Showing posts with label table-valued function. Show all posts
Showing posts with label table-valued function. Show all posts

07 February 2024

💎🏭SQL Reloaded: Microsoft Fabric's Delta Tables in Action - Views and other Data Objects

One reads in the training material that the SQL Endpoint provides a read-only experience [1], meaning that no data can be written back to the delta lake tables. Playing with the metadata available in Spark SQL via Notebooks and the SQL Endpoint (see post), I realized that there is more to the statement! Even if one can query via the SQL Endpoint only delta tables, this doesn't mean that one can't build a semantic model on top of it, much like one was able to do via the Serverless SQL pool in Azure Synapse.

In Spark one can create via SQL, PySpark and the other supported languages views and functions, though they will not be available to the SQL Endpoint! To use the data generated in the process, the respective data needs to be saved to delta tables. Conversely, one can still create views, functions and stored procedures via the SQL Endpoint though the objects won't be available in Spark SQL! 

This has important implications, though in this post let's focus on the syntax and create several objects for testing purposes in the two environments. I'll use the Assets delta table created in a previous post. The Spark SQL code should be run in a notebook (e.g. one cell per group of statements), while the code for the SQL Endpoint should be run in SQL Server Management Studio.

Views

/* test view's creation in the SQL Endpoint */

-- drop the test view 
DROP VIEW IF EXISTS dbo.vAssets_Microsoft2;
GO

-- create the test view
CREATE VIEW dbo.vAssets_Microsoft2
AS
--Microsoft assets
SELECT Id, CreationDate, Vendor, Asset, Model, Owner, Tag, Quantity
FROM dbo.Assets
WHERE Vendor = 'Microsoft';
GO

-- test the viwe
SELECT *
FROM dbo.vAssets_Microsoft2;

/* test view's creation in Spark SQL */

-- drop test view 
DROP VIEW IF EXISTS vAssets_Microsoft;

-- create test view
CREATE VIEW vAssets_Microsoft COMMENT 'Microsoft assets in scope (view)'
AS
SELECT Id, CreationDate, Vendor, Asset, Model, Owner, Tag, Quantity
FROM assets
WHERE Vendor = 'Microsoft';

-- review data
SELECT *
FROM vAssets_Microsoft;

Table-Valued Functions

/* test function's creation in the SQL Endpoint */

-- drop the test function 
DROP FUNCTION IF EXISTS dbo.fAssets_Microsoft2;
GO

-- create the test function
CREATE FUNCTION dbo.fAssets_Microsoft2(
    @Vendor nvarchar(max))
RETURNS TABLE 
AS 
RETURN (
    SELECT Id, CreationDate, Vendor, Asset, Model, Owner, Tag, Quantity
    FROM dbo.Assets
    WHERE Vendor = @Vendor
);
GO

-- test the function
SELECT *
FROM dbo.fAssets_Microsoft2('Microsoft');

SELECT *
FROM dbo.fAssets_Microsoft2('Dell');

Unfortunately, the Spark SQL code doesn't seem to work, its execution returning a PARSE_SYNTAX_ERROR error no matter how simple the code was (see also [2]).
 
/* test function's creation in Spark SQL */

-- drop test function 
DROP FUNCTION IF EXISTS fAssets_Microsoft;

-- create test function
CREATE FUNCTION fAssets_Microsoft(
    pVendor string)
RETURNS TABLE
AS 
RETURN 
    SELECT Id, CreationDate, Vendor, Asset, Model, Owner, Tag, Quantity
    FROM assets
    WHERE Vendor = pVendor;

-- review data
SELECT *
FROM fAssets_Microsoft('Microsoft');

Stored Procedure

Stored procedures aren't available in Spark SQL, though this doesn't mean that we can't test the code in the SQL Endpoint:

/* test procedure's creation in the SQL Endpoint */

-- drop the test procedure 
DROP PROCEDURE IF EXISTS dbo.spAssets_Microsoft2;
GO

-- create the test procedure
CREATE PROCEDURE dbo.spAssets_Microsoft2(
@Vendor nvarchar(max) = NULL)
AS
--Microsoft assets
SELECT Id, CreationDate, Vendor, Asset, Model, Owner, Tag, Quantity
FROM dbo.Assets
WHERE Vendor = IsNull(@Vendor, Vendor);
GO

-- test the procedure
EXEC dbo.spAssets_Microsoft2 'Microsoft';
EXEC dbo.spAssets_Microsoft2 'Dell';
EXEC dbo.spAssets_Microsoft2;

Notes:
1) I observed in documentation and some presentations that the common practice of prefixing data objects based on their type is seldom considered. I still find it useful when building solutions, even if object's type can be derived from the context and/or metadata. 
2) The examples were chosen to test the minimal functionality so that the differences between the two platforms are minimal - using the dbo schema and the GO command in the SQL Endpoint, COMMENT in Spark SQL. However, as soon specific functionality is used, extra code is needed to mitigate the differences.
3) The names between environments were kept different, just in case one needs to test objects' availability between platforms.

Happy coding!

Previous Post  <<||>>  Next Post

Resources:
[1] Microsoft Learn (2023) Work with Delta Lake tables in Microsoft Fabric (link)
[2] Databricks (2023) CREATE FUNCTION (SQL and Python) (link)

21 October 2023

🧊Data Warehousing: Architecture V (Dynamics 365, the Data Lakehouse and the Medallion Architecture)

Data Warehousing
Data Warehousing Series

An IT architecture is built and functions under a set of constraints that derive from architecture’s components. Usually, if we want flexibility or to change something in one area, this might have an impact in another area. This rule applies to the usage of the medallion architecture as well! 

In Data Warehousing the medallion architecture considers a multilayered approach in building a single source of truth, each layer denoting the quality of data stored in the lakehouse [1]. For the moment are defined 3 layers - bronze for raw data, silver for validated data, and gold for enriched data. The concept seems sound considering that a Data Lake contains all types of raw data of different quality that needs to be validated and prepared for reporting or other purposes.

On the other side there are systems like Dynamics 365 that synchronize the data in near-real-time to the Data Lake through various mechanisms at table and/or data entity level (think of data entities as views on top of other tables or views). The databases behind are relational and in theory the data should be of proper quality as needed by business.

The greatest benefit of serverless SQL pool is that it can be used to build near-real-time data analytics solutions on top of the files existing in the Data Lake and the mechanism is quite simple. On top of such files are built external tables in serverless SQL pool, tables that reflect the data model from the source systems. The external tables can be called as any other tables from the various database objects (views, stored procedures and table-valued functions). Thus, can be built an enterprise data model with dimensions, fact-like and mart-like entities on top of the synchronized filed from the Data Lake. The Data Lakehouse (= Data Warehouse + Data Lake) thus created can be used for (enterprise) reporting and other purposes.

As long as there are no special requirements for data processing (e.g. flattening hierarchies, complex data processing, high-performance, data cleaning) this approach allows to report the data from the data sources in near-real time (10-30 minutes), which can prove to be useful for operational and tactical reporting. Tapping into this model via standard Power BI and paginated reports is quite easy. 

Now, if it's to use the data medallion approach and rely on pipelines to process the data, unless one is able to process the data in near-real-time or something compared with it, a considerable delay will be introduced, delay that can span from a couple of hours to one day. It's also true that having the data prepared as needed by the reports can increase the performance considerably as compared to processing the logic at runtime. There are advantages and disadvantages to both approaches. 

Probably, the most important scenario that needs to be handled is that of integrating the data from different sources. If unique mappings between values exist, unique references are available in one system to the records from the other system, respectively when a unique logic can be identified, the data integration can be handled in serverless SQL pool.

Unfortunately, when compared to on-premise or Azure SQL functionality, the serverless SQL pool has important constraints - it's not possible to use scalar UDFs, tables, recursive CTEs, etc. So, one needs to work around these limitations and in some cases use the Spark pool or pipelines. So, at least for exceptions and maybe for strategic reporting a medallion architecture can make sense and be used in parallel. However, imposing it on all the data can reduce flexibility!

Bottom line: consider the architecture against your requirements!

Previous Post <<||>>> Next Post

[1] What is the medallion lakehouse architecture?
https://learn.microsoft.com/en-us/azure/databricks/lakehouse/medallion

01 February 2023

💎SQL Reloaded: Alternatives for Better Code Maintainability in SQL Server & Azure Synapse I

Introduction

Queries can become quite complex and with the increased complexity they'll be harder to read and/or maintain. Since the early days of SQL Server, views and table-valued user-defined functions (UDFs) are the standard ways of encapsulating logic for reuse in queries, allowing to minimize the duplication of logic. Then came the common table expressions (CTEs), which allow a further layer of structuring the code, independently whether a view or UDF was used. 

These are the main 3 options that can be combined in various ways to better structure the code. On the other side, also a temporary table or table variable could be used for the same purpose, though they have further implications.

To exemplify the various approaches, let's consider a simple query based on two tables from the AdventureWorks database. For the sake of simplicity, further business rules have been left out.

Inline Subqueries

-- products with open purchase orders
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN ( -- cumulated open purchase orders by product
		SELECT POL.ProductId 
		, SUM(POL.OrderQty) PurchQty
		FROM Purchasing.PurchaseOrderDetail POL
		WHERE OrderQty - (ReceivedQty - RejectedQty)>0
		GROUP BY POL.ProductId 
	) POL
	ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

As can be seen, the logic for the "Open purchase orders" result set is built within an inline subquery (aka inline view). As its logic becomes more complex, the simplest way to handle this is to move it into a CTE.

Common Table Expressions (CTEs)

A common table expression can be thought of as a temporary result set defined within the execution scope of a single SELECT, INSERT, UPDATE, DELETE or CREATE VIEW statement [1]. Thus, the CTE can't be reused between queries.

The inline query is moved at the beginning within a WITH statement to which is given a proper name that allows easier identification later:

-- products with open purchase orders (common table expression)
WITH OpenPOs
AS (-- cumulated open purchase orders by product
	SELECT POL.ProductId 
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
	GROUP BY POL.ProductId 
)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Thus, this allows us to rewrite the JOIN as if it were between two tables. Multiple CTEs can be used as well, with or without any dependencies between them. Moreover, CTEs allow building recursive queries (see example).

There is no performance gain or loss by using a CTE. It's important to know that the result set is not cached, therefore, if the same CTE is called multiple times (within a query), it will be also "executed" for the same number of times. Except the cases in which the database engine uses a spool operator to save intermediate query results for a CTE, there will be created no work table in tempdb for CTEs.

If the inline query needs to be reused in several queries, defining a view is a better alternative.

Views

A view is a database object used to encapsulate a query and that can be referenced from other queries much like a table. In fact, it's also referred as a "virtual table". A view can't be execute by itself (as stored procedures do. No data, only the definition of the view is stored, and the various actions that can be performed on database objects can be performed on views as well.

-- creating the view
CREATE VIEW dbo.vOpenPurchaseOrders
AS
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- testing the view
SELECT top 10 *
FROM dbo.vOpenPurchaseOrders

Once the view is created, it can be called from any query:

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN dbo.vOpenPurchaseOrders POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Besides the schema binding, there are no additional costs for using views. However, views have several limitations (see [2]). Moreover, it's not possible to use parameters with views, scenarios in which tabled-valued UDFs can help.

Indexed Views 

Starting with SQL Server 2015, it's possible to materialize the data in a view, storing the results of the view in a clustered index on the disk in same way a table with a clustered index is stored. This type of view is called an indexed view (aka materialized view, though the concept is used slightly different in Azure Synapse) and for long-running queries can provide considerable performance gains. In case the view contains a GROUP BY is present, its definition must contain COUNT_BIG(*) and must not contain HAVING.

-- dropping the view
--DROP VIEW IF EXISTS Purchasing.vOpenPOs

-- create view
CREATE VIEW Purchasing.vOpenPOs
WITH SCHEMABINDING
AS
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
, COUNT_BIG(*) Count
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 
GO

--Create an index on the view.
CREATE UNIQUE CLUSTERED INDEX IDX_vOpenPOs
   ON Purchasing.vOpenPOs (ProductId);

--testing the view
SELECT top 100 *
FROM Purchasing.vOpenPOs

-- products with open purchase orders (indexed view)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN Purchasing.vOpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

When an indexed view is defined on a table, the query optimizer may use it to speed up the query execution even if it wasn't referenced in the query. Besides the restriction of the view to be deterministic, further limitations apply (see [6]).

Table-Valued Functions

A table-valued function is a user-defined function in which returns a table as a result, as opposed to a single data value, as scalar functions do.

Let's support that we need to restrict base the logic based on a time interval. We'd need then to provide the StartDate & EndDate as parameters. Compared with other UDFs table-valued functions, as their name implies, need to return a table:

-- creating the UDF function 
CREATE FUNCTION dbo.tvfOpenPurchaseOrdersByProduct( 
  @StartDate date 
, @EndDate date) 
RETURNS TABLE 
AS RETURN ( 
	SELECT POL.ProductId 
	, SUM(POL.OrderQty) PurchQty
	FROM Purchasing.PurchaseOrderDetail POL
	WHERE OrderQty - (ReceivedQty - RejectedQty)>0
	  AND POL.DueDate BETWEEN @StartDate AND @EndDate
	GROUP BY POL.ProductId 
)

-- testing the UDF
SELECT top 10 *
FROM dbo.tvfOpenPurchaseOrdersByProduct('2014-01-01', '2014-12-31')

A table-valued function can be used as a "table with parameters" in JOINs:

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM Production.Product ITM
     JOIN dbo.tvfOpenPurchaseOrdersByProduct('2014-01-01', '2014-12-31') POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

The parameters are optional, though in such cases using a view might still be a better idea. Table-valued functions used to have poor performance in the past compared with views and in certain scenarios they might still perform poorly. Their benefit resides in allowing to pass and use parameters in the logic, which can make them irreplaceable. Moreover, multi-statement table-valued functions can be built as well (see example)!

Notes:
1) When evaluating table-valued functions for usage consider their limitations as well (see [3])!
2) Scalar UDFs can be used to simplify the code as well, though they apply only to single values, therefore they are not considered in here!

Temporary Tables 

A temporary table is a base table that is stored and managed in tempdb as any other table. It exists only while the database session in which it was created is active. Therefore, it can be called multiple times, behaving much like a standard table:

-- create the temp table
CREATE TABLE dbo.#OpenPOs (
  ProductId int NOT NULL
, PurchQty decimal(8,2) NOT NULL
)

-- insert the cumulated purchase orders
INSERT INTO #OpenPOs
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- products with open purchase orders (table-valued function)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN dbo.#OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

-- drop the table (cleaning)
-- DROP TABLE IF EXISTS dbo.#OpenPOs;

Being created in the tempdb, system database shared by several databases, temporary table's performance relies on tempdb's configuration and workload. Moreover, the concurrent creation of temporary tables from many sessions can lead to tempdb metadata contention, as each session attempts updating metadata information in the system based tables.

Temporary tables are logged, which adds more burden on the database engine, however being able to create indexes on them and use statistics can help processing result sets more efficiently, especially when called multiple times. 

Also, a temporary table might be cached (see [1]) and not deleted when its purpose ends, which allows operations that drop and create the objects to execute very quickly and reduces page allocation contention.

Table Variables

A table variable is a variable of type TABLE and can be used in functions, stored procedures, and batches. The construct is similar to the temp table and is stored as well in the tempdb and cached under certain scenarios, however they are scoped to the batch or routine in which they are defined and destroyed after that. 

-- create the table variable
DECLARE @OpenPOs TABLE (
  ProductId int NOT NULL
, PurchQty decimal(8,2) NOT NULL
)

-- insert the cumulated purchase orders
INSERT INTO @OpenPOs
SELECT POL.ProductId 
, SUM(POL.OrderQty) PurchQty
FROM Purchasing.PurchaseOrderDetail POL
WHERE OrderQty - (ReceivedQty - RejectedQty)>0
GROUP BY POL.ProductId 

-- products with open purchase orders (table variable)
SELECT ITM.ProductNumber
, ITM.Name
, POL.PurchQty
FROM [Production].[Product] ITM
     JOIN @OpenPOs POL
	   ON ITM.ProductId = POL.ProductId
ORDER BY ITM.ProductNumber

Table variables don’t participate in transactions or locking, while DML operations done on them are not logged. There are also no statistics maintained and any data changes impacting the table variable will not cause recompilation. Thus, they are usually faster than temporary variables, especially when their size is small, though their performance depends also on how they are used. On the other side, for big result sets and/or when several calls are involved, a temporary table could prove to be more efficient. 

Important!!! Temporary tables and table variables are means of improving the performance of long-running queries. Being able to move pieces of logic around helps in maintaining the code and it also provides a logical structure of the steps, however they shouldn't be used if the performance gain is not the target! Overusing them as technique can considerably decrease the performance of tempdb, which can have impact in other areas!

Azure Synapse

Moving to Azure Synapse there are several important limitations in what concerns the above (see [4]). Even if some features are supported, further limitations might apply. What's important to note is that materialized views act like indexed view in standard SQL Server and that CETAS (Create External Table as SELECT) are available to import/export data to the supported file formats in Hadoop, Azure storage blob or Azure Data Lake Storage Gen2.

FeatureDedicatedServerlessSQL Server
CTEsYesYesYes (2015+)
Recursive CTEsNoNoYes (2015+)
ViewsYesYesYes
Indexed viewsNoNoYes
Materialized viewsYesNoNo
Table-valued functions (single statement)NoYesYes
Table-valued functions (multi-statement)NoNoYes
Scalar UDFs YesNoYes
TablesYesNoYes
Temporary tables (local)YesLimitedYes
Temporary tables (global)NoNoYes
Table variablesYesYesYes
CETASYesLimitedYes (2022+)

Notes:
1) CETAS have two important limitations in serverless SQL Pool
    a) once the data were exported to a file, they can't be overwritten via the same syntax;
    b) logic based on temporary tables can't be exported via pipelines.
2) Temporary tables can be used to replace cursors (see example).

Previous Post  <<||>>  Next Post

Resources:
[1] Microsoft Learn (2012) Capacity Planning for tempdb (link)
[2] Microsoft Learn (2023) CREATE View (link)
[3] Microsoft Learn (2023) CREATE Function (link)
[4] Microsoft Learn (2023) Transact-SQL features supported in Azure Synapse SQL (link)
[5] Redgate (2018) Choosing Between Table Variables and Temporary Tables (ST011, ST012), by Phil Factor (link)
[6] Microsoft Learn (2023) Create indexed views (link)
[7] Microsoft Learn (2023) CREATE MATERIALIZED VIEW AS SELECT (Transact-SQL) (link)
[8] Microsoft Learn (2023) CETAS with Synapse SQL (link)

19 November 2022

💎🏭SQL Reloaded: Tricks with Strings via STRING_SPLIT, PATINDEX and TRANSLATE

Searching for a list of words within a column can be easily achieved by using the LIKE operator:

-- searching for several words via LIKE (SQL Server 2000+)
SELECT * 
FROM Production.Product 
WHERE Name LIKE '%chain%'
   OR Name LIKE '%lock%'
   OR Name LIKE '%rim%'
   OR Name LIKE '%spindle%'

The search is quite efficient, if on the column is defined an index, a clustered index scan being more likely chosen.

If the list of strings to search upon becomes bigger, the query becomes at least more difficult to maintain. Using regular expressions could be a solution. Unfortunately, SQL Server has its limitations in working with patterns. For example, it doesn't have a REGEXP_LIKE function, which is used something like (not tested):

-- Oracle 
SELECT * 
FROM Production.Product 
WHERE REGEXP_LIKE(lower(Name), 'chain|lock|rim|spindle')

However, there's a PATINDEX function which returns the position of a pattern within a string, and which uses the same wildcards that can be used with the LIKE operator:

-- searching for a value via PATINDEX (SQL Server 2000+)
SELECT * 
FROM [Production].[Product] 
WHERE PATINDEX('%rim%', Name)>0

Even if together with the Name can be provided only one of the values, retrieving the values from a table or a table-valued function (TVF) would do the trick. If the values need to be reused in several places, they can be stored in a table or view. If needed only once, a common table expression is more indicated:

-- filtering for several words via PATHINDEX (SQL Server 2008+)
WITH CTE 
AS (
  -- table from list of values (SQL Server 2008+)
SELECT * FROM (VALUES ('chain') , ('lock') , ('rim') , ('spindle')) DAT(words) ) SELECT * FROM Production.Product PRD WHERE EXISTS ( SELECT * FROM CTE WHERE PATINDEX('%'+ CTE.words +'%', PRD.Name)>0 )

The query should return the same records as above in the first query!

Besides own's UDFs (see SplitListWithIndex or SplitList), starting with SQL Server 2017 can be used the STRING_SPLIT function to return the same values as a TVF:

-- filtering for several words via PATHINDEX & STRING_SPLIT (SQL Server 2017+)
SELECT * 
FROM Production.Product PRD
WHERE EXISTS (
	SELECT *
	FROM STRING_SPLIT('chain|lock|rim|spindle', '|') SPL
	WHERE PATINDEX('%'+ SPL.value +'%', PRD.Name)>0
	)

A dynamic list of values can be built as well. For example, the list of words can be obtained from a table and the STRING_SPLIT function:

-- listing the words appearing in a column (SQL Server 2017+)
SELECT DISTINCT SPL.value
FROM Production.Product PRD
     CROSS APPLY STRING_SPLIT(Name, ' ') SPL
ORDER BY SPL.value

One can remove the special characters, the numeric values, respectively the 1- and 2-letters words:

-- listing the words appearing in a column (SQL Server 2017+)
SELECT DISTINCT SPL.value
FROM Production.Product PRD
     CROSS APPLY STRING_SPLIT(Replace(Replace(Replace(Replace(Name, '-', ' '), ',', ' '), '/', ' '), '''', ' '), ' ') SPL
WHERE IsNumeric(SPL.value) = 0 -- removing numbers
  AND Len(SPL.value)>2 -- removing single/double letters
ORDER BY SPL.value

The output looks better, though the more complex the text, the more replacements need to be made. An alternative to a UDF (see ReplaceSpecialChars) is the TRANSLATE function, which replaces a list of characters with another. One needs to be careful and have a 1:1 mapping, the REPLICATE function doing the trick:

-- replacing special characters via TRANSLATE (SQL Server 2017+)
SELECT TRANSLATE(Name, '-,/''', Replicate(' ', 4))
FROM Production.Product PRD

Now the query becomes:

-- listing the words appearing in a column using TRANSLATE (SQL Server 2017+)
SELECT DISTINCT SPL.value
FROM Production.Product PRD
     CROSS APPLY STRING_SPLIT(TRANSLATE(Name, '-,/''', Replicate(' ', 4)), ' ') SPL
WHERE IsNumeric(SPL.value) = 0 -- removing numbers
  AND Len(SPL.value)>2 -- removing single/double letters
ORDER BY SPL.value

Notes:
1) The SQL Server-based queries work also in a SQL databases in Microsoft Fabric. Just replace the Production with SalesLT schema (see post, respectively GitHub repository with the changed code).

Happy coding!

21 May 2020

💎🏭SQL Reloaded: Splitting a String (Before and After)

Starting with SQL Server 2016 Microsoft introduced the STRING_SPLIT table-valued function, which splits a string into rows of substrings, based on a specified separator character (e.g. “:”).

-- splitting a string (SQL Server 2016+)
SELECT *
FROM STRING_SPLIT('100001::M:black:', ':') 

The table-valued function object allowed also earlier to implement the same functionality, either by looping through the string or by using a common table expression. Here’s the implementation based on a loop (it was modified from a previous version to include an index):

-- split table-valued function with an index
CREATE FUNCTION [dbo].[SplitListWithIndex]( 
  @ListValues varchar(500) 
, @Delimiter char(1)) 
RETURNS @Temp TABLE(
  Ind int
, Value varchar(50)) 
AS 
BEGIN 
 DECLARE @Index int 
 DECLARE @Length int 
 DECLARE @Ind int 

 SET @Index = CharIndex(@Delimiter, @ListValues) 
 SET @Length = Len(@ListValues) - @Index 
 SET @Ind = 1
   
 WHILE @Index > 0 --if the fatch was successful
 BEGIN 
  INSERT @Temp 
  VALUES(@Ind, Substring(@ListValues, 0, @Index)) 

  SET @ListValues = Substring(@ListValues, @Index+1, @Length) 
  SET @Index = CharIndex(@Delimiter, @ListValues) 
  SET @Length = @Length - @Index 
  SET @Ind = @Ind + 1
 END  
   
 INSERT @Temp 
 VALUES(@Ind, @ListValues) 
RETURN 
END  
GO

The function could be called in code same as the STRING_SPLIT:

-- splitting a string (SQL Server 2000+)
SELECT *
FROM dbo.SplitListWithIndex('100001::M:black:', ':') 

The two functions are helpful when a column stores delimited values. It’s the case of Dynamics 365 which stores a SKU (Stock Keeping Unit) – the Product Numbers together with its Dimensions (ItemId, Configid, InventSizeId, InventColorId, StyleId) delimited by “:”, like in the above examples. Therefore, to parse the records one could write such code:

-- parsing delimited values (SQL Server 2000+)
SELECT DAT.ProductNumber
, Max(CASE WHEN LV.Ind = 1 THEN LV.Value END) ItemId
, Max(CASE WHEN LV.Ind = 2 THEN LV.Value END) Configid
, Max(CASE WHEN LV.Ind = 3 THEN LV.Value END) InventSizeId
, Max(CASE WHEN LV.Ind = 4 THEN LV.Value END) InventColorId
, Max(CASE WHEN LV.Ind = 5 THEN LV.Value END) StyleId
FROM ( VALUES ('100001::S:black:')
 , ('100001::M:black:')
 , ('100001::L:black:')
 , ('100001::XL:black:')
 , ('100001::S:white:')
 , ('100001::M:white:')
 , ('100001::L:white:')
 , ('100001::XL:white:')
) DAT (ProductNumber)
CROSS APPLY dbo.SplitListWithIndex(DAT.ProductNumber, ':') LV
GROUP BY DAT.ProductNumber
ORDER BY DAT.ProductNumber
 
Similar output can be obtained via the STRING_SPLIT with the help of row_number() ranking window function introduced with SQL Server 2005:
 
-- parsing delimited values (SQL Server 2016+)
SELECT LV.ProductNumber
, Max(CASE WHEN LV.Ind = 1 THEN LV.Value END) ItemId
, Max(CASE WHEN LV.Ind = 2 THEN LV.Value END) Configid
, Max(CASE WHEN LV.Ind = 3 THEN LV.Value END) InventSizeId
, Max(CASE WHEN LV.Ind = 4 THEN LV.Value END) InventColorId
, Max(CASE WHEN LV.Ind = 5 THEN LV.Value END) StyleId
FROM (
 SELECT DAT.ProductNumber
 , XT.VALUE
 , ROW_NUMBER() OVER (PARTITION BY DAT.ProductNumber ORDER BY DAT.ProductNumber) Ind
 FROM ( VALUES ('100001::S:black:')
  , ('100001::M:black:')
  , ('100001::L:black:')
  , ('100001::XL:black:')
  , ('100001::S:white:')
  , ('100001::M:white:')
  , ('100001::L:white:')
  , ('100001::XL:white:')
 ) DAT (ProductNumber)
 CROSS APPLY STRING_SPLIT(DAT.ProductNumber, ':') XT
) LV
GROUP BY LV.ProductNumber
ORDER BY LV.ProductNumber

As can be seen the introduction of an index into the dbo.SplitListWithIndex function simplified the code, making the use of a ranking window function unnecessary. It would be useful for the STRING_SPLIT to provide the same, as this time of processing is pretty common.  
Here’s another example based on the PIVOT clause introduced also in SQL 2005:

-- parsing delimited values (SQL Server 2016+)
SELECT P.ProductNumber
, Cast(Trim([1]) as nvarchar(20)) ItemId
, Cast(Trim([2]) as nvarchar(20)) ConfigId
, Cast(Trim([3]) as nvarchar(20)) InventSizeid
, Cast(Trim([4]) as nvarchar(20)) InventColorId
, Cast(Trim([5]) as nvarchar(20)) StyleId
FROM (
 SELECT DAT.ProductNumber
 , XT.VALUE
 , ROW_NUMBER() OVER (PARTITION BY DAT.ProductNumber ORDER BY DAT.ProductNumber) Ranking
 FROM ( VALUES ('100001::S:black:')
  , ('100001::M:black:')
  , ('100001::L:black:')
  , ('100001::XL:black:')
  , ('100001::S:white:')
  , ('100001::M:white:')
  , ('100001::L:white:')
  , ('100001::XL:white:')
 ) DAT (ProductNumber)
 CROSS APPLY STRING_SPLIT(DAT.ProductNumber, ':') XT
) DAT
PIVOT (MAX(DAT.[VALUE]) FOR DAT.Ranking IN ([1],[2],[3],[4],[5])) P

Notes:
The queries work also in SQL databases in Microsoft Fabric (see file in GitHub repository). You might want to use another schema (e.g. Test), not to interfere with the existing code. 

Happy coding!
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.