose what to count, how to go about counting, which of the resulting numbers they will share with us, and which words they will use to describe and interpret those numbers. Statistics are not facts. They are interpretations. And your interpretation may be just as good as, or better than, that of the person reporting them to you." (Daniel J Levitin, "Weaponized Lies", 2017)

"The margin of error is how accurate the results are, and the confidence interval is how confident you are that your estimate falls within the margin of error." (Daniel J Levitin, "Weaponized Lies", 2017)

"The most accurate but least interpretable form of data presentation is to make a table, showing every single value. But it is difficult or impossible for most people to detect patterns and trends in such data, and so we rely on graphs and charts. Graphs come in two broad types: Either they represent every data point visually (as in a scatter plot) or they implement a form of data reduction in which we summarize the data, looking, for example, only at means or medians." (Daniel J Levitin, "Weaponized Lies", 2017)

"To be any good, a sample has to be representative. A sample is representative if every person or thing in the group you’re studying has an equally likely chance of being chosen. If not, your sample is biased. […] The job of the statistician is to formulate an inventory of all those things that matter in order to obtain a representative sample. Researchers have to avoid the tendency to capture variables that are easy to identify or collect data on - sometimes the things that matter are not obvious or are difficult to measure." (Daniel J Levitin, "Weaponized Lies", 2017)

"We are a storytelling species, and a social species, easily swayed by the opinions of others. We have three ways to acquire information: We can discover it ourselves, we can absorb it implicitly, or we can be told it explicitly. Much of what we know about the world falls in this last category - somewhere along the line, someone told us a fact or we read about it, and so we know it only second-hand. We rely on people with expertise to tell us." (Daniel J Levitin, "Weaponized Lies", 2017)

"We use the word probability in different ways to mean different things. It’s easy to get swept away thinking that a person means one thing when they mean another, and that confusion can cause us to draw the wrong conclusion." (Daniel J Levitin, "Weaponized Lies", 2017) 

David S Salsburg - Collected Quotes

"A good estimator has to be more than just consistent. It also should be one whose variance is less than that of any other estimator. This property is called minimum variance. This means that if we run the experiment several times, the 'answers' we get will be closer to one another than 'answers' based on some other estimator." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"All methods of dealing with big data require a vast number of mind-numbing, tedious, boring mathematical steps." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"An estimate (the mathematical definition) is a number derived from observed values that is as close as we can get to the true parameter value. Useful estimators are those that are 'better' in some sense than any others." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Correlation is not equivalent to cause for one major reason. Correlation is well defined in terms of a mathematical formula. Cause is not well defined." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Estimators are functions of the observed values that can be used to estimate specific parameters. Good estimators are those that are consistent and have minimum variance. These properties are guaranteed if the estimator maximizes the likelihood of the observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"One final warning about the use of statistical models (whether linear or otherwise): The estimated model describes the structure of the data that have been observed. It is unwise to extend this model very far beyond the observed data." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The central limit conjecture states that most errors are the result of many small errors and, as such, have a normal distribution. The assumption of a normal distribution for error has many advantages and has often been made in applications of statistical models." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The degree to which one variable can be predicted from another can be calculated as the correlation between them. The square of the correlation (R^2) is the proportion of the variance of one that can be 'explained' by knowledge of the other." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The elements of this cloud of uncertainty (the set of all possible errors) can be described in terms of probability. The center of the cloud is the number zero, and elements of the cloud that are close to zero are more probable than elements that are far away from that center. We can be more precise in this definition by defining the cloud of uncertainty in terms of a mathematical function, called the probability distribution." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The lack of variability is often a hallmark of faked data. […] The failure of faked data to have sufficient variability holds as long as the liar does not know this. If the liar knows this, his best approach is to start with real data and use it cleverly to adapt it to his needs." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"There is a constant battle between the cold abstract absolutes of pure mathematics and, the sometimes sloppy way in which mathematical methods are applied in science." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Two clouds of uncertainty may have the same center, but one may be much more dispersed than the other. We need a way of looking at the scatter about the center. We need a measure of the scatter. One such measure is the variance. We take each of the possible values of error and calculate the squared difference between that value and the center of the distribution. The mean of those squared differences is the variance." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"What properties should a good statistical estimator have? Since we are dealing with probability, we start with the probability that our estimate will be very close to the true value of the parameter. We want that probability to become greater and greater as we get more and more data. This property is called consistency. This is a statement about probability. It does not say that we are sure to get the right answer. It says that it is highly probable that we will be close to the right answer." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"When we use algebraic notation in statistical models, the problem becomes more complicated because we cannot 'observe' a probability and know its exact number. We can only estimate probabilities on the basis of observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

24 November 2006

Joel Best - Collected Quotes

"All human knowledge - including statistics - is created  through people's actions; everything we know is shaped by our language, culture, and society. Sociologists call this the social construction of knowledge. Saying that knowledge is socially constructed does not mean that all we know is somehow fanciful, arbitrary, flawed, or wrong. For example, scientific knowledge can be remarkably accurate, so accurate that we may forget the people and social processes that produced it." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Any statistic based on more than a guess requires some sort of counting. Definitions specify what will be counted. Measuring involves deciding how to go about counting. We cannot begin counting until we decide how we will identify and count instances of a social problem. [...] Measurement involves choices. [...] Often, measurement decisions are hidden." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Big numbers warn us that the problem is a common one, compelling our attention, concern, and action. The media like to report statistics because numbers seem to be 'hard facts' - little nuggets of indisputable truth. [...] One common innumerate error involves not distinguishing among large numbers. [...] Because many people have trouble appreciating the differences among big numbers, they tend to uncritically accept social statistics (which often, of course, feature big numbers)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"But people treat mutant statistics just as they do other statistics - that is, they usually accept even the most implausible claims without question. [...] And people repeat bad statistics [...] bad statistics live on; they take on lives of their own. [...] Statistics, then, have a bad reputation. We suspect that statistics may be wrong, that people who use statistics may be 'lying' - trying to manipulate us by using numbers to somehow distort the truth. Yet, at the same time, we need statistics; we depend upon them to summarize and clarify the nature of our complex society. This is particularly true when we talk about social problems." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Clear, precise definitions are not enough. Whatever is defined must also be measured, and meaningless measurements will produce meaningless statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Compound errors can begin with any of the standard sorts of bad statistics - a guess, a poor sample, an inadvertent transformation, perhaps confusion over the meaning of a complex statistic. People inevitably want to put statistics to use, to explore a number's implications. [...] The strengths and weaknesses of those original numbers should affect our confidence in the second-generation statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"First, good statistics are based on more than guessing. [...] Second, good statistics are based on clear, reasonable definitions. Remember, every statistic has to define its subject. Those definitions ought to be clear and made public. [...] Third, good statistics are based on clear, reasonable measures. Again, every statistic involves some sort of measurement; while all measures are imperfect, not all flaws are equally serious. [...] Finally, good statistics are based on good samples." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"In order to interpret statistics, we need more than a checklist of common errors. We need a general approach, an orientation, a mind-set that we can use to think about new statistics that we encounter. We ought to approach statistics thoughtfully. This can be hard to do, precisely because so many people in our society treat statistics as fetishes." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Innumeracy - widespread confusion about basic mathematical ideas - means that many statistical claims about social problems don't get the critical attention they deserve. This is not simply because an innumerate public is being manipulated by advocates who cynically promote inaccurate statistics. Often, statistics about social problems originate with sincere, well-meaning people who are themselves innumerate; they may not grasp the full implications of what they are saying. Similarly, the media are not immune to innumeracy; reporters commonly repeat the figures their sources give them without bothering to think critically about them." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Knowledge is factual when evidence supports it and we have great confidence in its accuracy. What we call 'hard fact' is information supported by  strong, convincing evidence; this means evidence that, so far as we know, we cannot deny, however we examine or test it. Facts always can be questioned, but they hold up under questioning. How did people come by this information? How did they interpret it? Are other interpretations possible? The more satisfactory the answers to such questions, the 'harder' the facts." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Like definitions, measurements always involve choices. Advocates of different measures can defend their own choices and criticize those made by their opponents - so long as the various choices being made are known and understood. However, when measurement choices are kept hidden, it becomes difficult to assess the statistics based on those choices." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"No definition of a social problem is perfect, but there are two principal ways such definitions can be flawed. On the one hand, we may worry that a definition is too broad, that it encompasses more than it ought to include. That is, broad definitions identify some cases as part of the problem that we might think ought not to be included; statisticians call such cases false positives (that is, they mistakenly identify cases as part of the problem). On the other hand, a definition that is too narrow excludes cases that we might think ought to be included; these are false negatives (incorrectly identified as not being part of the problem)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Not all statistics start out bad, but any statistic can be made worse. Numbers - even good numbers - can be misunderstood or misinterpreted. Their meanings can be stretched, twisted, distorted, or mangled. These alterations create what we can call mutant statistics - distorted versions of the original figures." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"One reason we tend to accept statistics uncritically is that we assume that numbers come from experts who know what they're doing. [...] There is a natural tendency to treat these figures as straightforward facts that cannot be questioned." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"People who create or repeat a statistic often feel they have a stake in defending the number. When someone disputes an estimate and offers a very different (often lower) figure, people may rush to defend the original estimate and attack the new number and anyone who dares to use it. [...] any estimate can be defended by challenging the motives of anyone who disputes the figure." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Statistics are not magical. Nor are they always true - or always false. Nor need they be incomprehensible. Adopting a Critical approach offers an effective way of responding to the numbers we are sure to encounter. Being Critical requires more thought, but failing to adopt a Critical mind-set makes us powerless to evaluate what others tell us. When we fail to think critically, the statistics we hear might just as well be magical." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Statisticians can calculate the probability that such random samples represent the population; this is usually expressed in terms of sampling error [...]. The real problem is that few samples are random. Even when researchers know the nature of the population, it can be time-consuming and expensive to draw a random sample; all too often, it is impossible to draw a true random sample because the population cannot be defined. This is particularly true for studies of social problems. [...] The best samples are those that come as close as possible to being random.(Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"The ease with which somewhat complex statistics can produce confusion is important, because we live in a world in which complex numbers are becoming more common. Simple statistical ideas - fractions, percentages, rates - are reasonably well understood by many people. But many social problems involve complex chains of cause and effect that can be understood only through complicated models developed by experts. [...] environment has an influence. Sorting out the interconnected causes of these problems requires relatively complicated statistical ideas - net additions, odds ratios, and the like. If we have an imperfect understanding of these ideas, and if the reporters and other people who relay the statistics to us share our confusion - and they probably do - the chances are good that we'll soon be hearing - and repeating, and perhaps making decisions on the basis of - mutated statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"There are two problems with sampling - one obvious, and  the other more subtle. The obvious problem is sample size. Samples tend to be much smaller than their populations. [...] Obviously, it is possible to question results based on small samples. The smaller the sample, the less confidence we have that the sample accurately reflects the population. However, large samples aren't necessarily good samples. This leads to the second issue: the representativeness of a sample is actually far more important than sample size. A good sample accurately reflects (or 'represents') the population." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"We often hear warnings that some social problem is 'epidemic'. This expression suggests that the problem's growth is rapid, widespread, and out of control. If things are getting worse, and particularly if they're getting worse fast, we need to act." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Whenever examples substitute for definitions, there is a risk that our understanding of the problem will be distorted." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"While some social problems statistics are deliberate deceptions, many - probably the great majority - of bad statistics are the result of confusion, incompetence, innumeracy, or selective, self-righteous efforts to produce numbers that reaffirm principles and interests that their advocates consider just and right. The best response to stat wars is not to try and guess who's lying or, worse, simply to assume that the people we disagree with are the ones telling lies. Rather, we need to watch for the standard causes of bad statistics - guessing, questionable definitions or methods, mutant numbers, and inappropriate comparisons." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Every number has its limitations; every number is a product of choices that inevitably involve compromise. Statistics are intended to help us summarize, to get an overview of part of the world’s complexity. But some information is always sacrificed in the process of choosing what will be counted and how. Something is, in short, always missing. In evaluating statistics, we should not forget what has been lost, if only because this helps us understand what we still have." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"Good statistics are not only products of people counting; the quality of statistics also depends on people’s willingness and ability to count thoughtfully and on their decisions about what, exactly, ought to be counted so that the resulting numbers will be both accurate and meaningful." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"In much the same way, people create statistics: they choose what to count, how to go about counting, which of the resulting numbers they share with others, and which words they use to describe and interpret those figures. Numbers do not exist independent of people; understanding numbers requires knowing who counted what, why they bothered counting, and how they went about it." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"In short, some numbers are missing from discussions of social issues because certain phenomena are hard to quantify, and any effort to assign numeric values to them is subject to debate. But refusing to somehow incorporate these factors into our calculations creates its own hazards. The best solution is to acknowledge the difficulties we encounter in measuring these phenomena, debate openly, and weigh the options as best we can." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"Nonetheless, the basic principles regarding correlations between variables are not that diffcult to understand. We must look for patterns that reveal potential relationships and for evidence that variables are actually related. But when we do spot those relationships, we should not jump to conclusions about causality. Instead, we need to weigh the strength of the relationship and the plausibility of our theory, and we must always try to discount the possibility of spuriousness." (Joel Best, "More Damned Lies and Statistics : How numbers confuse public issues", 2004)

"Statistics depend on collecting information. If questions go unasked, or if they are asked in ways that limit responses, or if measures count some cases but exclude others, information goes ungathered, and missing numbers result. Nevertheless, choices regarding which data to collect and how to go about collecting the information are inevitable." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"When people use statistics, they assume - or, at least, they want their listeners to assume - that the numbers are meaningful. This means, at a minimum, that someone has actually counted something and that they have done the counting in a way that makes sense. Statistical information is one of the best ways we have of making sense of the world’s complexities, of identifying patterns amid the confusion. But bad statistics give us bad information." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

22 November 2006

Foster Provost - Collected Quotes

"Data mining is a craft. As with many crafts, there is a well-defined process that can help to increase the likelihood of a successful result. This process is a crucial conceptual tool for thinking about data science projects. [...] data mining is an exploratory undertaking closer to research and development than it is to engineering." (Foster Provost, "Data Science for Business", 2013)

"Formulating data mining solutions and evaluating the results involves thinking carefully about the context in which they will be used."

"[…] framing a business problem in terms of expected value can allow us to systematically decompose it into data mining tasks." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"If you look too hard at a set of data, you will find something - but it might not generalize beyond the data you’re looking at. This is referred to as overfitting a dataset. Data mining techniques can be very powerful, and the need to detect and avoid overfitting is one of the most important concepts to grasp when applying data mining to real problems. The concept of overfitting and its avoidance permeates data science processes, algorithms, and evaluation methods." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"In analytics, it’s more important for individuals to be able to formulate problems well, to prototype solutions quickly, to make reasonable assumptions in the face of ill-structured problems, to design experiments that represent good investments, and to analyze results." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"In common usage, prediction means to forecast a future event. In data science, prediction more generally means to estimate an unknown value. This value could be something in the future (in common usage, true prediction), but it could also be something in the present or in the past. Indeed, since data mining usually deals with historical data, models very often are built and tested using events from the past." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"In data science, a predictive model is a formula for estimating the unknown value of interest: the target. The formula could be mathematical, or it could be a logical statement such as a rule. Often it is a hybrid of the two." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"There is another important distinction pertaining to mining data: the difference between (1) mining the data to find patterns and build models, and (2) using the results of data mining. Students often confuse these two processes when studying data science, and managers sometimes confuse them when discussing business analytics. The use of data mining results should influence and inform the data mining process itself, but the two should be kept distinct." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"There is convincing evidence that data-driven decision-making and big data technologies substantially improve business performance. Data science supports data-driven decision-making - and sometimes conducts such decision-making automatically - and depends upon technologies for 'big data' storage and engineering, but its principles are separate." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"Unfortunately, creating an objective function that matches the true goal of the data mining is usually impossible, so data scientists often choose based on faith and experience." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

21 November 2006

Pedro Domingos - Collected Quotes

"A learner that uses Bayes’ theorem and assumes the effects are independent given the cause is called a Naïve Bayes classifier. That’s because, well, that’s such a naïve assumption." (Pedro Domingos, "The Master Algorithm", 2015)

"An algorithm is not just any set of instructions: they have to be precise and unambiguous enough to be executed by a computer. [...] The computer has to know how to execute the algorithm all the way down to turning specific transistors on and off." (Pedro Domingos, "The Master Algorithm", 2015)

"As so often happens in computer science, we’re willing to sacrifice efficiency for generality." (Pedro Domingos, "The Master Algorithm", 2015)

"Believe it or not, every algorithm, no matter how complex, can be reduced to just these three operations: AND, OR, and NOT." (Pedro Domingos, "The Master Algorithm", 2015)

"Designing an algorithm is not easy. Pitfalls abound, and nothing can be taken for granted. Some of your intuitions will turn out to have been wrong, and you’ll have to find another way. On top of designing the algorithm, you have to write it down in a language computers can understand, like Java or Python (at which point it’s called a program). Then you have to debug it: find every error and fix it until the computer runs your program without screwing up. But once you have a program that does what you want, you can really go to town." (Pedro Domingos, "The Master Algorithm", 2015)

"Dimensionality reduction is essential for coping with big data—like the data coming in through your senses every second. A picture may be worth a thousand words, but it’s also a million times more costly to process and remember. [...] A common complaint about big data is that the more data you have, the easier it is to find spurious patterns in it. This may be true if the data is just a huge set of disconnected entities, but if they’re interrelated, the picture changes." (Pedro Domingos, "The Master Algorithm", 2015)

"Every algorithm has an input and an output: the data goes into the computer, the algorithm does what it will with it, and out comes the result. Machine learning turns this around: in goes the data and the desired result and out comes the algorithm that turns one into the other. Learning algorithms - also known as learners - are algorithms that make other algorithms. With machine learning, computers write their own programs, so we don’t have to." (Pedro Domingos, "The Master Algorithm", 2015)

"In machine learning, knowledge is often in the form of statistical models, because most knowledge is statistical [...] Machine learning is a kind of knowledge pump: we can use it to extract a lot of knowledge from data, but first we have to prime the pump." (Pedro Domingos, "The Master Algorithm", 2015)

"Learning is forgetting the details as much as it is remembering the important parts." (Pedro Domingos, "The Master Algorithm", 2015)

"Machine learning takes many different forms and goes by many different names: pattern recognition, statistical modeling, data mining, knowledge discovery, predictive analytics, data science, adaptive systems, self-organizing systems, and more. Each of these is used by different communities and has different associations. Some have a long half-life, some less so." (Pedro Domingos, "The Master Algorithm", 2015)

"Our beliefs are based on our experience, which gives us a very incomplete picture of the world, and it's easy to jump to false conclusions." (Pedro Domingos, "The Master Algorithm", 2015)

"People often think computers are all about numbers, but they’re not. Computers are all about logic." (Pedro Domingos, "The Master Algorithm", 2015)

"Science’s predictions are more trustworthy, but they are limited to what we can systematically observe and tractably model. Big data and machine learning greatly expand that scope. Some everyday things can be predicted by the unaided mind, from catching a ball to carrying on a conversation. Some things, try as we might, are just unpredictable. For the vast middle ground between the two, there’s machine learning." (Pedro Domingos, "The Master Algorithm", 2015)

"To make progress, every field of science needs to have data commensurate with the complexity of the phenomena it studies. [...] With big data and machine learning, you can understand much more complex phenomena than before. In most fields, scientists have traditionally used only very limited kinds of models, like linear regression, where the curve you fit to the data is always a straight line. Unfortunately, most phenomena in the world are nonlinear. [...] Machine learning opens up a vast new world of nonlinear models." (Pedro Domingos, "The Master Algorithm", 2015)

"Today we routinely learn models with millions of parameters, enough to give each elephant in the world his own distinctive wiggle. It’s even been said that data mining means 'torturing the data until it confesses'." (Pedro Domingos, "The Master Algorithm", 2015)

"Traditionally, the only way to get a computer to do something - from adding two numbers to flying an airplane - was to write down an algorithm explaining how, in painstaking detail. But machine-learning algorithms, also known as learners, are different: they figure it out on their own, by making inferences from data. And the more data they have, the better they get. Now we don’t have to program computers; they program themselves." (Pedro Domingos, "The Master Algorithm", 2015)

"Whoever has the best algorithms and the most data wins. A new type of network effect takes hold: whoever has the most customers accumulates the most data, learns the best models, wins the most new customers, and so on in a virtuous circle (or a vicious one, if you’re the competition)." (Pedro Domingos, "The Master Algorithm", 2015)

20 November 2006

Amit Ray - Collected Quotes

"Artificial intelligence is defined as the branch of science and technology that is concerned with the study of software and hardware to provide machines the ability to learn insights from data and the environment, and the ability to adapt in changing situations with high precision, accuracy and speed." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

"Artificial Intelligence is not just learning patterns from data, but understanding human emotions and its evolution from its depth and not just fulfilling the surface level human requirements, but sensitivity towards human pain, happiness, mistakes, sufferings and well-being of the society are the parts of the evolving new AI systems." (Amit Ray, "Compassionate Artificial Intelligence", 2018)

"Quantum Machine Learning is defined as the branch of science and technology that is concerned with the application of quantum mechanical phenomena such as superposition, entanglement and tunneling for designing software and hardware to provide machines the ability to learn insights and patterns from data and the environment, and the ability to adapt automatically to changing situations with high precision, accuracy and speed." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)

"Quantum machine learning promises to discover the optimal network topologies and hyperparameters automatically without human intervention. (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)

"The beauty of quantum machine learning is that we do not need to depend on an algorithm like gradient descent or convex objective function. The objective function can be nonconvex or something else." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)

"You can't understand depth of science, unless you challenge the published scientific data." (Amit Ray)

19 November 2006

Frederick Mosteller - Collected Quotes

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"Errors of the third kind happen in conventional tests of differences of means, but they are usually not considered, although their existence is probably recognized. It seems to the author that there may be several reasons for this among which are 1) a preoccupation on the part of mathematical statisticians with the formal questions of acceptance and rejection of null hypotheses without adequate consideration of the implications of the error of the third kind for the practical experimenter, 2) the rarity with which an error of the third kind arises in the usual tests of significance." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"For many purposes graphical accuracy is sufficient. The speed of graphical processes, and more especially the advantages of visual presentation in pointing out facts or clues which might otherwise be overlooked, make graphical analysis very valuable." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"Scientific and technological advances have made the world we live in complex and hard to understand. […] Science itself shows the same growing complexity. We often hear that 'one man can no longer cover a broad enough field' and that 'there is too much narrow specialization'. And yet these complexities must be met - and resolved. At all levels, decisions must be made which involve consideration of more than a single field." (Frederick Mosteller et al, "The Education of a Scientific Generalist", Science 109,1949)

"Mathematical models for empirical phenomena aid the development of a science when a sufficient body of quantitative information has been accumulated. This accumulation can be used to point the direction in which models should be constructed and to test the adequacy of such models in their interim states. Models, in turn, frequently are useful in organizing and interpreting experimental data and in suggesting new directions for experimental research." (Robert R. Bush & Frederick Mosteller, "A Mathematical Model for Simple Learning", Psychological Review 58, 1951)

"Almost any sort of inquiry that is general and not particular involves both sampling and measurement […]. Further, both the measurement and the sampling will be imperfect in almost every case. We can define away either imperfection in certain cases. But the resulting appearance of perfection is usually only an illusion." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"Because representativeness is inherent in the sampling plan and not in the particular sample at hand, we can never make adequate use of sample results without some measure of how well the results of this particular sample are likely to agree with the results of other samples which the same sampling plan might have provided. The ability to assess stability fairly is as important as the ability to represent the population fairly. Modern sampling plans concentrate on both." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"By sampling we can learn only about collective properties of populations, not about properties of individuals. We can study the average height, the percentage who wear hats, or the variability in weight of college juniors [...]. The population we study may be small or large, but there must be a population - and what we are studying must be a population characteristic. By sampling, we cannot study individuals as particular entities with unique idiosyncrasies; we can study regularities (including typical variabilities as well as typical levels) in a population as exemplified by the individuals in the sample." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"In many cases general probability samples can be thought of in terms of (1) a subdivision of the population into strata, (2) a self-weighting probability sample in each stratum, and (3) combination of the stratum sample means weighted by the size of the stratum." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"That which can be and should be representative is the sampling plan, which includes the manner in which the sample was drawn (essentially a specification of what other samples might have been drawn and what the relative chances of selection were for any two possible samples) and how it is to be analyzed. [...] It is clear that many [...] groups fail to be represented in any particular sample, yet this is not a criticism of that sample. Representation is not, and should not be, by groups. It is, and should be, by individuals as members of the sampled population. Representation is not, and should not be, in any particular sample. It is, and should be, in the sampling plan." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator." (Frederick Mosteller, "Selected Quantitative Techniques", 1954)

"We must emphasize that such terms as 'select at random', 'choose at random', and the like, always mean that some mechanical device, such as coins, cards, dice, or tables of random numbers, is used." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"We have made the sampling plan representative, not by giving each individual an equal chance to enter the sample and then weighting them equally, but by a more noticeable process of compensation, where those individuals very likely to enter the sample are weighted less, while those unlikely to enter are weighted more when they do appear. The net result is to give each individual an equal chance of affecting the (weighted) sample mean." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"We realize that if someone just 'grabs a handful', the individuals in the handful almost always resemble one another (on the average) more than do the members of a simple random sample. Even if the 'grabs' [sampling] are randomly spread around so that every individual has an equal chance of entering the sample, there are difficulties. Since the individuals of grab samples resemble one another more than do individuals of random samples, it follows (by a simple mathematical argument) that the means of grab samples resemble one another less than the means of random samples of the same size. From a grab sample, therefore, we tend to underestimate the variability in the population, although we should have to overestimate it in order to obtain valid estimates of variability of grab sample means by substituting such an estimate into the formula for the variability of means of simple random samples. Thus using simple random sample formulas for grab sample means introduces a double bias, both parts of which lead to an unwarranted appearance of higher stability." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"Weighing a sample appropriately is no more fudging the data than is correcting a gas volume for barometric pressure." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"A primary goal of any learning model is to predict correctly the learning curve - proportions of correct responses versus trials. Almost any sensible model with two or three free parameters, however, can closely fit the curve, and so other criteria must be invoked when one is comparing several models." (Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"In the testing of a scientific model or theory, one rarely has a general measure of goodness-of-fit, a universal yardstick by which one accepts or rejects the model. Indeed, science does not and should not work this way; a theory is kept until a better one is found. One way that science does work is by comparing two or more theories to determine their relative merits in handling relevant data."(Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"In a problem, the great thing is the challenge. A problem can be challenging for many reasons: because the subject matter is intriguing, because the answer defies unsophisticated intuition, because it illustrates an important principle, because of its vast generality, because of its difficulty, because of a clever solution, or even because of the simplicity or beauty of the answer." (Frederick Mosteller, "Fifty Challenging Problems in Probability with Solutions", 1965)

"Using data from the population as it stands is a dangerous substitute for testing." (Frederick Mosteller & Gale Mosteller, "New Statistical Methods in Public Policy. Part I: Experimentation", Journal of Contemporary Business 8, 1979)

"Although we often hear that data speak for themselves, their voices can be soft and sly." (Frederick Mosteller, "Beginning Statistics with Data Analysis", 1983)

"The law of truly large numbers states: With a large enough sample, any outrageous thing is likely to happen." (Frederick Mosteller, "Methods for Studying Coincidences", Journal of the American Statistical Association Vol. 84, 1989)

"It is easy to lie with statistics, but easier to lie without them [...]" (Frederick Mosteller)


18 November 2006

Robert Grant - Collected Quotes

"A map by itself requires little explanation, but once data are superimposed, readers will probably need labels on the maps, and legends explaining encodings like the color of markers." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"A recurring theme in machine learning is combining predictions across multiple models. There are techniques called bagging and boosting which seek to tweak the data and fit many estimates to it. Averaging across these can give a better prediction than any one model on its own. But here a serious problem arises: it is then very hard to explain what the model is (often referred to as a 'black box'). It is now a mixture of many, perhaps a thousand or more, models." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Any fool can fit a statistical model, given the data and some software. The real challenge is to decide whether it actually fits the data adequately. It might be the best that can be obtained, but still not good enough to use." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"As a first principle, any visualization should convey its information quickly and easily, and with minimal scope for misunderstanding. Unnecessary visual clutter makes more work for the reader’s brain to do, slows down the understanding (at which point they may give up) and may even allow some incorrect interpretations to creep in." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Cross-validation is a useful tool for finding optimal predictive models, and it also works well in visualization. The concept is simple: split the data at random into a 'training' and a 'test' set, fit the model to the training data, then see how well it predicts the test data. As the model gets more complex, it will always fit the training data better and better. It will also start off getting better results on the test data, but there comes a point where the test data predictions start going wrong." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Dashboards are collections of several linked visualizations all in one place. The idea is very popular as part of business intelligence: having current data on activity summarized and presented all inone place. One danger of cramming a lot of disparate information into one place is that you will quickly hit information overload. Interactivity and small multiples are definitely worth considering as ways of simplifying the information a reader has to digest in a dashboard. As with so many other visualizations, layering the detail for different readers is valuable." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Decision trees show the breakdown of the data by one variable then another in a very intuitive way, though they are generally just diagrams that don’t actually encode data visually." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Estimates based on data are often uncertain. If the data were intended to tell us something about a wider population (like a poll of voting intentions before an election), or about the future, then we need to acknowledge that uncertainty. This is a double challenge for data visualization: it has to be calculated in some meaningful way and then shown on top of the data or statistics without making it all too cluttered." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"The relevance to data visualization is that we are always conveying a message to some extent, and in the case of associations between variables, that message is sometimes a step removed from the data itself. If you are making visualizations, be careful not to impose your own interpretation too much when showing associations. If you are reading them, don’t assume that the message accompanying the data is as sound and scientifically based as the data themselves." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"The term 'infographics' is used for eye-catching diagrams which get a simple message across. They are very popular in advertising and can convey an impression of scientific, reliable information, but they are not the same thing as data visualization. An infographic will typically only convey a few numbers, and not use visual presentations to allow the reader to make comparisons of their own." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"There is often no one 'best' visualization, because it depends on context, what your audience already knows, how numerate or scientifically trained they are, what formats and conventions are regarded as standard in the particular field you’re working in, the medium you can use, and so on. It’s also partly scientific and partly artistic, so you get to express your own design style in it, which is what makes it so fascinating." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"With skewed data, quantiles will reflect the skew, while adding standard deviations assumes symmetry in the distribution and can be misleading." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Random forests are essentially an ensemble of trees. They use many short trees, fitted to multiple samples of the data, and the predictions are averaged for each observation. This helps to get around a problem that trees, and many other machine learning techniques, are not guaranteed to find optimal models, in the way that linear regression is. They do a very challenging job of fitting non-linear predictions over many variables, even sometimes when there are more variables than there are observations. To do that, they have to employ 'greedy algorithms', which find a reasonably good model but not necessarily the very best model possible." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

Related Posts Plugin for WordPress, Blogger...