Showing posts with label buffer pool. Show all posts
Showing posts with label buffer pool. Show all posts

31 December 2023

💠🛠️🛠️🗒️SQL Server: Buffer Pool [Notes]

Disclaimer: This is work in progress intended to consolidate information from various sources (some unfortunately not available anymore).

Buffer Pool  [aka BP, BPool]

  • main memory component in SQL Server [2]
    • ⇐ preferred memory allocator for the whole server [1]
    • ⇐ the biggest consumer of SQL Server 
  • area of memory that SQL Server used to store
      • cached data (aka data pages)
      • cached execution plans 
      • algebrizer trees for views, constraints and defaults
      • lock memory
      • ⇐ anything with a non-zero value in sys.dm_os_memory_clerks.single_pages_kb
    • ⇐ caching data in the buffer pool reduces the load on the I/O subsystem and improves performance [6]
    • ⇐ all pages must be copied into the buffer pool before they can be used in a query
      •  ⇒ it is needed to scan the buffer pool for a number of operations [3]
    • single-page allocator
      • it commits and decommits memory blocks of 8KB granularity only
    • manages disk I/O functions for bringing data and index pages into the data cache so data can be shared among users [2]
    • all memory not used by another memory component remains in the buffer pool to be used as a data cache for pages read in from the database files on disk [2]
      • when other components require memory, they can request a buffer from the buffer pool [2]
        • most of the buffers taken from the buffer pool for other memory components go to other kinds of memory caches [2]
      • ⇐ they can only get blocks of 8KB in size [1]
        • these blocks are not continues in memory[1]
        • allocation for large buffers will be satisfied by memory node's multi-page allocator or by virtual allocator [1]
          • ⇒ memory will be allocated outside of Buffer Pool [1]
        • BP can be used as underneath memory manager for SQL Server components as long as they allocate buffers of 8KB [1]
          • pages allocated from BP are referred as stolen[1]
    • first decides how much of VAS it needs to reserve for its usage (aka target memory)
      • decision based on internal memory requirements and external memory state
      • it calculates its target amount of memory it thinks it should commit before it can get into memory pressure [1]
        • ⇐ to keep the system out of paging the target memory is constantly recalculated [1]
        • {restriction} the target memory can't exceed max memory that represents max server memory settings [1]
        • even if the min server memory equals the max server memory BP commits its memory on demand [1]
          • ⇐ monitor the corresponding profiler event to observe this behavior [1]
    • reserves all of it right a way
        • ⇐ check monitor SQL Server's virtual bytes from perfmon or use vasummary view to observe this behavior 
        • ⇐ normally can't get all the needed memory in one region
          • ⇒ several large regions reserved ← by design behavior 
    • commits pages on demand
  • during startup the memory manager configures BP to be SQLOS's single page allocator
    • from that point on all dynamic single page allocations are provided by BP[1]
  • has its own memory clerk
    • is leveraged to respond to external and VAS memory pressure only [47]
  • leverages only Virtual and AWE SQLOS's interfaces
    • never uses any type of page allocator from SQLOS [1]
  • {operation} dropping buffers 
    • likely results in some degree of performance degradation
      • ⇐ any subsequent query executions will have to reread the data from the database files increasing I/O
    • via: DBCC DROPCLEANBUFFERS
  • {concept} page
    • the fundamental unit of data storage in SQL Server
  • {concept} buffer
    • page in memory that's the same size as a data or index page [2]
      • ⇐ page frame that can hold one page from a database [2]
  • {concept} buffer pool scan
    • common internal operation that iterates through the entire buffer descriptor array to find any buffers that belong to a specific database [3]
    • [<SQL Server 2022] serial operation
      • on large memory machines operations that require scanning the buffer pool can be slow [3]
        • ⇐ the larger the machine, the greater the impact 
        • ⇐ it doesn’t necessarily matter about the size of the operation [3]
    • [SQL Server 2022] {feature}Buffer Pool Parallel Scan
      • parallelized by utilizing multiple cores
        • adds processing power to scan the buffer pool more efficiently [3]
          • ⇐ benefits both small and large database operations on larger memory machines
            • 10-30x improvement in executions
            • customers running mission-critical OLTP, hosted service providers, and data warehouse environments will witness the most improvements in overall processing speed [3]
          • uses one task per 8 million buffers (64 GB) 
            • ⇐ a serial scan will still be used if there are less than 8 million buffers [3]
        • uses buffer pool scan diagnostics to improve supportability and insights with new buffer pool scan events [3]
      • can significantly improve the performance of database workloads
        • operations benefiting from it
          • database startup/shutdown
          • creating a new database
          • file drop operations
          • backup/restore operations
          • Always On failover events
          • DBCC CHECKDB and DBCC Check Table
          • log restore operations
          • other internal operations (e.g., checkpoint) 
References:
[1] Slava Oaks (2005) SQLOS's memory manager and SQL Server's Buffer Pool (link) [something similar seems to be available here]
[2] Kalen Delaney (2006) Inside Microsoft® SQL Server™ 2005: The Storage Engine
[3] Microsoft SQL Server Blog (2022) Improve scalability with Buffer Pool Parallel Scan in SQL Server 2022, by David Pless (link)
[4] Microsoft learn (2022) Operations that trigger a buffer pool scan may run slowly on large-memory computers (link)
[5] Microsoft Docs (2023) DBCC TRACEON - Trace Flags (link)
[6] Dmitri Korotkevitch (2015) Expert SQL Server: In-Memory OLTP
[7] Slava Oaks (2005) SQLOS's memory manager: responding to memory pressure (link)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.