Showing posts with label SQL Server. Show all posts
Showing posts with label SQL Server. Show all posts

06 January 2025

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part VII: Things That Don't Work) [new feature]

Microsoft does relatively a good job in documenting what doesn't work in Microsoft Fabric's SQL Databases. There's a good overview available already in the documentation, though beyond this the current post lists my finding while testing the previously written code on this blog,

USE Database

The standard syntax allows to change via USE the database context to the specified database or database snapshot. Unfortunately, this syntax doesn't seem to be supported currently and unfortunately many scripts seem to abuse of it. Thus, the following line of code throws an error:

-- changing the context
USE master;
GO
USE tempdb;

"Msg 40508, Level 16, State 1, Line 1, USE statement is not supported to switch between databases. Use a new connection to connect to a different database"

However, one can use the 3-part naming convention to reference the various objects:

-- sys metadata - retrieving the database files

SELECT *
FROM tempdb.sys.database_files dbf
ORDER BY name;

Even if the tempdb is not listed in the sys.databases table, it's still available for querying, which can prove helpful for troubleshooting. 

DBCC commands 

The documentation warns that some DBCC commands won't work, though in some cases there are also alternatives. For example:

-- clearing the procedure cache via DBCC
DBCC FREEPROCCACHE;
Output:
"Msg 2571, Level 14, State 9, Line 1, User '<user>' does not have permission to run DBCC freeproccache."

Alternatively, one can use the following command, which seems to work:

-- clearing the procedure cash via ALTER
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

CHECKDB, which checks the logical and physical integrity of all the objects in the specified database, can't be used as well:
 
-- Checking the logical and physical integrity of a database
DBCC CHECKDB();
Output:
"Msg 916, Level 14, State 2, Line 1, The server principal "..." is not able to access the database "..." under the current security context."

The same error message is received for CHECKTABLE, utility which checks the integrity of all the pages and structures that make up the table (or indexed view):

-- checking a table's integrity
DBCC CHECKTABLE ('SalesLT.Address');
Output:
"Msg 916, Level 14, State 2, Line 2, The server principal "..." is not able to access the database "..." under the current security context."

A similar error messages is received for SQLPERF, which provides transaction log space usage statistics for all databases:

-- retrieving the LOGSPACE information for all databases
DBCC SQLPERF (LOGSPACE);
Output: 
"Msg 297, Level 16, State 10, Line 1, The user does not have permission to perform this action."

There are however DBCC commands like SHOW_STATISTICS or SHRINKDATABASE which do work. 
 
-- current query optimization statistics
DBCC SHOW_STATISTICS('SalesLT.Address','PK_Address_AddressID');
Output:
Name Updated Rows Rows Sampled Steps Density Average key length String Index Filter Expression Unfiltered Rows Persisted Sample Percent
PK_Address_AddressID Dec 21 2024 3:02AM 450 450 197 1 4 NO 450 0

SHRINKDATABASE shrinks the size of the data and log files in the specified database:

-- shrinking database
DBCC SHRINKDATABASE([AdventureWorks01-...]) WITH NO_INFOMSGS;

To be updated...

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) SQL Server: USE <database> [link]
[2] Microsoft Learn (2024) Database console commands [link]

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part VI: Index Usage Analysis) [new feature]

There are several system dynamic management views (DMV) available in SQL Server, Azure SQL Server and now in SQL databases that allow to gather more information about indexes' fragmentation and usage. Let's look at the most important information available based on the indexes create in the previous posts. As the data were probably purged from the views, it's needed to run first the select queries based on the SalesLT.Product from the previous post. This step is important, otherwise the DMVs might return no records!

One starting point is to use the sys.dm_db_index_physical_stats DMV to look at the indexes' size and fragmentation information for a given table (or view). The table is used usually as starting point for analyzing indexes' fragmentation and then defragment the indexes with high fragmentation.

-- sys metadata - index & data size and fragmentation information for the data and indexes of the specified table or view
SELECT --db_name() db_name
--, object_name(IND.object_id) table_name
 IND.name index_name
, IND.type_desc
, IPS.page_count
, IPS.record_count
, IPS.index_level
, Cast(IPS.avg_fragmentation_in_percent as decimal(10,2)) avg_fragmentation_perc
, Cast(IPS.avg_page_space_used_in_percent as decimal(10,2)) space_used_perc
--, IPS.*
FROM sys.indexes IND
     CROSS APPLY sys.dm_db_index_physical_stats(DB_ID(), IND.object_id, IND.index_id, NULL, 'DETAILED') IPS
WHERE IND.object_id = OBJECT_ID(N'SalesLT.Product');
Output:
index_name type_desc page_count record_count index_level avg_fragmentation_perc space_used_perc
PK_Product_ProductID CLUSTERED 101 295 0 0.99 87.90
PK_Product_ProductID CLUSTERED 1 101 1 0.00 16.20
AK_Product_rowguid NONCLUSTERED 2 295 0 50.00 74.69
AK_Product_rowguid NONCLUSTERED 1 2 1 0.00 0.59
AK_Product_ProductNumber NONCLUSTERED 2 295 0 50.00 85.79
AK_Product_ProductNumber NONCLUSTERED 1 2 1 0.00 0.49
AK_Product_Name NONCLUSTERED 3 295 0 33.33 87.32
AK_Product_Name NONCLUSTERED 1 3 1 0.00 1.67
IX_SalesLT_Product_Color NONCLUSTERED 1 295 0 0.00 79.24
IX_SalesLT_Product_Color_Size NONCLUSTERED 1 295 0 0.00 94.12
IX_SalesLT_Product_ListPrice_IC NONCLUSTERED 4 295 0 0.00 86.60
IX_SalesLT_Product_ListPrice_IC NONCLUSTERED 1 4 1 0.00 1.01

In a second step one can look at the sys.dm_db_index_usage_stats DMV which provides the counts of the different types of index operations and the time each type of operation was last performed:

-- sys metadata - counts of different types of index operations and the time each type of operation was last performed.
SELECT -- db_name() db_name
--, object_name(IND.object_id) table_name
 IND.name
, IND.type_desc
, IUS.user_seeks 
, IUS.user_scans
, IUS.user_lookups 
, IUS.user_updates
, IUS.last_user_seek
, IUS.last_user_scan 
, IUS.last_user_lookup
, IUS.last_user_update
FROM sys.dm_db_index_usage_stats IUS
     JOIN sys.indexes IND
       ON IUS.index_id = IND.index_id
WHERE IND.object_id = OBJECT_ID(N'SalesLT.Product');
Output:
name type_desc user_seeks user_scans user_lookups user_updates last_user_seek last_user_scan last_user_lookup
PK_Product_ProductID CLUSTERED 0 10 15 0 2025-01-06T14:23:54 2025-01-06T14:23:54
IX_SalesLT_Product_Color_Size NONCLUSTERED 11 0 0 0 2025-01-06T14:23:54
IX_SalesLT_Product_ListPrice_IC NONCLUSTERED 8 0 0 0 2025-01-06T13:38:03

Finally, it might be useful to look also at the sys.dm_db_index_operational_stats DMV which returns the current lower-level I/O, locking, latching, and access method activity for each partition of a table or index in the database (see the documentation for the full list of attrbutes):

-- sys metadata - index operations stats
SELECT -- db_name() db_name
--, object_name(IND.object_id) table_name
 IND.name index_name
, IND.type_desc
, IOS.range_scan_count
, IOS.singleton_lookup_count
, IOS.leaf_insert_count
, IOS.leaf_delete_count
, IOS.leaf_update_count
, IOS.nonleaf_insert_count
, IOS.nonleaf_delete_count
, IOS.nonleaf_update_count
FROM sys.indexes IND
     CROSS APPLY sys.dm_db_index_operational_stats(DB_ID(), IND.object_id, IND.index_id, NULL) IOS
WHERE IND.object_id = OBJECT_ID(N'SalesLT.Product')
 AND IOS.range_scan_count<>0
ORDER BY IND.name;
Output:
index_name type_desc range_scan_count singleton_lookup_count leaf_insert_count leaf_delete_count leaf_update_count nonleaf_insert_count nonleaf_delete_count nonleaf_update_count
IX_SalesLT_Product_Color_Size NONCLUSTERED 11 0 0 0 0 0 0 0
IX_SalesLT_Product_ListPrice_IC NONCLUSTERED 8 0 0 0 0 0 0 0
PK_Product_ProductID CLUSTERED 10 64 0 0 0 0 0 0

For more information on these DMVs check the documentation.

Happy coding!

Previous Post <<||>> Next Post

References:
[1] Microsoft Learn (2024) SQL Server: sys.dm_db_index_physical_stats [link]
[2] Microsoft Learn (2024) SQL Server: sys.dm_db_index_usage_stats [link]
[3] Microsoft Learn (2024) SQL Server: sys.dm_db_index_operational_stats [link]

04 January 2025

💎🏭SQL Reloaded: Microsoft Fabric's SQL Databases (Part V: Manual Index Maintenance) [new feature]

Indexes' maintenance in Microsoft Fabric's SQL databases is supposed to happen automatically in the background via automatic tuning options feature, though the whole functionality is still in its early phases, and therefore many questions regarding the whole process may arise. Probably the most important question is whether indexes can still be created, respectively maintained manually. That's useful for temporary or even periodic workloads, where maybe organizations might still want to maintain indexes manually. 

The tests made below are based on the SalesLT.Product from AdventureWorkds database available in Microsoft Fabric. The target was to create several indexes that could be used for the various testing purposes. Each set of the below scripts was run 5-10 times until records appeared in the sys.dm_db_missing_index_details table for each test case (see further below):

-- batch 1: filter on single column (to be run 5-10 times)
SELECT *
FROM SalesLT.Product 
WHERE Color = 'Red'

SELECT *
FROM SalesLT.Product 
WHERE Color = 'Black'

SELECT *
FROM SalesLT.Product 
WHERE Color = 'White'

-- batch 2: filter on two columns (to be run 5-10 times)
SELECT *
FROM SalesLT.Product 
WHERE Color = 'Red'
  AND Size = '58'

SELECT *
FROM SalesLT.Product 
WHERE Color = 'Black'
  AND Size = '58'

SELECT *
FROM SalesLT.Product 
WHERE Color = 'White'
     AND Size = '58'

-- batch 3: filter with column selection (to be run 5-10 times)
SELECT ProductNumber, Name, Color, ListPrice
FROM SalesLT.Product 
WHERE ListPrice BETWEEN 50 AND 55

SELECT ProductNumber, Name, Color, ListPrice
FROM SalesLT.Product 
WHERE ListPrice BETWEEN 100 and 105

Once the scripts run, one can look at the records created in the above considered dynamic management view:

-- sys metadata -  missing indexes
SELECT MID.statement AS table_name
, MID.equality_columns
, MID.inequality_columns
, MID.included_columns
--, MIG.index_group_handle
--, MIG.index_handle
FROM sys.dm_db_missing_index_details MID 
    JOIN sys.dm_db_missing_index_groups MIG 
     ON MID.index_handle =  MIG.index_handle
ORDER BY MIG.index_group_handle
, MIG.index_handle
Output:
table_name equality_columns inequality_columns included_columns
[AdventureWorks01-...].[SalesLT].[Product] [Color]
[AdventureWorks01-...].[SalesLT].[Product] [Color], [Size]
[AdventureWorks01-...].[SalesLT].[Product] [ListPrice] [Name], [ProductNumber], [Color]

The next step is to create one of the indexes (please note that database's name must be replaced accordingly or used only the 2-part naming convention - schema & table name ):

-- create index on Color
CREATE INDEX IX_SalesLT_Product_Color 
ON [AdventureWorks01-...].[SalesLT].[Product] (Color);

Once the script was run, all the records related to the SalesLT.Product disappeared from the dynamic management view. Therefore, it might be a good idea to take a snapshot with view's data before creating any indexes manually. Probably the same behavior should be expected when the indexes are created by the system.

-- create index on Color & Size
CREATE INDEX IX_SalesLT_Product_Color_Size
ON [SalesLT].[Product] (Color, Size);

-- create index on ListPrice with included columns
CREATE INDEX IX_SalesLT_Product_ListPrice_IC
ON [SalesLT].[Product] (ListPrice) INCLUDE(ProductNumber, Name, Color);

One can use the following query based on the meta.vIndexes (created in a previous post) to look at the indexes created:

-- sys metadata - index columns
SELECt IND.db_name
, IND.schema_name
, IND.table_name
, IND.index_name
, IND.index_type
, IND.principal_type
, IND.auto_created
FROM meta.vIndexes IND
WHERE IND.schema_name = 'SalesLT'
  AND IND.table_name = 'Product'
  AND IND.index_name IN ('IX_SalesLT_Product_Color ','IX_SalesLT_Product_Color_Size'
,'IX_SalesLT_Product_ListPrice_IC')
ORDER BY IND.table_name
, IND.index_name
Output:
db_name schema_name table_name index_name index_type principal_type auto_created
AdventureWorks01-... SalesLT Product IX_SalesLT_Product_Color NONCLUSTERED S False
AdventureWorks01-... SalesLT Product IX_SalesLT_Product_Color_Size NONCLUSTERED S False
AdventureWorks01-... SalesLT Product IX_SalesLT_Product_ListPrice_IC NONCLUSTERED S False

After this model can be created further indexes as needed. It's always a good idea to take a "copy" of the indexes created (or keep a history of the scripts run for indexes' maintenance). This best practice is now more important, when the system can drop indexes as it considers fit. 

Don't forget to clean up the changes made if the indexes aren't needed anymore:

-- cleaning after
DROP INDEX IF EXISTS SalesLT.IX_SalesLT_Product_Color;
DROP INDEX IF EXISTS SalesLT.IX_SalesLT_Product_Color_Size;
DROP INDEX IF EXISTS SalesLT.IX_SalesLT_Product_ListPrice_IC;

So, after these tests, the standard syntax for index's maintenance seems to work also on SQL databases, with all the implications deriving from this (e.g. porting of scripts, database objects, etc.)

Happy coding!

Previous Post <<||>> Next Post

01 January 2025

💎🏭SQL Reloaded: SQL Server Metadata (Part I: Indexes Overview)

There are scenarios in which it's useful to gather information about the available indexes and their definition as a primary step for troubleshooting or index maintenance. Moreover, it's useful to take a baseline of the defined indexes and update it accordingly when indexes change. A minimum of information can be gathered in Excel files or similar repositories, though for the same can be used also metadata tools, at least when they're easy to use and the associated costs aren't neglectable. 

Usually, there are two levels at which the information is needed - at index, respectively at column level. Sometimes it's useful to have an independent query for each level of detail, though in data warehouses and similar use cases it's useful to provide a model on top of the metadata, at least to improve query's maintainability.

The first view encapsulates the logic needed to export the data and it's based on the sys.indexes, sys.objects, sys.schemas and sys.database_principals system objects. 

-- create schema for metadata
CREATE SCHEMA meta;

-- clean after
DROP VIEW IF EXISTS meta.vIndexes

-- create views
CREATE OR ALTER VIEW meta.vIndexes
AS
-- sys metadata - indexes
SELECT OBJ.schema_id
, IND.object_id 
, IND.index_id 
, SCH.name schema_name
, OBJ.name table_name
, IND.name index_name
, IND.type_desc index_type
, IND.is_primary_key
, IND.is_unique_constraint
, IND.fill_factor
, IND.has_filter
, IND.auto_created
, IND.is_unique is_unique_index
, DBP.type principal_type
, DBP.type_desc principal_type_desc
--, INC.*
FROM sys.indexes IND WITH (NOLOCK)
     JOIN sys.objects OBJ WITH (NOLOCK)
       ON IND.object_id = OBJ.object_id
          JOIN sys.schemas SCH WITH (NOLOCK)
            ON OBJ.schema_id = SCH.schema_id
               JOIN sys.database_principals DBP
                 ON SCH.principal_id = DBP.principal_id 
WHERE DBP.type IN ('S', 'E')

Upon case, the needed information can be exported via a query like the one below:

-- sys metadata - index columns
SELECt IND.db_name
, IND.schema_name
, IND.table_name
, IND.index_name
, IND.index_type
, IND.principal_type
FROM meta.vIndexes IND
WHERE IND.schema_name = 'SalesLT'
  AND IND.table_name IN ('Address', 'Customer')
ORDER BY IND.table_name
, IND.index_name

Output:

db_name schema_name table_name index_name index_type principal_type
AdventureWorks01... SalesLT Address AK_Address_rowguid NONCLUSTERED S
AdventureWorks01... SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion NONCLUSTERED S
AdventureWorks01... SalesLT Address IX_Address_StateProvince NONCLUSTERED S
AdventureWorks01... SalesLT Address PK_Address_AddressID CLUSTERED S
AdventureWorks01... SalesLT Customer AK_Customer_rowguid NONCLUSTERED S
AdventureWorks01... SalesLT Customer IX_Customer_EmailAddress NONCLUSTERED S
AdventureWorks01... SalesLT Customer PK_Customer_CustomerID CLUSTERED S

Similarly, on top of the above view can be built a similar object that provides also the column-related information by adding the sys.index_columns and sys.columns system object to the logic:

-- clean after
DROP VIEW IF EXISTS meta.vIndexColumns

-- create 
CREATE OR ALTER VIEW meta.vIndexColumns
AS
-- sys metadata - index columns
SELECT IND.db_id
, IND.schema_id
, INC.object_id 
, INC.index_id 
, INC.index_column_id
, INC.column_id
, IND.db_name
, IND.schema_name
, IND.table_name
, IND.index_name
, COL.name column_name
, INC.key_ordinal
, INC.partition_ordinal
, IND.index_type
, IND.is_primary_key
, IND.is_unique_constraint
, IND.fill_factor
, IND.has_filter
, IND.auto_created
, IND.is_unique_index
, INC.is_descending_key
, INC.is_included_column
, IND.principal_type
, IND.principal_type_desc
FROM sys.index_columns INC
     JOIN sys.columns COL WITH (NOLOCK)
       ON INC.object_id = COL.object_id 
      AND INC.column_id = COL.column_id 
     JOIN meta.vIndexes IND WITH (NOLOCK)
       ON INC.object_id = IND.object_id
      AND INC.index_id = IND.index_id

And, there's an example of the query based on this view:

-- sys metadata - index columns
SELECt INC.schema_name
, INC.table_name
, INC.index_name
, INC.column_name
, INC.key_ordinal
, INC.index_type
, INC.principal_type
FROM meta.vIndexColumns INC
WHERE INC.schema_name = 'SalesLT'
  AND INC.table_name IN ('Address', 'Customer')
ORDER BY INC.table_name
, INC.index_name
, INC.key_ordinal

Output:
schema_name table_name index_name column_name key_ordinal index_type principal_type
SalesLT Address AK_Address_rowguid rowguid 1 NONCLUSTERED S
SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion AddressLine1 1 NONCLUSTERED S
SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion AddressLine2 2 NONCLUSTERED S
SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion City 3 NONCLUSTERED S
SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion StateProvince 4 NONCLUSTERED S
SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion PostalCode 5 NONCLUSTERED S
SalesLT Address IX_Address_AddressLine1_AddressLine2_City_StateProvince_PostalCode_CountryRegion CountryRegion 6 NONCLUSTERED S
SalesLT Address IX_Address_StateProvince StateProvince 1 NONCLUSTERED S
SalesLT Address PK_Address_AddressID AddressID 1 CLUSTERED S
SalesLT Customer AK_Customer_rowguid rowguid 1 NONCLUSTERED S
SalesLT Customer IX_Customer_EmailAddress EmailAddress 1 NONCLUSTERED S
SalesLT Customer PK_Customer_CustomerID CustomerID 1 CLUSTERED S

Notes:
1) As a DBA it's useful to take a baseline of the indexes defined and reevaluate their usefulness over time. These are one of the checks that should be done when one becomes responsible for the administration of a database server, independently of the vendor.
2) The definitions of the views can be extended as needed, though one should try to keep the overall complexity to a minimum. 
3) There are voices against the use of NOLOCK. Feel free to change the objects accordingly!
4) It's useful to work in a dedicated schema (e.g. meta) and have a different naming convention that deviates slightly from one defined by Microsoft. This should make sure that no confusion with the system objects exists.
5) Azure SQL takes over many of the responsibilities for index maintenance. Even if indexes are managed automatically by the system, a baseline is still needed, at least to evaluate functionality's performance, respectively the changes that occurred in the environment. 
6) Except attributes which were added for specific functionality over time, the queries should work at least starting with SQL Server 2005 forward.
7) See also the notes on clustered vs nonclustered indexes.

Happy coding!

Previous Post <<||>> Next Post

25 December 2024

💎🏭SQL Reloaded: Number of Records IV (via sys.partitions)

To get the exact number of records in a table one can use the COUNT (see post) or the more recent COUNT_BIG function, though for big tables this can be an inefficient operation for the database engine:

-- number of records via COUNT
SELECT count(*) row_count
FROM SalesLT.Product

Moreover, sometimes the operation needs to be repeated for a number of tables, e.g. dropdown tables in Dynamics 365 for Finance and Operations (D365 F&O). Writing the query as a UNION allows to export the data as a single table and do comparisons (e.g. in Excel). The same approach can be used also when multiple columns are used for grouping, though one must account for the additional columns in the other subqueries. However, the more tables are involved, the more difficult it becomes to maintain the query over time. 
 
-- number of records via COUNT for multiple tables
SELECT 'SalesLT.Product' table_name
, count(*) row_count
FROM SalesLT.Product
UNION ALL
SELECT 'SalesLT.ProductDescription' table_name
, count(*) row_count
FROM SalesLT.ProductDescription
UNION ALL
SELECT 'SalesLT.ProductModel' table_name
, count(*) row_count
FROM SalesLT.ProductModel

There are many scenarios in which it's needed to get an approximate of the number of records available in a table and doing a record count might prove to be too expensive. For a quick and dirty solution one can use the sys.partitions DMV  instead:

-- number of records via DMV for single object
SELECT object_id
, OBJECT_NAME(object_id) object_name
, OBJECT_SCHEMA_NAME(object_id) schema_name
, SUM(Rows) AS row_count
, data_compression_desc AS compression_type
, COUNT(*) partitions_count
FROM sys.partitions 
WHERE index_id < 2 --ignore the partitions from the non-clustered index if any
  AND OBJECT_ID('SalesLT.Product') = object_id
GROUP BY object_id
, data_compression_desc
ORDER BY row_count DESC;

The query is based on sys.partitions table [1] which contains a row for each partition of all the tables and most types of indexes in the database. The documentation mentions that "rows" indicates the approximate number of rows in the considered partition.

Alternatively, one can bring more tables into the query to extend its range of applicability. 

-- number of records via DMVs
SELECT S.name + '.' + T.name SearchName
, S.Name SchemaName
, T.name TableName
, P.row_count
, P.compression_type
, P.partitions_count
FROM sys.tables T
     LEFT JOIN (
        SELECT object_id
        , SUM(Rows) AS row_count
        , data_compression_desc AS compression_type
        , COUNT(*) partitions_count
        FROM sys.partitions 
        WHERE index_id < 2 --ignore the partitions from the non-clustered index if any
        --AND OBJECT_ID('SalesLT.Product') = object_id
        GROUP BY object_id
        , data_compression_desc
     ) P
    ON T.object_id = P.object_id
     JOIN sys.schemas as S
	   on S.schema_id = T.schema_id
WHERE S.Name = 'SalesLT'
  AND T.Name LIKE 'Product%'
ORDER BY row_count DESC;

The data can be exported regularly to give an idea how tables' cardinality changes over time. One can find this useful as part of the loading process in data warehouses or other solutions (e.g. data migrations). 

By using a FULL JOIN instead of a LEFT JOIN one can retrieve only the tables that have records. 

One should consider only the tables in scope, and eventually remove the records associated with the system objects (e.g. sys or information_schema upon case).

 -- constraints to be added in the WHERE clause to remove the records related to system objects
 AND OBJECT_NAME(object_id) NOT LIKE 'sys%'
 AND OBJECT_NAME(object_id) NOT LIKE 'queue_%' 
 AND OBJECT_NAME(object_id) NOT LIKE 'filestream_tombstone%' 

There are also scenarios in which the count is needed only for a subset of the data. It's the case of D365 F&O (in which the number of records is needed by DataAreaId (aka company) or another field. A solution can be built using the sp_MSForEachTable stored procedure (see the last query from this post) and a cursor.

Notes:
The code used in this post is available also in the GitHub repository.

Happy coding and Merry Christmas!

Previous Post <<||>> Next Post

Resources:
[1] Microsoft Learn (2024) sys.partitions (Transact-SQL) [link]
[2] Microsoft Learn (2024) COUNT_BIG (Transact-SQL) [link]

07 March 2024

📦Data Migrations (DM): The SQL Server Perspective (Licensing Costs and Edition Choices)

Data Migration
Data Migration Series

A Data Migration (DM) moves all or a subset of the data available from one or more system(s) into other system(s). For this purpose, especially in ERP Implementations, one can use a SQL Server as intermediate layer, where SSIS can be used for the data extraction and exporting, SSRS for reporting the errors, while the database engine for the heavy processing. Master Data and Data Quality Services can be used as well in certain scenarios. Therefore, SQL Server allows by design to address the various challenges related to a DM. At high level the architecture can be depicted as follows:

Data Migration Architecture
Data Migration Architecture

Once the decision to go with SQL Server for the DM layer is made, one needs to define which edition to use. If the DM doesn't have special requirements, one can use for it an available SQL Server instance, as long as the cumulated workloads don't create major issues. Therefore, in the past I used existing licensed versions of SQL Server to build solutions for DMs in ERP implementations, though I evaluated in each project whether it's possible to reduce the costs and remain compliant with the license requirements. 

Of course, there's always the alternative of using SQL Server Express which supports databases with a maximum of 10 GB, which should be enough for most of DMs, though it has also further limitations (see [2]). There are also ways of moving around existing limitations, like splitting the logic across multiple databases. 

Then there's the SQL Server Developer edition, which involves no license costs, has the full SQL Server functionality available, and can be used to build and test applications. In a recent post [1], Bob Ward, principal architect at Microsoft made several clarifications on the licenses for the Developer edition, which is "licensed for development, test, and demonstration purposes only" and "may not be used in a production environment”. Bob Ward makes the following clarifications:
(1) "Production environments include any system that is accessed by end-users for anything more than acceptance testing, environments that connects to production systems (such as Linked servers), disaster recovery or backups of production systems, and environments that are 'rotated' into production at any point in time." [1]
(2) One "cannot use Developer edition to build test data and move that same data into production" [1].
(3) One can "restore a production set of data backup for testing purposes" [1].

There are two-three impediments for using the Developer edition completely for a DM. The first, at least during Go Live and UAT, one needs to work with data coming directly from the various production environments. Secondly, the data generated by the solution are used primarily for UAT and in a second step for Production, which seems to be against the rule (2), or at least it's a grey area (which might be overlooked by Microsoft). Thirdly, some data from the production environment might need to be imported back into the DM layer for validation or enhancing the entities with data generated in the target systems. 

In what concerns the first issue, the DM solution can always point to the test environments used as source, following that during UAT to copy the databases from production into the test environments. This might be anyway necessary for other purposes. Otherwise, the effort might be considerable and not working in the last phases with the data timeliness might raise other concerns. 

The second issue is a matter of interpretation. The UAT phase makes sure that the data generated by the DM solution respects the criteria for Go Live. If there are no issues, the same data can be used for Go-Live. If for this is required another licensed edition, then an environment can be built only for UAT and Go Live, project phases which usually span over a couple of weeks, unless multiple migrations need to be performed at different time intervals. If the environments are in the cloud, probably the instances can be turned on and off on a as-needed basis. 

One can plan for different environments between Production and Development and the environments can be on the same SQL Server as distinct databases, respectively use the Developer edition for Development, and use a different licensed edition for UAT and Production. This approach involves additional overhead in synchronizing the logic between environments. Conversely, in the case of the DM layer, the same environment can be used from beginning to the end, while the code should/must be backed-up periodically. For multiple migrations based on the same data, one should archive the data after each migration or important phase. 

For the scenarios in which after migration the data are copied back to the DM solution, it's enough to have these steps performed against the UAT target system(s). This should work as long there are no differences in configuration between UAT and Production. There are however exceptions, e.g. data generated by the target systems, for which the values between Prod and UAT are different. At least in Dynamics 365 one can attempt to generate the values in the DM layer and import them as they are into the target system. It worked for many scenarios, though there can be exceptions here as well. 

A more complex scenario is when data from the DM layer needs to be exported to Data Warehouses or similar solutions that can be considered as Production systems. Here a licensed edition seems to be mandatory. For other scenarios in which Master Data and/or Data Quality Services are needed, there's only the option to use the Enterprise or Developer editions.

To summarize, to reduce the overall costs for the DM, consider using an existing licensed SQL Server instance for building the solution. If separates environments need to be built, the Express edition might have some limitations though it can prove to be a viable solutions in many cases. Otherwise, consider the above workarounds for using the Developer edition, including the scenario in which distinct environments are used for Production and Development. 

Resources:
[1] Microsoft Data Platform (2024) How SQL developers can maximize savings, by Bob Ward (link)
[2] Microsoft Learn (2024) Editions and supported features of SQL Server 2022 (link)
[3] Microsoft Learn (2023) Master Data Services and Data Quality Services Features Support (link)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.