20 November 2006

🔢Zach Gemignani - Collected Quotes

"A culture of data fluency needs to be built on a shared understanding of the data sources, data analysis, key metrics, and data products. It requires employees to be on the same page about how data is used and why it is important." (Zach Gemignani et al, "Data Fluency", 2014)

"Any presentation of data, whether a simple calculated metric or a complex predictive model, is going to have a set of assumptions and choices that the producer has made to get to the output. The more that these can be made explicit, the more the audience of the data will be open to accepting the message offered by the presenter." (Zach Gemignani et al, "Data Fluency", 2014)

"Broadly defined, data means events that are captured and made available for analysis. A data source is a consistent record of these events. And a data product translates this record of events into something that can easily be understood. [...] Data products can be organized and characterized by a series of continuums that describe the nature of the data and how it is presented." (Zach Gemignani et al, "Data Fluency", 2014)

"[...] communicating with data is less often about telling a specific story and more like starting a guided conversation. It is a dialogue with the audience rather than a monologue. While some data presentations may share the linear approach of a traditional story, other data products (analytical tools, in particular) give audiences the flexibility for exploration. In our experience, the best data products combine a little of both: a clear sense of direction defined by the author with the ability for audiences to focus on the information that is most relevant to them. The attributes of the traditional story approach combined with the self-exploration approach leads to the guided safari analogy." (Zach Gemignani et al, "Data Fluency", 2014)

"Creating a data fluent organization doesn’t just happen. It starts with people who love using data as a tool to improve their job performance - people who have learned to converse with others in the language of data. It needs people who expect and demand better, more useful data products from themselves and others. It starts with you." (Zach Gemignani et al, "Data Fluency", 2014)

"Data alone isn’t valuable. In fact, it can be expensive in time and resources to manage and maintain. The analysis of this data is closer to something that is valuable. A clearly communicated analysis starts to transform a reflection of the world into knowledge in the minds of people. Even so, knowledge alone does not make your organization better. It is the decisions and actions of people - based on this data-sourced knowledge - that is the goal. But these decisions are seldom made in a vacuum. In most organizations, decisions are a collaborative, social experience. People come together to discuss options, review their knowledge of the situation, and arrive at a path to go down. Herein is one of the great powers of effective data products: They can shape and guide these discussions. Conclusions are seldom clear-cut, even when there is data to support a direction." (Zach Gemignani et al, "Data Fluency", 2014)

"Data captures actions and characteristics of the real world and transforms them into something that can be examined and explored after the fact." (Zach Gemignani et al, "Data Fluency", 2014)

"Data visualizations are designed to emphasize patterns and deviations in data. In fact, each specific chart type is well suited to highlighting particular forms of insight. A skilled author of data products will choose the right visualization to emphasize a message. The data, chart, and supporting descriptions should work in harmony to point out what is interesting. The reader simply goes along for the ride." (Zach Gemignani et al, "Data Fluency", 2014)

"Goals associated with a few, well-understood key metrics is a powerful combination. For both internal and external stakeholders, there is a strong alignment between organization mission, vision, goals, and tracking of progress. The efforts of everyone can be directed at these measurable goals, and people will focus on the processes that can impact these metrics." (Zach Gemignani et al, "Data Fluency", 2014)

"In fact, the analogy to storytelling is limited when applied to communicating with data. Data visualization has fundamental characteristics missing from traditional storytelling. For example, interactive data visualizations let audiences explore information to find insights that resonate with them. Visualizations take shape based to a large extent on the underlying data. And as this data changes, the emphasis and message of the visualization is likely to change." (Zach Gemignani et al, "Data Fluency", 2014)

"Metrics can serve two purposes: identifying problems and measuring performance. When the goal is to identify problems and pinpoint areas of operational inefficiency and ineffectiveness, defining the right metric requires a bit of detective work. It requires you to uncover the data residue of a problem and to determine what evidence can be found and how exactly it shows up. When the goal is to measure performance, the right success metrics focus on measures that can be controlled and where improvement in the metric is an unambiguously good thing." (Zach Gemignani et al, "Data Fluency", 2014)

"Most discussions of decision making assume that only senior executives make decisions or that only senior executives' decisions matter. This is a dangerous mistake. Decisions are made at every level of the organization, beginning with individual professional contributors and frontline supervisors. These apparently low-level decisions are extremely important in a knowledge-based organization." (Zach Gemignani et al, "Data Fluency", 2014)

"The most common mistake in ineffective data products is an inability to make difficult decisions about what information is most important. [...] Often information gets included in data products for reasons that are superfluous to the purpose, audience, and message - reasons that cater the product to someone influential or use information that has been included historically. The bar should be higher." (Zach Gemignani et al, "Data Fluency", 2014)

"We have an inbuilt ability to manipulate visual metaphors in ways we cannot do with the things and concepts they stand for—to use them as malleable, conceptual Tetris blocks or modeling clay that we can more easily squeeze, stack, and reorder. And then - whammo! - a pattern emerges, and we’ve arrived someplace we would never have gotten by any other means." (Zach Gemignani et al, "Data Fluency", 2014)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.